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Abstract. The attention mechanism plays a pivotal role in designing
advanced super-resolution (SR) networks. In this work, we design an ef-
ficient SR network by improving the attention mechanism. We start from
a simple pixel attention module and gradually modify it to achieve bet-
ter super-resolution performance with reduced parameters. The specific
approaches include: (1) increasing the receptive field of the attention
branch, (2) replacing large dense convolution kernels with depth-wise
separable convolutions, and (3) introducing pixel normalization. These
approaches paint a clear evolutionary roadmap for the design of atten-
tion mechanisms. Based on these observations, we propose VapSR, the
VAst-receptive-field Pixel attention network. Experiments demonstrate
the superior performance of VapSR. VapSR outperforms the present
lightweight networks with even fewer parameters. And the light version
of VapSR can use only 21.68% and 28.18% parameters of IMDB and
RFDN to achieve similar performances to those networks. The code and
models are available at https://github.com/zhoumumu/VapSR.

Keywords: Image Super-Resolution, Deep Convolution Network, At-
tention Mechanism

1 Introduction

Single image Super-Resolution (SISR) is a fundamental low-level vision problem
that aims at recovering a high-resolution (HR) image from its low-resolution
(LR) observations. SISR has attracted increasing attention in both the research
community and industry. Since SRCNN [13] introduced deep learning into SR,
deep networks have become the de facto approach for advanced SR algorithms
due to their ease of use and high performance. However, deep SR networks rely
on a large number of parameters that can provide sufficiently complex capacity
to map LR images to HR images. These parameters and high computation costs
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limit the application of SR networks. The design of SR networks with efficiency
as the primary goal has gradually become an important issue.

Among the numerous SR networks, the studies related to the attention mech-
anism have achieved a lot of success. The channel attention brought by RCAN
[54] makes it practical to train very deep high-performance SR networks. PAN
[56] has achieved good progress in designing a lightweight SR network using pixel
attention. After image processing entered the Transformer era, the application
of the attention mechanism underwent great changes. Vision Transformers [15]
rely on attention mechanisms to achieve excellent performance. Many works have
proved that introducing large receptive fields and local windows [9,44] in the at-
tention branch improves the SR effect. However, many advanced design ideas
have not been verified in designing the attention mechanism for convolutional
lightweight SR networks. In this paper, we start from a basic pixel attention
module to explore better attention mechanisms designed for efficient SR.

The first effort we made in this paper was to introduce the large receptive
field design into the attention mechanism. This is in line with other recent design
trends using large kernel sizes [16], as well as the design principles of transformers
[9,36,44]. We show the advantages of using large kernel convolutions in the at-
tention branch. Secondly, we use depth-wise separable convolution to split dense
large convolution kernels. A large receptive field is achieved in the attention
branch using a depth-wise and a depth-wise dilated convolution. We also replace
the 3×3 convolutions in the backbone network with 1×1 convolutions to reduce
the number of parameters. Thirdly, we present a novel pixel normalization that
can make the training less prone to crashing.

Along the above footprints, we demonstrate a novel path to an efficient SR
architecture called VapSR (VAst-receptive-field Pixel attention network). Com-
pared with the current state-of-the-art algorithms, the proposed VapSR reduces
a lot of parameters while improving the SR effect. For example, compared with
the champion of the NTIRE2022 efficient SR competition [27], VapSR achieves
an improvement on PSNR by more than 0.1dB with 185K fewer parameters.
Our experiments demonstrate the effectiveness of the proposed method.

2 Related Work

Deep Networks for SR. Since SRCNN [13] was proposed as the pioneer-
ing work for employing a three-layer convolutional neural network for the SR
task, numerous methods [14,24,30,37,45,43] have been proposed to achieve bet-
ter performance. FSRCNN [14] proposes a pipeline that upsamples features at
the end of the network, which boosts the performance while keeping the model
lightweight. VDSR [24] introduces skip connections for residual learning to in-
crease the depth of the SR network. DRCN [25] and DRRN [45] both adopt
the recursive structure to improve the reconstruction performance. SRDenseNet
[47] and RDN [55] prove that the dense connection is beneficial to improving the
capacity of SR models. RCAN [54] employs a channel attention scheme to bring
the attention mechanism to the SR methods. SAN [11] proposes a second-order
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attention module, which brings further performance improvement. SwinIR [36]
promotes Swin Transformer [39] for the SR task. HAT [9] refreshes state-of-the-
art performance through hybrid attention schemes and pre-training strategy.

