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Abstract. Correspondence matching is a fundamental problem in com-
puter vision and robotics applications. Solving correspondence matching
problems using neural networks has been on the rise recently. Rotation-
equivariance and scale-equivariance are both critical in correspondence
matching applications. Classical correspondence matching approaches
are designed to withstand scaling and rotation transformations. How-
ever, the features extracted using convolutional neural networks (CNNs)
are only translation-equivariant to a certain extent. Recently, researchers
have strived to improve the rotation-equivariance of CNNs based on
group theories. Sim(2) is the group of similarity transformations in the
2D plane. This paper presents a specialized dataset dedicated to evaluat-
ing sim(2)-equivariant correspondence matching algorithms. We compare
the performance of 16 state-of-the-art (SoTA) correspondence match-
ing approaches. The experimental results demonstrate the importance
of group equivariant algorithms for correspondence matching on various
sim(2) transformation conditions. Since the subpixel accuracy achieved
by CNN-based correspondence matching approaches is unsatisfactory,
this specific area requires more attention in future works. Our dataset is
publicly available at: mias.group/SIM2E.

Keywords: correspondence matching, computer vision, robotics, rotation-
equivariance, scaling-equivariance, convolutional neural networks

1 Introduction

Correspondence matching is a key component in autonomous driving percep-
tion tasks, such as object tracking [1], simultaneous localization and mapping
(SLAM) [2], multi-camera online calibration [3], 3D geometry reconstruction [4],
panorama stitching [5], and camera pose estimation [6], as shown in Fig. 1.
Sim(2) transformation consists of rotation, scaling, and translation. Sim(2)-
equivariant correspondence matching is significantly important for autonomous
driving, as vehicles often veer abruptly. Classical algorithms leverage a detector,
a descriptor, and a matcher to determine correspondences. The detector and
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Fig. 1. Autonomous driving perception tasks involving correspondence matching.

descriptor provide the locations and the descriptions of interest points (point-
like features in an image), and the matcher produces the final correspondences.
Moravec et al. [7] presented the concept of interest points. Harris [8] judges
whether the pixel is a corner based on the local image gradient changes. The
scale-invariant feature transform (SIFT) [9] is a rotation-invariant and scale-
invariant algorithm that consists of a detector and a descriptor. The distance
among descriptors is computed using cosine distance. The correspondences of
a given image pair are determined using the nearest neighbor matching algo-
rithms. As a hand-crafted algorithm, SIFT [9] achieves rotation-invariance by
computing the main directions of local features (in an image patch of 16x16
pixels.). ASIFT [10] aimed to improve the performance of SIFT [9] on affine
transformation. Oriented FAST [11] and Rotated Binary Robust Independent
Elementary Features (BRIEF) [12] (ORB) [13] greatly minimize the trade-off
between accuracy and speed and have been widely used in visual SLAM [13-15].

Deep learning has been applied successfully in numerous computer vision
tasks in recent years. LIFT [16] is an architecture of learning-based rotation-
invariant feature detection and description approach. It consists of three mod-
ules: detector, orientation estimator, and descriptor. Similar to SIFT [9], a scale-
space pyramid is used to obtain multi-scale correspondence detection results.
SuperPoint [17] is a self-supervised framework for correspondence detection and
description. It is a two-stage method: (1) in the first stage, a feature extractor is
trained on a synthetic dataset generated by rendering patterns of corners; (2) in
the second stage, the descriptor is trained on images from the COCO-dataset [18]
that are augmented by random homography matrices including transformations
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such as rotation, scaling, and translation. Unlike SuperPoint, D2Net [19] is a
one-stage approach that jointly detects and describes correspondences. D2Net
is trained using the correspondences obtained from large-scale structure from
motion (SM) reconstructions. R2D2 [20] proposes a framework to find more
repeatable correspondences, and it can simultaneously estimate the reliability
and repeatability of correspondences. DISK [21] uses reinforcement learning to
realize end-to-end correspondence matching. It performs better at small angle
changes but worse than SuperPoint [17] at large angle changes.

SuperGlue [22] achieves superior performance by modeling correspondence
matching as a graph matching problem. The inputs of the graph neural net-
work in SuperGlue [22] include descriptors, positions, and scores of keypoints.
The Sinkhorn algorithm [23] is utilized to solve the optimal-transport prob-
lem. However, the graph edges in SuperGlue exponentially grow as the num-
ber of correspondences increases. SGMNet [24] uses a seeded graph to reduce
computation and memory costs significantly. LoF TR, [25] is a detector-free and
end-to-end architecture. It uses convolutional neural networks (CNN) as fea-
ture extractors and a coarse-to-fine strategy to obtain more accurate pixel-level
results. Similar to SuperGlue, it also fuses descriptors with the position infor-
mation. Unlike LoFTR, another end-to-end correspondence matching network,
referred to as MatchFormer [26], uses a hierarchical extract-and-match trans-
former. It is demonstrated that the correspondence matching operation can also
be conducted in the encoder. RoRD [27] uses orthographic view generation to
improve correspondence matching by increasing the visual overlap using ortho-
graphic projection. It also shows that rotation invariance can be improved by
augmenting the training dataset with random rotation, scaling, and perspective
transformations.

