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Abstract. Sketches make an intuitive and powerful visual expression
as they are fast executed freehand drawings. We present a method for
synthesizing realistic photos from scene sketches. Without the need for
sketch and photo pairs, our framework directly learns from readily avail-
able large-scale photo datasets in an unsupervised manner. To this end,
we introduce a standardization module that provides pseudo sketch-photo
pairs during training by converting photos and sketches to a standardized
domain, i.e. the edge map. The reduced domain gap between sketch and
photo also allows us to disentangle them into two components: holistic
scene structures and low-level visual styles such as color and texture. Tak-
ing this advantage, we synthesize a photo-realistic image by combining the
structure of a sketch and the visual style of a reference photo. Extensive
experimental results on perceptual similarity metrics and human percep-
tual studies show the proposed method could generate realistic photos
with high fidelity from scene sketches and outperform state-of-the-art
photo synthesis baselines. We also demonstrate that our framework facili-
tates a controllable manipulation of photo synthesis by editing strokes of
corresponding sketches, delivering more fine-grained details than previous
approaches that rely on region-level editing.

Keywords: sketch, scene sketch, photo synthesis, unsupervised learning

1 Introduction

Sketching is an intuitive way to represent visual signals. With a few sparse strokes,
humans could understand and envision a photo from a sketch. Additionally, unlike
photos which are rich in color and texture, sketches are easily editable as strokes
are easy to modify. We aim to synthesize photos that preserve the structure of
scene sketches while delivering the low-level visual style of reference photos.

Unlike previous works [15, 24, 32] that synthesize photos from categorical
object-level sketches, our goal in which scene-level sketches are used as input
poses additional challenges due to 1) Lack of data. There is no training data
available for our task due to the complexity of scene sketches. Not only the
insufficient amount of scene sketches, but the lack of paired scene sketch-image
datasets make supervised learning from one modality to another intractable.
2) Complexity of scene sketches. A scene sketch usually contains many
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Fig. 1: Upper: Given a sketch and a style reference photo, our method is capable
of transferring low-level visual styles of the reference while preserving the content
structure of the sketch. We show synthesis results with different references. Lower:
Given an arbitrary photo, users could easily and interactively edit it by adding
or removing strokes on the synthesized sketch.

objects of diverse semantic categories with complicated spatial organization and
occlusions. Isolating objects, synthesizing object photos and combining them
together [7] do not work well and are hard to generalize. For one, detecting
objects from sketches is hard due to the sparse structure. For another, one may
encounter objects that do not belong to seen categories, and the composition
could also make the synthesized photo unrealistic.

We propose to alleviate these issues via 1) a standardization module, and 2)
disentangled representation learning.

For the lack of data, we propose a standardization module, where input
images are converted to a standardized domain, edge maps. Edge maps can be
considered as synthetic sketches due to the high similarity to real sketches. With
the standardization, readily-available large-scale photo datasets could be used
for training by converting them to edge maps. Additionally, during inference,
sketches of various individual styles are also standardized such that the gap
between training and inference is narrowed.

For the complexity of scene sketches, we learn disentangled holistic content
and low-level style representations from photos and sketches by encouraging only
content representations of photo-sketch pairs to be similar. As a definition, content
representations encode holistic semantic and geometric structures of a sketch or
photo. Style representations encode the low-level visual information such as color
and texture. A sketch could depict similar contents as a photo, but contain no
color or texture information. By factorizing out colors and textures, the model
could directly learn from large-scale photos for scene structures and transfer the
knowledge to sketches. Additionally, combining the content representation of a
sketch and a style representation of a reference photo could decode a realistic
photo. The decoded photo should depict similar contents as the sketch and shares
a similar style with the reference photo. This is the underlying mechanics of the
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Fig. 2: Our method consists of two components, standardization and photo
synthesis. Left: The standardization module converts photos or sketches into
a standardized domain, edge maps, to reduce the domain gap between training
and inference. Right: From the standardized edge map, the photo synthesis
module generates a photo with a similar style as the given reference image.

proposed reference-guided scene sketch to photo synthesis approach. Note that
the disentangled representations have been studied previously for photos [28, 34]
and we extend the concept to sketches.