Attention Schemes for SR. The attention mechanism can be interpreted
as a way to bias the allocation of available resources towards the most informa-
tive parts of an input signal. There are approximately four attention schemes:
channel attention, spatial attention, combined channel-spatial attention and self-
attention mechanism. RCAN [54], inspired by SENet [18], reweights the channel-
wise features according to their respective weight responses. SelNet [10] and PAN
[56] employ the spatial attention mechanism, which calculates the weight for each
element. Regarding combined channel-spatial attention, HAN [42] additionally
proposes a spatial attention module via 3D convolutional operation. The self-
attention mechanism was adopted from natural language processing to model the
long-range dependence [50]. IPT [7] is the first Transformer-based SR method
based on the ViT [15]. It relies on a large model scale (over 115.5M parameters).
SwinIR [36] calculates the window-based self-attention to save the computations.
HAT [9] further proposes multiple attention schemes to improve the window-
based self-attention and introduce channel-wise attention to SR Transformer.

Efficient SR Models. Efficient SR designing aims to reducing model com-
plexity and latency for SR networks [2,21,20,38,28,35,8]. CARN [2] employs the
combination of group convolution and 1 × 1 convolution to save computations.
After IDN [21] proposed the residual feature distillation structure, there ap-
pears a series of works [20,38,35] following this micro-architecture design. IMDN
[20] improves IDN via an information multi-distillation block by using a chan-
nel splitting strategy. RFDN [38] rethinks the channel splitting operation and
introduces the progressive refinement module as an equivalent architecture. In
NTIRE 2022 Efficient SR Challenge [34], RLFN [28] won the championship in
the runtime track by ditching the multi-branch design of RFDN and introducing
a contrastive loss for faster computation and better performance. BSRN [35] won
the first place in the model complexity track by replacing the standard convolu-
tion with a well-designed depth-wise separable convolution to save computations
and utilizing two effective attention schemes to enhance the model ability.

Large Kernel Design. CNNs used to be the common choice for computer
vision tasks. However, CNNs have been greatly challenged by Transformers re-
cently [15,6,39,31], and Transformer-based methods have also shown leading per-
formances on the SR task [7,36,32,9]. In Transformer, self-attention is designed
to be either global [15,7] or local, both accompanied by larger kernels [39,36,9].
Thus, information can be gathered from a large region. Inspired by this char-
acteristic of Transformer, a series of works have been proposed to design better
CNNs [48,40,12,16]. ConvMixer [48] utilizes large kernel convolutions to build
the model and achieve the competitive performance to the ViT [15]. ConvNeXt
[40] proves that well-designed CNN with large kernel convolution can obtain sim-
ilar performance to Swin Transformer [39]. RepLKNet [12] scales up the filter
kernel size to 31 × 31 and outperforms the state-of-the-art Transformer-based
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Fig. 1. The evolutionary design roadmap of the proposed method. The figures on the
left are the key architectural milestones. The plot on the right shows the main models’
parameters and PSNR performance on DIV2K validation set. Every evolution and
modification of the main design stages are marked with red boxes on the left and
described with the text on the right. We omit some micro designs in this plot and they
will be elaborated lately in section 5.3.

methods. VAN [16] conducts an analysis of the visual attention and proposes
the large kernel attention based on the depth-wise convolution.

3 Motivation

The attention mechanism has been proven effective in SR networks. In particular,
an efficient SR model PAN [56] achieves good performance using pixel attention
while greatly reduces the number of parameters. Pixel attention performs an
attention operation on each element of the features. Compared with channel at-
tention and spatial attention, pixel attention is a more general form of attention
operation and thus provides a good baseline for our further exploration.