Group-equivariant convolutional neural networks (G-CNN) are equivariant
under a specific transformation (e.g., rotation, translation, etc.) which can also
be represented by a special group. Researchers have designed G-CNNs using
different mathematical approximations. Cohen et al. [28] proposed the first G-
CNN. Li et al. [29] use the cyclic replacement to achieve P4-group equivariance.
Cohen et al. [30] use the Fast Fourier Transform (FFT) to approximate the in-
tegral of a group. E2-CNN [31] is a general G-CNN framework that analyzes
and models the orientation and symmetry of images. GIFT [32] is a rotation-
equivariant and scaling-equivariant descriptor based on G-CNN. It uses E2-
CNN [31] rather than conventional CNNs to describe local visual features. On the
other hand, SEKD [33] is a group-equivariant correspondence detector based on
G-CNN, which greatly improves the performance of rotation-equivariant corre-
spondence matching. ReF [34] is a rotation-equivariant correspondence detection
and description framework. It uses a G-CNN to extract group-equivariant fea-
ture maps and a group-pooling operation to get rotation-invariant descriptors.
SE2-LoFTR [35] replaces the feature extractor of LoF TR with E2-CNN, achiev-
ing significantly better results on the rotated-HPatches dataset [27]. Further-
more, it also mentioned in [35] that the the position information is not rotation-
equivariant while the descriptor is rotation-equivariant. The methods mentioned



4 S. Su et al.

above only consider the equivariance of local features. Unfortunately, the equiv-
ariance of position information is rarely discussed. Cieslewski et al. [36] presented
an algorithm to match correspondences without descriptors, namely, only posi-
tion information is used. This algorithm is evaluated on the KITTI [37] dataset
(containing relatively ideal scenarios), demonstrating robust performance even
without descriptors. Similar to [36], ZZ-Net [38] is an algorithm for matching
two 2D point clouds. It demonstrates that correspondence matching without de-
scriptors can work in rotation-only conditions. Therefore, the current research
on the equivariance of position information needs to be further expanded.

2 SIM2E Dataset

2.1 Data Collection and Augmentation

To ensure the pixel-level accuracy of correspondence matching ground truth,
we scrape frames from online time-lapse videos. The cameras used to capture
such time-lapse videos are fixed. Our SIM2E dataset contains many challenging
scenarios, such as moving clouds in the sky and changing illumination conditions.
We choose the first frame of each video as the reference image and use the rest of
the frames as target (query) images. We also publish our data augmentation code
so that interested readers can conduct sim(2) transformations on our dataset
according to their own needs.

2.2 SIM2E-SO2S, SIM2E-Sim2S, and SIM2E-PersS

The rotation and scaling operations produce many black backgrounds. To in-
crease the difficulty of correspondence matching, we generate synthetic back-
grounds to fill these black areas. Our dataset is split into three subsets: SIM2E-
S0O2S, SIM2E-Sim2S, and SIM2E-PersS.

— SIM2E-SO2S (Rotation and Synthetic Background): The target im-
ages are rotated by random angles between 0° and 360°. Scaling is not ap-
plied.

— SIM2E-Sim2S (Rotation, Scaling, Translation and Synthetic Back-
ground): The target images are rotated by random angles between 0° and
360°. Random scaling ranging between 0.4 and 1, and random translation
ranging between 0 and 0.2 are also applied.

— SIM2E-PersS: (Perspective Transformation and Synthetic Back-
ground): Random perspective transformations are applied to the target
images, where the perspective parameters (the two elements on the 3rd row,
the 1st and 2nd columns of the homography matrix, respectively) are ran-
dom values between -0.0008 and 0.0008. The shear angle is randomly set
to [—10°,10°]. The target images are rotated by random angles between 0°
and 360°. Random scaling ranging between 0.4 and 1 is applied. Random
translation ranging between 0 and 0.2 is applied.
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Fig. 2. Rotated-HPatches dataset and the three sub-sets of our created SIM2E dataset.

2.3 Comparison with Other Public Correspondence Matching
Datasets

As shown in Table. 1, the existing datasets for correspondence matching algo-
rithm evaluation can be grouped into two types: 3D scenes [39-44] and planar
scenes [27,45].

Aachen Day-Night [39] is a public dataset designed to evaluate the perfor-
mance of outdoor visual localization algorithms in changing illumination condi-
tions (day-time and night-time). The dataset contains a scenario where images
were taken with a hand-held camera at different times of the day. It is widely used
to evaluate the performance of correspondence matching algorithms, especially
when the illumination change is significant.