As exemplified in Fig.1, not only photo synthesis from scene sketch, our model
can promote also controllable photo editing by allowing users to directly modify
strokes of a corresponding sketch. The process is easy and fast as strokes are
easy and flexible to modify, compared with photo editing from segmentation
maps proposed by previous works [15,22,26,28]. Specifically, the standardization
module first converts a photo to a sketch. Users could modify strokes of the sketch
and synthesize a newly edited photo with our model. Additionally, the style of
the photo could also be modified with another reference photo as guidance.

We summarize our contribution as follows: 1) We propose an unsupervised
scene sketch to photo synthesis framework. We introduce a standardization
module that converts arbitrary photos to standardized edge maps, enabling a vast
amount of real photos to be utilized during training. 2) Our framework facilitates
controllable manipulation of photo synthesis through editing scene sketches with
more plausibility and simplicity than previous approaches. 3) Technically, we
propose novel designs for scene sketch to photo synthesis, including shared content
representations to enable knowledge transfer from photos to sketches and model
fine-tuning with sketch-reference-photo triplets for improved performance.

2 Related Work

Conditional Generative Models. Previous approaches generated realistic
images by conditioning generative adversarial networks [9] on a given input
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from users. More recent methods extended it to multi-domain and multi-modal
setting [4, 13, 23], facilitating numerous downstream applications including image
inpainting [14,29], photo colorization [20,40], texture and geometry synthesis [10,
42]. However, naively adopting this framework to our problem is challenging due
to the absence of paired data where sketches and photos aligned. We address this
by projecting arbitrary sketches and photo into the intermediate representation
and generating pseudo paired data to learn in an unsupervised setting.
Disentanglement of Content and Style Representations. The disentan-
glement has been studied [31, 44] prior to the surge of deep learning models,
where they show low-level style like texture can be modeled as statistics of an
image. Deep generative models [16,21,28,34] also achieved success in photo style
transfer by the disentanglement. We extend the disentanglement idea to sketches
and show its application in photo synthesis.
Sketch to Photo Synthesis. Following a seminal work, SketchGAN [3], several
efforts has been made on synthesizing photos [8, 24, 37] or reconstructing 3D
shapes [5, 35, 36] from sketches. They however mainly focused on categorical
single-object sketches without substantial background clutters, and thus have
difficulties when encountered with complicated scene-level sketches.

Scene sketch to photo synthesis is limited by lack of the data. SketchyScene [45]
is the only scene dataset with object segmentation and corresponding cartoon
images. However, their sketch is manually composited from multiple object
sketches with reference to a cartoon image. The composite sketch has a large
domain gap to real scene sketches with reference to a real scene. Their composition
idea greatly impacts how researchers solve the photo synthesis. [7] detect objects
of composite sketches and generate individual photos as well as a background
image and combine them together. Holistic scene structures are ignored and
the photo composition leads to artifacts and unrealism. We learn holistic scene
structures from massive photo datasets and transfer the knowledge to sketches.
Deep Image Editing. By the favor of powerful generative models [17], previous
works edited photos by modifying the extracted latent vector. Typically they
sampled the desired latent vector from a fixed distribution according to a user’s
semantic control [43], or let a user spatially annotate the region-based semantic
layout [27,28]. DeepFaceDrawing [2] enables user to sketch progressive for face
image synthesis. Our work differs in that we allow users to directly edit strokes
of a complicated scene sketch, thus enabling much more fine-grained editing.