Inspired by recent advances in self-attention [50] and vision transformers [15],
we believe that there is still considerable room for improvement even for the at-
tention mechanism based on convolutional operations. In this section, we show
the process of improving SR network attention through three design criteria in
pixel attention. First, we show the advantages of using large kernel convolu-
tions in the attention branch. Then we use well-designed depth-wise separable
large kernel convolutions to reduce the huge computational burden brought by
large kernel convolutions. We demonstrate the potential of this network topol-
ogy design for efficient SR. Finally, inspired by vision Transformers, we introduce
a pixel-wise normalization operation in the convolutional network to train SR
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Small K
ernle Convolution

Dilated Convolution

Fig. 2. An 11×11 receptive field can be replaced by a
5×5 small convolution and a 3×3 dilated convolution
with a dilation of 3. This operation saves the number
of parameters and achieves a large receptive field.

Fig. 3. Different normaliza-
tion methods. The cubes in
purple are normalized by the
same mean and variance.

networks with complex attention efficiently and stably. We demonstrate a solid
roadmap toward our improved network design.

3.1 Large Kernel in Visual Attention

We start with the building block of one of the most common SR networks with a
basic pixel attention operation. This block is shown in Fig. 1 (i). In general, the
main operation that provides receptive fields in SR networks are the two 3 × 3
convolutions, whereas the attention branch contains only one 1× 1 convolution.
However, inspired by the vision Transformers, we may improve the performance
by increasing the receptive field of the attention branch. We enlarge the kernel
size in the attention branch of the baseline block to 3 and 9 to study the effect
of enlarging the attention kernel, respectively. This modification is shown in
Fig. 1 (ii). The performance variation is shown by the first 3 experiments in
the roadmap on the right of Fig. 1. It can be seen that although it brings tons
of additional parameters, enlarging the kernel size in attention brings about
0.15dB of performance improvement. After showing that performing large kernel
convolutions in attention can bring benefits, we continue to explore this basis.

3.2 Parameter Reduction.

The above kernel enlarging strategy provides an architecture that relies on one
large kernel convolution in attention and two 3 × 3 convolutions outside the
attention. It brings a large number of parameters, so we try to remove relatively
unimportant parts of the network as much as possible and reduce parameters
accordingly. The good news is that dense convolution kernels are often not the
best choice for large kernel size. We can reduce the parameters of the network
by implementing a more sparse large kernel convolution.
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Depth-wise separable convolution is a classic, intuitive solution for large ker-
nel convolution parameter reduction. Depth-wise separable convolution splits a
dense convolution operation into spacial depth-wise convolutions and pointwise
convolutions in channels. The depth-wise convolution is in the form of a group
convolution that assigns only one kernel for each feature channel. The point-
wise convolution is a 1 × 1 convolution for channel fusion. Inspired by [16], the
depth-wise convolution can be further decomposed. Taking a convolution of size
11× 11 as an example, we can convert it into a 5× 5 normal convolution and a
3× 3 dilated convolution with a dilation of 3 while keeping its equivalent recep-
tive field size unchanged, as shown in Fig. 2. This design reduces the number of
parameters as much as possible while making the receptive field even larger. The
effect is shown in the fifth experiment on the right of Fig. 1. A performance drop
is observed compared with the third experiment, however the replacement saves
about 3,200K parameters. In addition to the above solution, compared with the
large kernel attention operation, the receptive field brought by the rest 3×3 con-
volutions in the original backbone is no longer important. We replace the two
3 × 3 convolutions with 1 × 1 convolutions and find more parameter reduction
of 655K. By combining the depth-wise separable convolution attention and the
1× 1 body convolution, as shown in Fig. 1 (iv), we compress the model size to
the limit. We argue that with good training of this network, we might be able
to achieve high performance with such little parameters.

3.3 Pixel Normalization for Stable Attention Training

Due to the introduction of element-wise multiplication in the attention mech-
anism, the training stability is greatly reduced. At a small learning rate, the
network cannot converge well, but increasing the learning rate will cause the
network returning abnormal gradients.The above parameter reduction solution
produces such a difficult-to-train network that it suffers from performance drop.