ScanNet [41] is a large-scale real-world dataset containing 2.5M RGB-D im-
ages (1513 scans acquired in 707 different places, such as offices, apartments, and
bathrooms). All the scans are annotated with estimated calibration parameters,
camera poses, reconstructed 3D surfaces, textured meshes, dense object-level
semantic segmentations, and aligned computer-aided design (CAD) models.
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Table 1. Comparison between our SIM2E dataset and other public datasets.

Dataset Type|lllumination Change|Rotation| Scaling [Dataset Size
AachenDayNight [39] | 3D significant small |medium large
ScanNet [41] 3D slight small | small large
MegaDepth [42] 3D slight small large large
Inloc [43] 3D medium small |medium large
TartanAir [44] 3D very significant small |medium large
Hpatches [45] plane significant small | small small
Rotated-HPatches [27]|plane significant large |medium| small
SIM2E (ours) plane| very significant large large small

MegaDepth [42] is a large-scale dataset for the evaluation of depth estima-
tion and/or correspondence matching algorithms. It uses SfM and multi-view
stereo (MVS) techniques to acquire 3D point clouds, which can then be used to
train and evaluate single-view depth estimation and/or correspondence match-
ing networks. However, the 3D point clouds generated using SfM/MVS in the
MegaDepth dataset are not sufficiently accurate and dense.

Compared to the Aachen Day-Night [39] and MegaDepth [42] datasets which
were created in outdoor scenarios, the Inloc [43] dataset focuses on indoor lo-
calization problems. The Inloc dataset consists of a database of RGB-D images,
geometrically registered to the floor maps and augmented with a separate set
of RGB target images (annotated with manually verified ground-truth 6DoF
camera poses in the global coordinate system of the 3D map).

Unlike the aforementioned datasets that are relatively ideal in terms of either
motion or illumination conditions, TartanAir [44], a synthetic dataset used to
evaluate visual SLAM algorithms, is collected using a photo-realistic simulator
(with the presence of moving objects, changing illumination and weather con-
ditions). Such a more challenging dataset fills the gap between synthetic and
real-world datasets.

Hpatches [45] are created using other public datasets. It can be split into
two subsets: illumination and viewpoint, which are two crucial aspects of corre-
spondence matching. It can also be split into three subsets: EASY, HARD, and
TOUGH, according to the sizes of the overlapping areas between reference and
target images. Randomly rotating the target images in the Hpatches [45] dataset
produces a new dataset, referred to as Rotated-HPatches [27].

Similar to the Hpatches and Rotated-HPatches datasets, our SIM2E dataset
provides accurate subpixel correspondence matching ground truth. On the other
hand, the illumination, rotation, and scaling changes are significant in our dataset.
Therefore, compared to other existing public datasets, our SIM2E dataset can be
used to evaluate the sim(2)-equivariant capability of correspondence matching
algorithms more comprehensively. However, the size of the current version of our
SIM2E dataset is small. We will therefore increase its size in our future work.

The rotation distributions of Rotated-HPatches and our SIM2E subsets are
shown in Fig. 3. It can be observed that in the Rotated-HPatches dataset, slight
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Fig. 3. Rotation distributions of the Rotated-HPatches and our SIM2E datasets.

rotations (< 60°) account for a large proportion. In contrast, the three subsets of
our SIM2E dataset are uniformly distributed. Most existing learning-based cor-
respondence matching approaches have poor rotation-equivariant capabilities,
and their performances are satisfactory only when there are slight rotations.
Therefore, our SIM2E dataset can provide more acceptable results when eval-
uating the rotation-equivariant capability of a given correspondence matching
algorithm.

3 Experiments

3.1 Experimental Setup

The group-equivariant capabilities of six classical and ten learning-based corre-
spondence matching approaches are evaluated on our SIM2E dataset.

For classical correspondence matching approaches, we use the OpenCV [46]
implementations of AKAZE [47], BRISK [48], KAZE [49], ORB [13], FREAK
[50], and SIFT [9] in our experiments. All these classical approaches use the
nearest neighbor matching algorithm for correspondence matching. The ratio test
technique (threshold is set to 0.7) is also used to improve the overall performance.

For learning-based correspondence matching approaches, we use the official
weights of each model. These models were trained on different datasets, as de-
tailed below:

— SuperPoint [17] is trained on the MS-COCO [18] dataset, a large-scale
dataset for object detection and segmentation.

— R2D2 [20] is trained on the Aachen Day-Night [39] dataset and a retrieval
dataset [51].

— ALIKE [52] is trained on the MegaDepth [42] dataset.

— GIFT [32] is trained on the MS-COCO [18] dataset and finetuned on the
GL3D [53] dataset (consisting of indoor and outdoor scenes).

— RoRD [27] is trained on the PhotoTourism [54] dataset, where the 3D struc-
tures of scenes are obtained using SfM.

— SuperGlue [22] is trained with the indoor models in the ScanNet [41]
dataset and the outdoor models in the MegaDepth [42] dataset.
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— SGMNet [24] is trained on the GL3D [53] dataset. Our experiments utilize
the SIFT version of SGMNet, where the detector and descriptor are rotation-
invariant.