3 Methods

As illustrated in Fig.2, our framework mainly consists of two components: domain
standardization and reference-based photo synthesis. For standardization (details
in Section 3.1), input photos and sketches are converted to standardized edge
maps, which bypass the lack of data issue. The second part is reference-guided
photo synthesis (details in Section 3.2), where synthesized photos are generated
based on input sketches and style reference photos.
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Fig. 3: The standardization module converts photos and sketches to a standardized
domain, edge maps. After the standardization, edges of photos and sketches share
higher similarity, which makes the domain gap between training and evaluation
narrower. Within the test set, edges of sketches with different individual styles
also a share higher similarity, making the intra-sketch-set discrepancy smaller.

3.1 Domain Standardization

Due to the lack of paired sketch-photo datasets, it is intractable for supervised
models to synthesize photos from sketches. We adopt a similar idea as [35], where
they converted inputs to a standardized domain, and showed learning from such
domain has better performance compared to directly using unprocessed inputs.

As shown in Fig.2L, the standardization can be considered as data prepos-
sessing and is different for training and inference. During training, we collect a
large scale photo dataset of a specific category, e.g., indoor scenes. Each photo is
converted to a standardized edge map for later use with an off-the-shelf deep-
learning-based edge detector [30]. During inference, unlike the training, the input
is a sketch. We use the same edge detector to convert it to the edge map for later
use. Fig.3 depicts examples of photo, sketches and their corresponding edges.
The standardized edge maps have small domain discrepancies. In addition to
narrowing the domain gap between the training and test data, the standardization
module during inference could narrow the gap of individual sketching styles (e.g.,
stroke width), which was also similarly shown in [35]. Given that edge maps serve
as a proxy for real sketches, we slightly abuse the wording of synthetic sketches
(or omitted as sketches) hereinafter as they may refer to standardized edge maps.

3.2 Reference-Guided Photo Synthesis

Previous works [28, 34] show that photos can be encoded to two disentangled
representations: content and style representations. We extend the concept to
sketches and show that they can be encoded to disentangled representations.
Preserving content representation while replacing the sketch style with a real
photo style representation could generate a realistic synthesized photo.

The module is trained in two stages. 1) Disentangled representation encoding
stage learns content and style representations from images via auto-encoding.
2) We further fine-tune the model with sketch-reference-photo triplets, with
regularization loss to guarantee the synthesizing quality. Our model is inspired by
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Fig. 4: Disentangled representation encoding is the first stage of the sketch-to-
photo synthesis module. For each photo, we generate a standardized edge map
and form an image pair. Each image of the pair is encoded as content and style
representations by the encoder. We add content consistency loss to make content
representations of the photo and the edge to be similar. The representations are
then decoded to a reconstructed image by the decoder. The network learns the
representations through the auto-encoding process. For the performance of sketch
to photo synthesis later, both photos and their corresponding standardized edges
are fed to the network for auto-encoding.
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Fig. 5: Fine-tuning with sketch-reference-photo triplets is the second stage of the
sketch-to-photo synthesis module. The input is a standardized edge map and a
reference photo. The model is pre-trained in the representation encoding phase.
Both the edge map and the reference photo are encoded by the network for
content and style representations. The content and representations are fed to the
decoder to reconstruct the synthesized photo.

and based on previous arts on disentangled representation learning [28] and style
transfer [34], with novel designs for the goal of scene sketch to photo synthesis.
Disentangled Representation Encoding. Fig.4 depicts the pipeline of the
disentangled representation encoding stage. Denote a pair of input images and its
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corresponding edge as {x,x′}, the encoder as E, decoder as G, and discriminator
as D. The encoder encodes input pairs {x,x′} to two representation pairs, content
{cx, cx′} and style {sx, sx′}, i.e., E({x,x′}) = {{cx, cx′}, {sx, sx′}}. From the
encoded representations, the decoder reconstructs a photo G(cx, sx) and its edge
G(cx′ , sx′). The auto-encoder ensures the reconstructed image pair is similar to
the input image pair by the following reconstruction loss in ℓ1-norm:

Lrec1 = E x∼X,x′∼X′ [|x−G(cx, sx)|+ |x′ −G(cx′ , sx′)|] (1)

Since the photo and the edge depict the same content, we ask their content
representations to be similar in ℓ1-norm:

Lcontent = E x∼X,x′∼X′ [|cx − cx′ |] (2)

Further, the adversarial GAN loss [9] is required to train discriminator G for
realistic reconstructions:

LGAN1
= E x∼X,x′∼X′ [− logD(G(cx, sx))− logD(G(cx′ , sx′))] (3)

The final loss is Lrec1 +θLcontent +αLGAN1
, where θ, α are both set to be 0.5.

Fine-Tuning with Sketch-Reference-Photo Triplets. Fig.5 depicts the
pipeline of the fine-tuning stage. Denote the sketch, reference photo and output
synthesized photo as xk,xr,xo, respectively. With the pre-trained model from
the previous representation learning stage, the encoder is able to encode content
and style representations of sketches and photos. The output image is generated
by the decoder from the content representation of the sketch cxk , and the style
representation of the reference sxr :

xo = G(cxk , sxr) (4)

As the model has been pre-trained in the previous stage for encoding content and
style representations, the model has a good starting point for synthesizing photos
from sketches. To ensure the output image has similar content as the sketch and
a similar style as the reference, however, we enforce the following regularization
loss on content and style representations in ℓ1-norm:

Lreg = E xk∼Xk,xr∼Xr,xo∼G(c
Xk ,sXr )[|cxo − cxk |+ |sxo − sxr |] (5)

Additionally, the adversarial GAN loss is required:

LGAN2
= E xk∼Xk,xr∼Xr [− logD(G(cxk , sxr))] (6)

The final loss is Lreg +β LGAN2
, where β is set to be 0.5 in the work.

4 Experimental Results

4.1 Network Architectures and Training Details

Network Architectures. Images are fed to the encoder to obtain content and
style representations. First, images go through 4 down-sampling residual blocks
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Fig. 6: The reconstruction results of our method and StyleGAN2 [34]. Images
are projected into embedding spaces for ours and StyleGAN2 [34]. Both photos
and standardized edges are fed to the network for reconstruction. The high
faithfulness in reconstruction demonstrates that the learned content and style
representations are effective.

Table 1: (a) Reconstruction performance measured in LPIPS (↓) [41]. Images are
projected into embedding spaces for ours and StyleGAN2 [34]. We reconstruct photos and
edges with a similar performance as StyleGAN2 [34], demonstrating the disentanglement
to content and style representations is effective. (b) Reference-guided sketch to photo
synthesis performance measured in FID (↓) [12]. Our method outperforms other baseline
methods in all three categories.

(a)

input method indoor church mountain mean

photo ours 0.254 0.214 0.221 0.229
StyleGAN2 0.256 0.220 0.224 0.233

edge ours 0.180 0.166 0.171 0.172
StyleGAN2 0.161 0.188 0.173 0.174

(b)

FID (↓) indoor church mountain mean
ours 105.5 48.7 73.8 76.0

SAE [28] 107.7 52.4 74.1 78.1
ObjSketch [24] 136.5 62.1 95.4 98.0
SpliceViT [33] 204.2 119.7 140.7 154.9