We find that this training problem is partly due to internal covariate shift
[22] phenomena. For a network with attention layers, its multiplication makes
the degree of shift more difficult to control. To solve this problem, we introduce
a pixel normalization layer to normalize the shifted layer distribution to a stan-
dard normal distribution. The difference between pixel normalization and other
normalization methods is shown in Fig. 3. Given a feature tensor that can be
formulated as x ∈ RHW×C , (H, W and C are the height, width and feature
dimension), x can be viewed as HW feature vectors, and each vector belongs to
a pixel position. We represent the feature vector of the ith pixel with xi ∈ RC .
The mean and variance of xi are:

µi =
1

C

C∑
j=1

xi
j , σi =

1

C

C∑
j=1

(xi
j − µi)2. (1)

The output of the pixel normalization can be formulated as

x̃i =
xi − µi

√
σi + ϵ

⊙ γ + β, (2)
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where γ and β represent the parameter vectors for scaling and shifting. They have
the same dimensions as C. Different from the other normalization methods in the
existing literature, pixel normalization calculates the mean and variance of the
features of different pixels and normalizes them separately. In other words, pixel
normalization’s shifting and scaling operations are spatially inhomogeneous.

The boost from using pixel normalization is huge. According to Fig. 1, using
pixel normalization on the reduced parameter model yields excellent results close
to that of using a large dense kernel in attention. Equipped with the above two
practices, the network’s parameters reduce to 241K on the basis of outperforming
the baseline. Now we get the novel architecture shown in Fig. 1 (v).

3.4 Discussion

The generated network design correlates with some existing models in several
respects. Firstly, in vision transformers, layer normalization has been proved im-
portant and effective [15,36].The Transformer networks [36] usually reshape the
feature map from C × H × W to HW × C and then perform layer normaliza-
tion. However, it’s no longer consistent with the layer normalization originally
used for convolution networks [4] at this time, but is equivalent to the pixel
norm described in this paper when the token size is 1 × 1. The original layer
normalization will introduce parameter numbers consistent with the element
number in the feature tensor. Thus, models built with it can no longer handle
arbitrary resolutions. The pixel normalization we describe is more flexible and
efficient than many other known normalization methods. Note that although the
equivalent method of our pixel normalization has already appeared in the vision
transformers, its successful application in SR task has not yet been witnessed.

We also found that our findings are very similar to a concurrent work, the
large kernel attention (LKA) [16]. One main difference is that LKA uses two 1×1
convolutional layers as projection layers and places the attention layer in the
middle of the projection layers. This design is also very similar to Transformer’s
use of the attention mechanism. Fig. 1 shows the result when using a similar
approach to LKA. It can be seen that changing layer order brings a performance
improvement of 0.03dB. At this point, our method is shown in the Fig. 1 (vi).
We then make more micro designs and refinement on this building block which
enumerated in section 5.3, forming into the eventual proposed architecture. We
proved that our proposed method achieves SR performance higher than the
existing methods with fewer parameters.

4 Network Architecture

Based on the building block discussed above, we build a novel SR network called
VapSR (VAst-receptive-field Pixel attention network). The architecture is il-
lustrated in Fig. 4. The high-level design of the proposed network follows the
common design of deep SR networks. VapSR contains three modules: (1) feature
extraction, (2) nonlinear mapping, and (3) reconstruction.
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Fig. 4. The architecture of the proposed VapSR. The block on right is the detailed
illustration of the proposed main block VAB. ILR and ISR are the corresponding input
low-resolution image and the output super-resolution image of the network.