— LoFTR [25] is trained with the same experimental setup as SuperGlue.

— MatchFormer [26] is trained with the same experimental setup as Super-
Glue and LoFTR. Limited by our GPU memory, the lightweight version of
MatchFormer is used in our experiments.

— SE2-LoFTR [35] is trained on the MegaDepth dataset.

Furthermore, the mean matching accuracy (MMA) is employed to quantify
the performance of the aforementioned correspondence matching algorithms,
which are run on a PC with an Intel Core i7-10870H CPU and an NVIDIA
RTX3080-laptop GPU (having a 16GB DDR4 memory).

3.2 Comparison of the SoTA approaches on the Rotated-HPatches
Dataset

The Rotated-HPatches [27] dataset is generated using the Hpatches [45] dataset
to evaluate rotation-equivariant capability of correspondence matching methods.
Each sub-folder of the Rotated-HPatches dataset contains one reference image
and five target images. The target images are obtained by rotating the refer-
ence image at a random angle. The correspondence matching ground truth is
acquired using the homography matrices between each pair of reference and
target images. As illustrated in Fig. 4(a), the SoTA correspondence match-
ing algorithms demonstrate significantly different performances on the Rotated-
HPatches dataset.

The classical algorithms, such as AKAZE, BRISK, KAZE, and SIFT, achieve
the best overall performances on the Rotated-HPatches dataset, as they consider
both the scaling and rotation invariance of visual features. Benefiting from the
higher dimensional feature descriptors, these four algorithms outperform ORB
and FREAK.

On the other hand, SuperPoint, R2D2, and ALIKE are developed without
considering rotation invariance. Therefore, their performances are relatively poor
on the Rotated-HPatches dataset. GIFT [32] uses SuperPoint as the feature
detector. Its feature descriptor is developed based on G-CNN to acquire the
rotation-equivariant capability. As expected, GIFT significantly outperforms Su-
perPoint.

As can be seen from Table 2 and Fig. 4(a), when the tolerance § exceeds 5, the
learning-based methods demonstrate better performances than classical meth-
ods. For instance, SGMNet outperforms all classical methods when § > 5 and
SE2-LoFTR shows similar performance to the classical methods when § > 8. Re-
ferring to [24], SGMNet is a lightweight version of SuperGlue and demonstrates
slightly worse performance than SuperGlue. However, SuperGlue with Super-
Point performs much worse than SGMNet. This is probably because SGMNet
uses SIFT as its detector and descriptor, which has the rotation-equivariant
capability.
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Table 2. The performance of SoTA correspondence matching approaches on the
Rotated-HPatches dataset. N denotes the average number of valid matches.

Method 0<1 6<3 6<5 6<10 N
AKAZE [47] 0.426 0.744 0.812 0.841 | 203
BRISK [48] 0.419 0.745 0.816 0.841 | 282
KAZE [49] 0.423 0.753 0.825 0.858 | 505
ORB [13] 0.253 0.576 0.646 0.672 20
SIFT [9] 0.484 0.762 0.809 0.830 | 727
FREAK [50] 0.278 0.519 0.567 0.594 27
SP [17] 0.123 0.249 0.274 0.295 120
R2D2 [20] 0.057 0.129 0.144 0.153 | 158
ALIKE [52] 0.111 0.172 0.184 0.201 59
GIFT [32] 0.203 0.406 0.439 0.448 | 186
RoRD [27] 0.030 0.191 0.378 0.620 | 1077
SPSG [22] 0.185 0.425 0.491 0.552 | 479
SGMNet [24] 0.369 0.688 0.814 0.893 | 1278
LoFTR [25] 0.037 0.167 0.259 0.350 | 506
MatchFormer [26] | 0.033 0.162 0.256 0.358 | 600
SE2-LoFTR [35] 0.197 0.556 0.720 0.842 | 1305

It can be observed that SoTA classical methods always perform better than
learning-based methods when the tolerance is small. With the decrease in tol-
erance, the MMA scores achieved by learning-based methods drop considerably.
This is probably because the learning-based methods are generally trained via
self-supervised learning, where the tolerance to determine positive samples is
typically set to 3. Furthermore, the model is difficult to converge in the training
phase when the tolerance is too small, e.g., less than 1, while the model’s accu-
racy degrades dramatically when the tolerance is too large. Moreover, compared
to classical methods, learning-based methods can always obtain more correspon-
dences. Therefore, improving the subpixel accuracy of learning-based approaches
without reducing the number of valid matches is a research area that requires
more attention.

3.3 Comparison of the SoTA approaches on our SIM2E Dataset

In this paper, we quantify the group-equivalent capabilities of the aforementioned
algorithms on the three subsets of our SIM2E Dataset.