DTP [18] 205.2 124.2 143.5 157.6
Style2Paints [39] 254.2 217.3 247.7 239.7

[11] to obtain an intermediate representation. The intermediate representation
is fed to another convolution layer to obtain the content representation with a
spatial size of 16 × 16. The intermediate representation is also fed to another
two convolution layers to obtain a style representation/vector dimension of 2048.
The decoder consists of 4 up-sampling residual blocks. The style representation
is injected to the decoder convolution layers with weight modulation techniques
described in StyleGAN2 [34]. The discriminator is the same as that of StyleGAN2.
Hyper-Parameters and Training Schedules. For representation encoding,
the initial learning rate is 2e-3. We use Adam optimizer [19] with β = (0, 0.99).
For fine-tuning, we start from the previously pre-trained model. The training
schedule stays the same with the initial learning rate being 4e-4. The entire
training time for the 3D-front indoor scene dataset is 7 days on 4 V100 GPUs.
Baselines. We follow the released code and the same settings of all baseline
methods and retrain on datasets used in the paper. Specifically, some baselines
[18, 24, 28, 33] only work on photos, but not sketches. We use a gray-scale images
as a proxy to ensure the photo synthesis quality. Specifically, we first train a
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Fig. 7: Various baseline photo syntheses from sketches with style guidance. Note
that SpliceViT [33] and DTP [18] are designed for test-time optimization and are
not trained on the full dataset, making them disadvantageous to other methods.
All other methods are trained on the same dataset with a similar iteration as the
proposed method. Style2Paints is designed to synthesize painting, not realistic
photos. Our model synthesizes photos that share a similar content as the sketch
and a similar visual style as the style photo reference.

sketch to gray-scale photo model using the same setting as step 1 of [24], where
the input to the model is a standardized sketch. The generated gray-scale photo
is then used to train a gray-scale to color photo model with the same setting of
the baseline methods. SpliceViT [33] and DTP [18] are designed for test-time
optimization and are not trained on the entire dataset. All other baseline methods
are trained on the same dataset as the proposed method with a similar iteration.

4.2 Datasets

We train on the following scene photo datasets: 1) 3D-Front Indoor Scene [6]
consists of 14,761 training and 5,479 validation photos. They are rendered with
Blender from synthetic indoor scenes including bedrooms and living rooms.
Photos are resized to 286 and randomly cropped to 256 during training. 2) LSUN
Church [38] consists of 126,227 photos of outdoor churches. We randomly sample
25,255 photos as the validation set. Photos are resized to 286 and randomly
cropped to 256 during training. 3) GeoPose3K Mountain Landscape [1]
has 3,114 mountain landscape photos. 623 photos are randomly sampled for
validation. Training photos are resized to 572 and randomly cropped.

For evaluation, we collect a Scene Sketch Evaluation Set. For each cat-
egory (indoor scenes, mountain and church), we collect 50 sketches from the
Internet, respectively. The sketches are collected with an intention to cover various
sketching styles, e.g. different levels of line width, geometric distortion, use of
shading, etc.
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Fig. 8: The indoor scene, church and mountain sketch to photo synthesis with
different references. We synthesize high-fidelity scene photos with similar content
as the sketch and similar style as the reference photos.

4.3 Representation Encoding

With effective learned representation, the model could reconstruct photos or
sketches with high quality. We evaluate reconstruction performance in LPIPS [41].

Table 1a reports the LPIPS distance of reconstructed and input photos and
synthetic sketches of our stage 1 model and StyleGAN2 [34]. Fig.6 depicts several
examples of the input and reconstruction. Our representation encoding model has
a slightly better reconstruction performance compared to StyleGAN2, indicating
the learned content and style representations are adequate and ready for further
fine-tuning with sketch-reference-photo pairs.

4.4 Photo Synthesis

We evaluate the photo synthesis performance of our method and baselines in
terms of photo-realism. We calculate the Fréchet inception distance (FID) [12]
between the synthesized photo set and the training photo set for each category
(Table 1b). Our method outperforms other baselines under the FID metric. Fig.7
depicts synthesis results of our method and baselines. Note that SpliceViT [33]
and DTP [18] designed for test-time optimization and was not trained on the full
dataset, making it disadvantageous to other methods. Style2Paints is designed to
synthesizing painting, not realistic photos. We however include it as it is one of
the few works that study synthesizing from scene sketches. Our synthesis result
outperforms all other methods, with SAE [28] being the second. As for if the
content of the output photo matches with the input sketch or if the style matches
with the reference photo, we provide human perceptual evaluation in Section 4.5.