Given a low-resolution image ILR, the feature extraction contains a convolu-
tion layer with a kernel size of 3× 3 to extract features from ILR.

x0 = fext(ILR), (3)

and x0 is the extracted higher dimensional feature maps.
In the nonlinear mapping stage, x0 is fed into a stack of the building blocks

to enhance the feature representations. We denote the building block as fV AB(·),
and this process can be formulated as

xn = fn
V AB(f

n−1
V AB(...f

0
V AB(x0)...)), (4)

where xn represents the output feature map of the nth VAB. At the end of
the nonlinear mapping stage, we add a 3× 3 convolution layer fref (·) after the
building blocks and perform a residual connection with x0:

xmap = fref (xn) + x0. (5)

At last, we utilize the reconstruction module to upsample the features to the
HR size. Here we obtain:

ISR = frec(xmap), (6)

where frec(·) denotes the reconstruction module, and ISR is the final result of
the network. Our reconstruction module contains two ×2 pixel-shuffle layers to
implement ×4 upsampling scale, which brings a consistent promotion compared
to a single ×4 pixel-shuffle layer. There are convolution layers before both pixel-
shuffle layers, and the number of channels can be adjusted as required.

4.1 The Building Blocks

The building block is generally modified from Fig. 1 (vi) and is shown in Fig. 4.
As described above, in each block we have two regular 1× 1 convolution layers,
and a depth-wise separable large kernel attention in the middle. We also have a
pixel normalization at the end of each block.

Given input feature xa, the first 1×1 convolution layer projects xa to xb and
expands the number of channels from 48 to 64. We perform GELU activation[17]
to xb, and this is the only activation in the building block. In the attention
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module, we firstly use a 1× 1 pointwise convolution for channel fusion. Then we
use a depth-wise convolution with a kernel size of 5 and a depth-wise dilation
convolution with a kernel size of 5 and dilation of 3. The combination of these
two convolution layers is able to implement a receptive field of 17. The feature
xatten generated by the attention branch is the same size as the original feature
xb through reasonable padding. The attention is implemented using an element-
wise product as xc = xatten ⊙xb. Then, another 1× 1 convolution layer projects
xc to xd and shrinks the number of channels back to 48. At last, the pixel
normalization is performed on xd + xa.

5 Experiments

5.1 Experimental Setup

Datasets and Evaluation Metrics. The training images consist of 2650 im-
ages from Flickr2K [37] and 800 images from DIV2K [1] train. We evaluate our
models on widely used benchmark datasets: Set5 [5], Set14 [53], BSD100 [41],
and Urban100 [19]. The commonly used data augmentation methods are applied
in the training dataset. Specifically, We use the random combination of random
rotation of 0°, 90°, 180°, 270° and horizontal flipping for data augmentation. The
average peak-signal-to-noise ratio (PSNR) and the structural similarity [51,23]
(SSIM) on the luminance (Y) channel are used as the evaluation metrics.

Implementation Details. We implement two models, VapSR and VapSR-
S. VapSR ×4 consists of 21 VABs and VapSR-S (also for the ×4 scale) is the light
version of VapSR with 11 VABs. And we configure the input and output feature
to 32 channels instead of 48 channels for VapSR-S. Both of them have two ×2
pixel-shuffle layers and two convolution layers. We make minor adjustment on
the Up-Layers and the number of blocks for ×2 and ×3 scale.

Training Details. The model is trained using the Adam optimizer [26] with
β1 = 0.9 and β2 = 0.99. Notably, using β2 = 0.99 stead of commonly used β2 =
0.999 can bring better performance for our proposed model design. The learning
rate is set to 1× 10−3 during the whole 1× 106 training iterations. And we set
a smaller learning rate specially for the ×2 scale. The weight of the exponential
moving average (EMA) [3] is set to 0.999. Only the L1 loss is used to optimize
the model. For VapSR, the mini-batch and the input patch size are set to 64 and
48× 48. We enlarge the setting to 192 and 64× 64 for VapSR-S.

5.2 Comparison with State-of-the-art Methods

We compare the proposed VapSR with exsisting common lightweight SR ap-
proaches with upscale factor of ×2, ×3 and ×4, including SRCNN [13], FSRCNN
[14], VDSR [24], LapSRN [29], DRRN [45], MemNet [46], IDN [21], CARN [2],
IMDB [20], PAN [56], LAPAR-A [33], RFDN [38], RLFN [27], and BSRN [35].
Table 1 shows the quantitative comparison results for different upscale factors.
We also provide the number of parameters and Multi-Adds calculated on the
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Table 1. Quantitative comparison with state-of-the-art methods on benchmark
datasets. The best and second-best performance are in red and blue colors respec-
tively. ’Multi-Adds’ is calculated with a 1280 × 720 GT image.