Experimental results on the SIM2E-SO2S subset Our SIM2E-SO2S sub-
set is created in a similar fashion to the Rotated-HPatches dataset. Since we
select time-lapse videos with more challenging illumination conditions, apply
more uniformly distributed random rotations, and add synthetic backgrounds
to the target image, the SIM2E-SO2S subset is expected to reflect the corre-
spondence matching algorithms’ group-equivariant capabilities more compre-
hensively. As can be observed from Fig. 4(b), all the SOTA methods perform
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of six classical and ten learning-based correspondence matching

approaches on the Rotated-HPatches dataset and our SIM2E-SO2S, SIM2E-SIM2S,
and SIM2E-PersS subsets. MMA results for the classical methods are shown as solid
lines, while MMA results for the learning-based methods are shown as dashed lines.

much worse on our SIM2E-SO2S subset because it is more challenging than
the Rotated-HPatches dataset. Furthermore, similar to the experimental results
in the Rotated-HPatches experiments (see Fig. 4(a)), SE2-LoFTR, SGMNet,
AKAZE, BRISK, KAZE, and SIFT also achieve the best group-equivariant ca-
pabilities on our SIM2E-SO2S subset (see Fig. 4(b)). This validates the effec-
tiveness of our SIM2E-SO2S subset in terms of evaluating a correspondence
matching algorithm’s group-equivariant capability. Moreover, the MMA scores
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Table 3. The performance of SoTA correspondence matching approaches on the
SIM2E-SO2S subset. N denotes the average number of valid matches.

Method |6<1 6<3 6<5 6<10| N
AKAZE [47] 0435 0.497 0504 0.509 | 72
BRISK [48] 0435 0.509 0.516 0.522 | 113
KAZE [49] 0420 0.500 0.513 0.522 | 129
ORB [13] 0.213  0.402 0.435 0444 | 24
SIFT [9] 0.491 0.559 0.566 0.570 | 264
FREAK [50] 0.238 0275 0.278 0.281 9
SP [17] 0.083 0.138 0.146 0.154 | 40
R2D2 [20] 0.045 0.078 0.080 0.082 | 53
ALIKE [52] 0.075 0.091 0.094 0.095 | 22
GIFT [32] 0.132 0.207 0213 0215 | 51
RoRD [27] 0.021 0.131 0.274 0.480 | 630
SPSG [22] 0.151 0.271 0.299 0.332 | 192
SGMNet [24] 0.373 0.528 0.586 0.607 | 1226
LoFTR [25] 0.042 0.145 0.188 0.206 | 329
MatchFormer [26] | 0.042 0.150 0.191 0.213 | 451
SE2-LoFTR [35] | 0.239 0.530 0.610 0.634 | 1640

Table 4. The performance of SoTA correspondence matching approaches on the
SIM2E-SIM2S subset. N denotes the average number of valid matches.

Method |6<1 6<3 6<5 6<10| N
AKAZE [47] 0.338 0.412 0418 0.423 | 22
BRISK [48] 0.396 0.465 0.472 0475 | 51
KAZE [49] 0.317 0.429 0.443 0455 | 54
ORB [13] 0.161 0.284 0.300 0.303 | 10
SIFT [9] 0.495 0.535 0.538 0.544 | 165
FREAK [50] 0123 0.169 0.175 0.178 | 3
SP [17] 0.060 0.097 0.104 0.110 | 20
R2D2 [20] 0.038 0.062 0.063 0.064 | 23
ALIKE [52] 0.048 0.058 0.059 0.062 | 6
GIFT [32] 0.114 0.175 0.182 0.184 | 32
RoRD [27] 0.011  0.075 0.164 0.291 | 287
SPSG [22] 0.105 0.188 0.210 0.241 | 118
SGMNet [24] 0.377 0.528 0.571 0.584 | 802
LoFTR [25] 0.022 0.105 0.146 0.164 | 155
MatchFormer [26] | 0.025 0.118 0.160 0.180 | 232
SE2-LoFTR [35] | 0.231 0.486 0.545 0.563 | 847

achieved by these six methods differ more significantly in the SIM2E-SO2S ex-
periments. Therefore, our SIM2E-SO2S subset more comprehensively quantifies
the group-equivariant capability of a given correspondence matching algorithm.
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Table 5. The performance of SoTA correspondence matching approaches on the
SIM2E-PersS subset. N denotes the average number of valid matches.