We also provide more visualization of our synthesis results of indoor scenes,
churches and mountains in Fig.8.

4.5 Human Perceptual Study

We conduct a human perceptual study to evaluate the realism of synthesized
photos, and if synthesized photos match contents and styles as desired. We only
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Table 2: A human perceptual study of the synthesized photos. (a) The fooling rate
of our synthesized model over real photos measures the realism of the generation. (b)
User preference on which method synthesizes photos that depicts more similar content
to the sketch. (c) User preference on which method synthesizes photos that depicts
more similar visual style to the reference photo. Compared with [28], we have a higher
fooling rate over real photos, better content and style matching preference rate.

(a) Fooling rate (↑)
(%) indoor scene church mountain mean
ours 25.00 44.3 48.9 39.4

SAE [28] 10.0 6.6 20.0 12.2

(b) Content matching (↑)
(%) indoor scene church mountain mean
ours 80.1 92.1 75.0 82.4

SAE [28] 19.9 7.9 25.0 17.6

(c) Style matching (↑)
(%) indoor scene church mountain mean
ours 61.9 90.9 71.0 74.6

SAE [28] 38.1 9.1 29.0 25.4

evaluate our method and SAE [28], the second best-performing synthesis method,
due to limited resources.

We create a survey consisting of three parts: photorealism, content matching
with sketches and style matching with reference photos. As guidance to the
participants, we state our research purpose at the beginning of the survey. For
each part, a detailed description and an example question with answers and
explanations are provided for the participant’s reference. The order of our results,
baseline results, and real images are randomly shuffled in the survey to minimize
the potential bias from the participant. Each part consists of 13 questions, with
one question being a bait question with an obvious answer. The bait question is
designed to check if the participant is paying attention and if the answers are
reliable. There are in total 51 participants, with 1 being ruled out due to failing
one of the bait questions. Thus we finally collect 1,950 valid human judgments.

To evaluate the photorealism, we randomly select synthesized photos of ours
and SAE evenly from three categories. Both methods use the same input sketch
and reference photo. For each synthesized photo, we use Google’s search by
image feature to find the most similar real photo and ask participants which
one they think looks more like a real photo. We then calculate the percentage of
participants being fooled. Note that the fooling rate of random guessing is 50%.
Table 2a reports the fooling rate of our method and SAE. Ours is 27% higher
than SAE. Specifically, for churches and mountains, ours achieves a fooling rate
over 44%: the generated photos are almost indistinguishable from real photos.

To evaluate if the synthesized photos match the content of the input sketch,
we show participants an input sketch and two synthesized results from our method
and SAE, and ask them to pick one that has the most similar content as the
sketch. Table 2b reports the preference rate of ours over SAE. We achieve 82%
on average preference rate, well outperforming the baseline.

To evaluate if the synthesized photos match the style of the reference photo,
we show participants a reference photo and two synthesized results from our
method and SAE, and ask them to pick one that has the most similar style to
the sketch. Table 2c reports the preference rate of ours over SAE. We achieve a
75% average preference rate, well outperforming the baseline.
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style representation content representation

Fig. 9: The style representations of sketches and photos are well separated, while
the content representations of sketches and photos are tangled together. We
visualize learned content and style representations of sketches and photos with
T-SNE [25]. The results show that sketches and photos share the content space
and it is appropriate to train on photos and transfer knowledge to sketches.

Fig. 10: Sketch to photo synthesis with combined style representations of two
references. We encode style representations from two photos, e.g. a winter photo
and a summer photo. By increasing the weight of the summer image and decreasing
that of the winter image, the synthesized photo from the sketch gradually changes
from winter appearance to summer appearance.