Method Scale Params[K] Multi-Adds[G]
Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic

×2

- - 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403
SRCNN [13] 8 52.7 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946
FSRCNN [14] 13 6.0 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020
VDSR [24] 666 612.6 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
LapSRN [29] 251 29.9 37.52/0.9591 32.99/0.9124 31.80/0.8952 30.41/0.9103
DRRN [45] 298 6,796.9 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188
MemNet [46] 678 2,662.4 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195
IDN [21] 553 124.6 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196
CARN [2] 1592 222.8 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256
IMDN [20] 694 158.8 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283
PAN [56] 261 70.5 38.00/0.9605 33.59/0.9181 32.18/0.8997 32.01/0.9273
LAPAR-A [33] 548 171.0 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283
RFDN [38] 534 95.0 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278
RLFN [27] 527 115.4 38.07/0.9607 33.72/0.9187 32.22/0.9000 32.33/0.9299
BSRN [35] 332 73.0 38.10/0.9610 33.74/0.9193 32.24/0.9006 32.34/0.9303
VapSR(ours) 329 74.0 38.08/0.9612 33.77/0.9195 32.27/0.9011 32.45/0.9316

Bicubic

×3

- - 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349
SRCNN [13] 8 52.7 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989
FSRCNN [14] 13 5.0 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080
VDSR [24] 666 612.6 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
LapSRN [29] 502 149.4 33.81/0.9220 29.79/0.8325 28.82/0.7980 27.07/0.8275
DRRN [45] 298 6,796,9 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378
MemNet [46] 678 2,662.4 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376
IDN [21] 553 56.3 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359
CARN [2] 1592 118.8 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493
IMDN [20] 703 71.5 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519
PAN [56] 261 39.0 34.40/0.9271 30.36/0.8423 29.11/0.8050 28.11/0.8511
LAPAR-A [33] 544 114.0 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523
RFDN [38] 541 42.2 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525
BSRN [35] 340 33.3 34.46/0.9277 30.47/0.8449 29.18/0.8068 28.39/0.8567
VapSR(ours) 337 33.6 34.52/0.9284 30.53/0.8452 29.19/0.8077 28.43/0.8583

Bicubic

×4

- - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577
SRCNN [13] 8 52.7 30.48/0.8626 27.50/0.7513 26.90/0.7101 24.52/0.7221
FSRCNN [14] 13 4.6 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280
VDSR [24] 666 612.6 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
LapSRN [29] 813 149.4 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562
DRRN [45] 298 6,796.9 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638
MemNet [46] 678 2,662.4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630
IDN [21] 553 32.3 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632
CARN [2] 1592 90.9 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837
IMDN [20] 715 40.9 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838
PAN [56] 272 28.2 32.13/0.8948 28.61/0.7822 27.59/0.7363 26.11/0.7854
LAPAR-A [33] 659 94.0 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871
RFDN [38] 550 23.9 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858
RLFN [27] 527 29.8 32.24/0.8952 28.62/0.7813 27.60/0.7364 26.17/0.7877
BSRN-S [35] 156 8.3 32.16/0.8949 28.62/0.7823 27.58/0.7365 26.08/0.7849
VapSR-S(ours) 155 9.0 32.14/0.8951 28.64/0.7826 27.60/0.7373 26.05/0.7852
BSRN [35] 352 19.4 32.35/0.8966 28.73/0.7847 27.65/0.7387 26.27/0.7908
VapSR(ours) 342 19.5 32.38/0.8978 28.77/0.7852 27.68/0.7398 26.35/0.7941
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img 011 (×4)

HQ Bicubic IMDN [20] RFDN [38] RLFN [27]

VDSR [24] IDN [21] PAN [56] BSRN [35] VapSR(ours)

img 062 (×4)

HQ Bicubic IMDN [20] RFDN [38] RLFN [27]

VDSR [24] IDN [21] PAN [56] BSRN [35] VapSR(ours)

img 074 (×4)

HQ Bicubic IMDN [20] RFDN [38] RLFN [27]

VDSR [24] IDN [21] PAN [56] BSRN [35] VapSR(ours)

img 092 (×4)

HQ Bicubic IMDN [20] RFDN [38] RLFN [27]

VDSR [24] IDN [21] PAN [56] BSRN [35] VapSR(ours)

Fig. 5. Visual comparison about image SR (×4) in some challenging cases.