Method |6<1 6<3 6<5 6<10| N
AKAZE [47] 0.262 0.338 0.346 0.352 | 14
BRISK [48] 0.350 0.424 0431 0436 | 34
KAZE [49] 0.267 0.383 0.404 0.414 | 42
ORB [13] 0.120 0.230 0253 0258 | 7
SIFT [9] 0.443 0.502 0.508 0.515 | 130
FREAK [50] 0.105 0.143 0.149 0.152 | 3
SP [17] 0.052 0.090 0.100 0.108 | 13
R2D2 [20] 0.035 0.062 0.065 0.066 | 16
ALIKE [52] 0.043 0.052 0.053 0.054 | 5
GIFT [32] 0.107 0.180 0.185 0.188 | 24
RoRD [27] 0.008 0.063 0.143  0.267 | 257
SPSG [22] 0.103 0.189 0.216 0.254 | 120
SGMNet [24] 0.339 0.505 0.553 0.570 | 758
LoFTR. [25] 0.018 0.089 0.137 0.163 | 120
MatchFormer [26] | 0.021 0.100 0.151 0.177 | 161
SE2-LoFTR [35] | 0.197 0.450 0.515 0.536 | 772

Experimental results on the SIM2E-SIM2S subset Compared to the
SIM2E-SO2S subset, the SIM2E-SIM2S subset contains scaling and translation
transformations that shrink the size of the overlapping area between image pairs.
As illustrated in Fig. 4(c) and Table 4, the performances of SE2-LoFTR, SGM-
Net, SIFT, and BRISK remain stable in the SIM2E-SIM2S experiments, while
other models’ performances degrade dramatically. Therefore, our SIM2E-SIM2S
subset can be used to quantify not only the rotation-equivariant capability but
also the scaling-equivariant capability of correspondence matching algorithms.

Experimental results on the SIM2E-PersS subset Compared to the SIM2E-
SO2S and SIM2E-SIM2S subsets, the SIM2E-PersS subset contains random per-
spective transformations. Therefore, correspondence matching on the SIM2E-
PersS subset is more challenging. Similarly, in the SIM2E-PersS experiments
(see Fig. 4(d) and Table 5), the performances of SE2-LoFTR, SGMNet, and
SIFT remain stable, while the performances of BRISK, AKAZE, and KAZE de-
grade more significantly. Therefore, our SIM2E-PersS subset can be utilized to
quantify sim(2)-equivariant capability of correspondence matching algorithms in
a more in-depth manner.

3.4 Discussion

The experimental results presented above show that SGMNet, SE2-LoFTR,
SIFT, BRISK, KAZE, and AKAZE demonstrate similar group-equivariant ca-
pabilities. As can be seen in Table 2, the performances of these algorithms are
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Fig. 5. Correspondence matching results on our SIM2E dataset.

very similar, while SE2-LoFTR achieves the worst performance on the Rotated-
HPatches dataset. As can be observed in Fig. 4(b)-(d), our created SIM2E
dataset can reflect the group-equivariant capabilities of the existing correspon-
dence matching algorithms more comprehensively. The compared SoTA methods
achieve the best performances on the SIM2E-SO2S subset and the worst overall
performances on the SIM2E-PersS subset. Therefore, we believe that our created
SIM2E dataset can help users obtain more objective and in-depth evaluation re-
sults of their developed correspondence matching algorithms’ group-equivariant
capabilities.
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4 Conclusion

This paper presented a benchmark dataset for the evaluation of sim(2)-equivariant
capability of correspondence matching approaches. We first discussed the clas-
sical and learning-based methods and the mainstream of developing group-
equivariant network architectures. We qualitatively and quantitatively evaluated
sixteen SoTA correspondence matching algorithms on the Rotated-HPatches
dataset and three subsets of our created SIM2E dataset. These results suggest
that our SIM2E dataset is much more challenging than public correspondence
matching datasets, and it can comprehensively reflect the group-equivariant
capability of SoTA correspondence matching approaches. In summary, group-
equivariant detection, group-equivariant description, and group-equivariant po-
sition information are vital for group-equivariant correspondence matching. Su-
perGlue, LoFTR, and SGMNet use neural networks to fuse global position in-
formation and local feature descriptors, and achieve superior performances over
others. However, obtaining group equivariance of position information is still
challenging, as discussed in [35]. The scaling-equivariant and rotation-equivariant
capabilities of learning-based approaches are close to classical approaches. How-
ever, the sub-pixel accuracy achieved by the former is still unsatisfactory.

5 Acknowledgements

This work was supported by the National Key R&D Program of China, under
grant No. 2020AAA0108100, awarded to Prof. Qijun Chen. This work was also
supported by the Fundamental Research Funds for the Central Universities, un-
der projects No. 22120220184, No. 22120220214, and No. 2022-5-YB-08, awarded
to Prof. Rui Fan.

References

1. Huiyu Zhou et al. Object tracking using SIFT features and mean shift. Computer
vision and image understanding, 113(3):345-352, 2009. 1

2. Yang Yu et al. Accurate and robust visual localization system in large-scale
appearance-changing environments. IEEE/ASME Transactions on Mechatronics,
2022. DOI: 10.1109/TMECH.2022.3177237. 1

3. Yonggen Ling and Shaojie Shen. High-precision online markerless stereo extrinsic
calibration. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1771-1778. IEEE, 2016. 1

4. Rui Fan et al. Road surface 3D reconstruction based on dense subpixel disparity
map estimation. IEEE Transactions on Image Processing, 27(6):3025-3035, 2018.
1