4.6 Photo Editing Through Sketch

As depicted in Fig.11, given an input photo, we convert it to a standardized
edge map (where we refer as sketch for simplicity). Users could add and remove
strokes to edit the photo. We also show the possibility of sequential editing
in the figure. We evaluate the photo editing performance for the indoor scene
validation dataset, and the FID [12] of edited images to the training set is 69.2.
One limitation is that the content in the unmodified region of a given photo may
not be well preserved as the edited photo is solely generated from the edge map.

4.7 Analysis and Ablation Studies

Analysis of Style Representations. We visualize the learned content and
style representations of photos and sketches using T-SNE [25] in Fig.9: style
representations of sketches and photos are well separated, while content represen-
tations of sketches and photos are not separable. This verifies the grounding of
the method: the content representations of sketches and photos can be shared,
while the style representations for the two are different. Thus, combining the
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Fig. 11: Photo editing and style transfer via sketches. Upper: Given an input
image, we first convert it to a standardized edge map. We then add or remove
strokes in the edge map and convert it back to a photo. The visual style of the
photo could also be changed with a reference photo (top right). Lower: Sequential
editing by gradually removing strokes.

content representation of a sketch and style representation of a photo could
decode a realistic synthesized photo.
Style Interpolation.We study if the reference style can be a combination of style
of two different reference images xr1 and xr2 . Suppose their style representations
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Table 3: Ablation studies on the fine-tuning stage, content and style regularization
loss for indoor scenes in FID (↓) [12] distance. Having both stage 2 fine-tuning
and the regularization loss gives the best result.

no fine-tune fine-tune+style loss fine-tune+content loss fine-tune+all loss
107.9 107.0 106.1 105.5

are sxr1 and sxr2 . The combined representation scombined = γsxr1 + (1− γ)sxr2 ,
where γ ∈ [0, 1]. By adjusting γ, we synthesize photos with a combined style
from both reference images. Fig.10 depicts examples of mountain sketch to photo
synthesis with combined styles from two different reference images. By adjusting
γ, the synthesized photos have a continuous interpolation from winter to summer,
and afternoon to dusk.
Fine-Tuning Model. One of the novelty is that we propose the fine-tuning
with sketch-reference-photo triplets for the task. We evaluate if the fine-tuning is
necessary by removing the fine-tuning stage. As reported in Table 3, removing
the model fine-tuning leads to 2.4 worse results in the FID metric.
Content and Style Regularization Loss. We study if the regularization loss
at the fine-tuning stage is effective. We study the function of the content loss
(|cxo − cxk |) and style loss (|sxo − sxr |) respectively. As reported in Table 3,
removing the content regularization loss leads to 1.5 worse results in FID metric,
and removing the style loss leads to 0.6 worse results. This verifies the effectiveness
of the proposed regularization loss.

5 Summary

We propose a reference-guided framework for photo synthesis from scene sketches.
We first convert all input photos and sketches to standardized edge maps, allowing
the model to learn in unsupervised setting without the need of real sketches
or sketch-photo pairs. Sequentially, the standardized input and reference image
are disentangled into content and style components to synthesize new hybrid
image that preserves the content of standardized input while transferring the
style of reference image. Extensive experiments demonstrate that our method
can generate and edit a realistic photo from a user’s scene sketch with a reference
photo as style guidance, surpassing the previous approaches on three benchmarks.

A major insight of this work is that, we learn to synthesize scene structures
directly from the vast amount of readily-available photos, rather than synthesizing
and combining individual objects. Rather than worrying about the acclimated
errors from sketch-based object detection, photo synthesis and spatial combination
for the final output, we treat the scene sketches as a whole and learn the holistic
structures for photo synthesis.

One limitation is that the deep-learning based standardization step could
eliminate strokes that reflect the details of the scene, or misinterpret the strokes
as textures. Future work could study a sketch-to-edge standardization process
that preserves higher fidelity of the sketch. Another limitation lies in the sketch-
based photo editing - the unchanged regions of a given photo may not be well
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preserved. This is due to the model takes sketch as the only input. Future work
could improve the performance by taking the original photo into consideration.
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