1280× 720 output. Benefit from the simple yet efficient structure, the proposed
VapSR achieves state-of-the-art performance with remarkably few parameters.
Specifically, our VapSR ×4 uses 21.68 % and 28.18 % parameters of RFDN ×4
and IMDN ×4, while obtains average 0.187 dB improvement on four evaluation
datasets. Moreover, the proposed VapSR-S achieves competitive performance to
BSRN-S [35], which is the winner of the model complexity sub-track in NTIRE
2022 Challenge on Efficient Super-Resolution [34]. Interestingly, our structure
has relative advantages on metric SSIM than PSNR as well. The results on SSIM
can keep on top of the competing models even though the PSNR is slightly lower.

Fig. 5 shows the qualitative comparison of the proposed method. Our ap-
proach can reconstruct stripes and line patterns more accurately than the exist-
ing methods, reflecting the advantage of the proposed method on metric SSIM
as we mentioned above. Take the image “img 092” for example. Most of the ex-
isting methods generate noticeable artifacts and blurry effects, while our method
produces accurate lines. For the details of the buildings in “img 011”, “img 062”
and “img 074”, VapSR could also make reconstruction with fewer artifacts.
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Table 2. The accumulated effect of the tricks on subordinate components in the ar-
chitecture. Here, model (vi) is the same one as in the roadmap, and the experiment on
the first row is under the same setting as well.

Model/Exp. Idx.
group inverted deeper Parameters DIV2K
conv. bottleneck up. block [K] PSNR

model (vi) - - - 241.1 28.95
model (vi)+ ✓ - - 222.7 28.92

model (vi)++ ✓ ✓ - 152.2 28.84
model (vii) ✓ ✓ ✓ 156.0 28.86

5.3 Ablation Study on Micro Design

In this section, we conduct ablation studies on some micro designs involved in
our final proposed model. The micro designs consist of four parts: subordinate
components in the architecture, normalization type, attention layers’ sequence,
and receptive field. We show their effect on the performance and the best practice
of them are all adopted to settle down the eventual structure of VapSR.

Subordinate components in architecture. We make some detailed de-
signs for the network to achieve better efficiency, as shown in Table. 2. These
changes are all small but essential tricks and could shed light on designing a
high-performance SR network. The first promoted trick is replacing the regular
convolution layer with a group-wise convolution layer at the end of the non-
linear mapping module. We find it a harmless way to reduce the model size
while maintaining performance. The second promoted trick is the inverted bot-
tleneck architecture. We implement this architecture by expanding and shrinking
the channels with the help of the two 1 × 1 convolution layers at both ends of
the VAB, as explained in section 4.1. This trick reduces about 30% of model
parameters while maintaining its PSNR performance in an acceptable region.
The third one is using deeper upsampling layers. We implement two convolution
layers instead of a single one. This trick brings performance improvement when
introducing acceptable extra parameters. We apply these tricks to the model
(vi) shown in Fig. 1 step by step, and finally get the model (vii).

Normalization Types. According to the experiments of designing stage “sta-
ble attention training”, those primary models without any normalization would
finally crash at a large learning rate 1 × e−3. To demonstrate the effectiveness
of the described pixel normalization, we compare it with three common nor-
malization methods, including batch normalization [22], instance normalization
[49] and group normalization [52]. Since the standard layer normalization [4]
raises the network’s parameters to 2.7M, it’s outside the scope of this ablation
experiment. The validation curves are shown in Fig. 6(b) and the results are
listed in the Table. 3. It can be observed that batch normalization does not help
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Table 3. Quantitative comparison of three ablation variables based on model (vii).
The performance values surpassing model (vii) are in violet.