5. Matthew Brown and David G Lowe. Automatic panoramic image stitching using
invariant features. International journal of computer vision, 74(1):59-73, 2007. 1

6. Rui Fan and Ming Liu. Road damage detection based on unsupervised dispar-
ity map segmentation. IEEE Transactions on Intelligent Transportation Systems,
21(11):4906-4911, 2019. 1



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

SIM2E Benchmark 15

Hans P Moravec. Techniques towards automatic visual obstacle avoidance. 1977.
2

Chris Harris, Mike Stephens, et al. A combined corner and edge detector. In Alvey
vision conference, volume 15, pages 10-5244. Citeseer, 1988. 2

David G Lowe. Object recognition from local scale-invariant features. In Proceed-
ings of the seventh IEEE international conference on computer vision, volume 2,
pages 1150-1157. Teee, 1999. 2, 7, 9, 11, 12

Jean-Michel Morel and Guoshen Yu. ASIFT: A new framework for fully affine
invariant image comparison. SIAM journal on imaging sciences, 2(2):438-469,
2009. 2

Edward Rosten and Tom Drummond. Machine learning for high-speed corner
detection. In European conference on computer vision, pages 430—443. Springer,
2006. 2

Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. BRIEF:
Binary robust independent elementary features. In European conference on com-
puter vision, pages 778-792. Springer, 2010. 2

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: An effi-
cient alternative to SIFT or SURF. In 2011 International conference on computer
vision, pages 2564-2571. Teee, 2011. 2, 7,9, 11, 12

Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. ORB-SLAM:
A versatile and accurate monocular SLAM system. IEEE transactions on robotics,
31(5):1147-1163, 2015. 2

Raul Mur-Artal and Juan D Tardés. ORB-SLAM2: An open-source SLAM sys-
tem for monocular, stereo, and RGB-D cameras. IEEFE transactions on robotics,
33(5):1255-1262, 2017. 2

Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua. LIFT: Learned
invariant feature transform. In FEuropean conference on computer vision, pages
467-483. Springer, 2016. 2

Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. SuperPoint: Self-
supervised interest point detection and description. In Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pages 224—-236,
2018. 2, 3,7,9, 11, 12

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C Lawrence Zitnick. Microsoft COCO: Common
objects in context. In Furopean conference on computer vision, pages 740-755.
Springer, 2014. 2, 7

Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Pollefeys, Josef Sivic, Akihiko
Torii, and Torsten Sattler. D2-Net: A trainable cnn for joint description and
detection of local features. In Proceedings of the IEEE/cuf conference on computer
vision and pattern recognition, pages 8092-8101, 2019. 3

Jerome Revaud, Philippe Weinzaepfel, César De Souza, Noe Pion, Gabriela Csurka,
Yohann Cabon, and Martin Humenberger. R2D2: Repeatable and reliable detector
and descriptor. arXiv preprint arXiv:1906.06195, 2019. 3, 7, 9, 11, 12

Michatl Tyszkiewicz, Pascal Fua, and Eduard Trulls. DISK: Learning local fea-
tures with policy gradient. Advances in Neural Information Processing Systems,
33:14254-14265, 2020. 3

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. SuperGlue: Learning feature matching with graph neural networks. In
Proceedings of the IEEE/CVFE conference on computer vision and pattern recogni-
tion, pages 4938-4947, 2020. 3, 7, 9, 11, 12



16

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

S. Su et al.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport.
Advances in neural information processing systems, 26, 2013. 3

Hongkai Chen, Zixin Luo, Jiahui Zhang, Lei Zhou, Xuyang Bai, Zeyu Hu, Chiew-
Lan Tai, and Long Quan. Learning to match features with seeded graph matching
network. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 6301-6310, 2021. 3, 8, 9, 11, 12

Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. LoFTR:
Detector-free local feature matching with transformers. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 8922—
8931, 2021. 3, 8,9, 11, 12

Qing Wang, Jiaming Zhang, Kailun Yang, Kunyu Peng, and Rainer Stiefelhagen.
MatchFormer: Interleaving attention in transformers for feature matching. arXiv
preprint arXiw:2203.09645, 2022. 3, 8, 9, 11, 12

Udit Singh Parihar, Aniket Gujarathi, Kinal Mehta, Satyajit Tourani, Sourav Garg,
Michael Milford, and K Madhava Krishna. RoRD: Rotation-robust descriptors and
orthographic views for local feature matching. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1593-1600. IEEE,
2021. 3,5,6,7,8,9, 11, 12

Taco Cohen and Max Welling. Group equivariant convolutional networks. In
International conference on machine learning, pages 2990-2999. PMLR, 2016. 3
Junying Li, Zichen Yang, Haifeng Liu, and Deng Cai. Deep rotation equivariant
network. Neurocomputing, 290:26-33, 2018. 3

Taco S Cohen, Mario Geiger, Jonas Kohler, and Max Welling. Spherical CNNs.
arXiv preprint arXiw:1801.10130, 2018. 3

Maurice Weiler and Gabriele Cesa. General E(2)-equivariant steerable CNNs. Ad-
vances in Neural Information Processing Systems, 32, 2019. 3

Yuan Liu, Zehong Shen, Zhixuan Lin, Sida Peng, Hujun Bao, and Xiaowei Zhou.
GIFT: Learning transformation-invariant dense visual descriptors via group CNNs.
Advances in Neural Information Processing Systems, 32, 2019. 3,7, 8,9, 11, 12
Jongmin Lee, Byungjin Kim, and Minsu Cho. Self-supervised equivariant learning
for oriented keypoint detection. arXiv preprint arXiv:2204.08613, 2022. 3
Abhishek Peri, Kinal Mehta, Avneesh Mishra, Michael Milford, Sourav Garg, and
K Madhava Krishna. ReF-rotation equivariant features for local feature matching.
arXw preprint arXiw:2203.05206, 2022. 3

Georg Bokman and Fredrik Kahl. A case for using rotation invariant features in
state of the art feature matchers. arXiv preprint arXiv:2204.10144, 2022. 3, 8, 9,
11, 12, 14

Titus Cieslewski, Michael Bloesch, and Davide Scaramuzza. Matching fea-
tures without descriptors: implicitly matched interest points. arXiv preprint
arXiv:1811.10681, 2018. 4

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the KITTTI vision benchmark suite. In 2012 IEEE conference on computer
vision and pattern recognition, pages 3354-3361. IEEE, 2012. 4

Georg Bokman, Fredrik Kahl, and Axel Flinth. ZZ-Net: A universal rotation equiv-
ariant architecture for 2D point clouds. arXiv preprint arXiv:2111.15341, 2021. 4
Torsten Sattler, Tobias Weyand, Bastian Leibe, and Leif Kobbelt. Image retrieval
for image-based localization revisited. In BMVC, volume 1, page 4, 2012. 5, 6, 7
Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii, Lars Hammarstrand, Erik
Stenborg, Daniel Safari, Masatoshi Okutomi, Marc Pollefeys, Josef Sivic, et al.



41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

SIM2E Benchmark 17

Benchmarking 6DOF outdoor visual localization in changing conditions. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages
8601-8610, 2018. 5

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser,
and Matthias Niefiner. ScanNet: Richly-annotated 3D reconstructions of indoor
scenes. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5828-5839, 2017. 5, 6, 7

Zhengqi Li and Noah Snavely. MegaDepth: Learning single-view depth prediction
from internet photos. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2041-2050, 2018. 5, 6, 7

Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea Cimpoi, Marc Pollefeys,
Josef Sivic, Tomas Pajdla, and Akihiko Torii. InLoc: Indoor visual localization
with dense matching and view synthesis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7199-7209, 2018. 5, 6
Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen Wang,
Yafei Hu, Ashish Kapoor, and Sebastian Scherer. TartanAir: A dataset to push the
limits of visual SLAM. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4909-4916. IEEE, 2020. 5, 6

Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krystian Mikolajczyk.
HPatches: A benchmark and evaluation of handcrafted and learned local descrip-
tors. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 5173-5182, 2017. 5, 6, 8

Gary Bradski. The OpenCV library. Dr. Dobb’s Journal: Software Tools for the
Professional Programmer, 25(11):120-123, 2000. 7

Pablo F Alcantarilla and T Solutions. Fast explicit diffusion for accelerated features
in nonlinear scale spaces. IEEE Trans. Patt. Anal. Mach. Intell, 34(7):1281-1298,
2011. 7,9, 11, 12

Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart. BRISK: Binary ro-
bust invariant scalable keypoints. In 2011 International conference on computer
vision, pages 2548-2555. Teee, 2011. 7, 9, 11, 12

Pablo Ferndndez Alcantarilla, Adrien Bartoli, and Andrew J Davison. KAZE
features. In Furopean conference on computer vision, pages 214-227. Springer,
2012. 7,9, 11, 12

Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. FREAK: Fast retina
keypoint. In 2012 IEEE conference on computer vision and pattern recognition,
pages 510-517. leee, 2012. 7,9, 11, 12

Filip Radenovié¢, Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondfej Chum.
Revisiting oxford and paris: Large-scale image retrieval benchmarking. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages
5706-5715, 2018. 7

Xiaoming Zhao, Xingming Wu, Jinyu Miao, Weihai Chen, Peter CY Chen, and
Zhengguo Li. ALIKE: Accurate and lightweight keypoint detection and descriptor
extraction. IEEE Transactions on Multimedia, 2022. 7,9, 11, 12

Tianwei Shen, Zixin Luo, Lei Zhou, Runze Zhang, Siyu Zhu, Tian Fang, and Long
Quan. Matchable image retrieval by learning from surface reconstruction. In Asian
conference on computer vision, pages 415-431. Springer, 2018. 7, 8

Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: Exploring
photo collections in 3D. In ACM siggraph 2006 papers, pages 835-846. 2006. 7