Variable Method Params[K]
Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

-

model (vii){
PixelNorm
5 - 7 - 1
k=7, block=10}

156 32.00/0.8929 28.52/0.7797 27.53/0.7343 25.79/0.7768

Normalization
BatchNorm 156 - - - -
InstanceNorm 156 31.78/0.8897 28.33/0.7764 27.41/0.7328 25.15/0.7646
GroupNorm 156 31.93/0.8912 28.40/0.7766 27.46/0.7323 25.62/0.7693

Sequence 1 - 5 - 7 156 32.00/0.8930 28.52/0.7798 27.53/0.7347 25.80/0.7773

Receptive Field

k=5, block=11 152 32.01/0.8933 28.52/0.7801 27.54/0.7349 25.83/0.7782
k=5, block=12 164 32.02/0.8932 28.55/0.7805 27.56/0.7356 25.90/0.7800
k=9, block=9 161 31.96/0.8925 28.49/0.7789 27.50/0.7337 25.77/0.7761
k=11, block=8 166 31.93/0.8917 28.47/0.7785 27.49/0.7333 25.72/0.7745

in preventing training crashes. Group normalization and instance normalization
decrease PSNR and SSIM by a large margin, and the training are not stable or
well-converged. In contrast, our pixel normalization can achieve a steady training
curve and the best performance growth.

The Sequence of Layers in Attention. We conduct the experiment of adjust-
ing the sequence of the attention layers. [35] proved that putting the pointwise
convolution before the depth-wise convolution achieves better performance in
the SR task. Hence, we rearrange the order of the attention layers denoting as
1 - 5 - 7, which represents putting 1× 1 pointwise convolution in front, next the
5×5 depth-wise convolution and then 7×7 depth-wise dilation convolution. The
experiment show that order 1 - 5 - 7 performs slightly better than 5 - 7 - 1 which
the model (vii) take. This result verifies the conclusion mentioned above again.
Moreover, we also conducted additional experiments and turns out that the in-
fluence of the two depth-wise convolution layers’ position is relatively smaller
and inconsistent. So we adopted the order 1 - 5 - 7 as the final structure.

Attention Layers’ Receptive Field. We explored the effect of attention lay-
ers with different receptive fields, which are mainly dominated by the dilated
convolution layer. The field of a 7×7 convolution with dilation 3 is equivalent to
19. We modify the kernel size of this layer to 5, 9, and 11 separately to change
the field and adjust the number of blocks to keep the networks’ parameters close
to or slightly more than the model (vii)’s. As shown in table 3, increasing the
kernel size to 9 and 11 causes an apparent successive performance drop. While
the smaller kernel size of 5 can obtain performance promotion, even when we
keep the parameters less than model(vii)’s with only 11 blocks. Therefore we
choose the structure with a kernel size of 5 finally.
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(a) effect of normalization (b) comparison of different normalization

Fig. 6. Validation curves with or without normalization under the setting of large
learning rate. Plot (a) shows lack of normalization causes the models crash early. In
plot (b), the effect of different normalization from good to bad are as followed: pixel
normalization (red), group normalization (green), instance normalization (purple) and
batch normalization (blue).

6 Conclusions

This work proposes a lightweight convolutional neural network called VapSR to
achieve efficient image super-resolution. The experiments demonstrate that our
VapSR can achieve state-of-the-art performance with concise structure and fewer
parameters. Starting with the motivation of improving the attention mechanism,
we first verified the advantages of using large kernel convolutions on the SR
task. Then we successfully applied the efficient depth-wise separable large kernel
convolution to reduce the model size. Thirdly, the proposed pixel normalization
makes it possible to train this architecture steadily, and we prove its superiority
to other normalization methods. We detailed the design process in the form of
roadmap. It reveals how we squeeze the complexity of the model while keeping
the performance step by step clearly, and lead to VapSR eventually.
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tee of Science and Technology, China (Grant No. 21DZ1100100).
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