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Abstract. Deep learning-based single image super-resolution (SISR) approaches
have drawn much attention and achieved remarkable success on modern advanced
GPUs. However, most state-of-the-art methods require a huge number of param-
eters, memories, and computational resources, which usually show inferior in-
ference times when applying them to current mobile device CPUs/NPUs. In this
paper, we propose a simple plain convolution network with a fast nearest convo-
lution module (NCNet), which is NPU-friendly and can perform a reliable super-
resolution in real-time. The proposed nearest convolution has the same perfor-
mance as the nearest upsampling but is much faster and more suitable for Android
NNAPI. Our model can be easily deployed on mobile devices with 8-bit quanti-
zation and is fully compatible with all major mobile AI accelerators. Moreover,
we conduct comprehensive experiments on different tensor operations on a mo-
bile device to illustrate the efficiency of our network architecture. Our NCNet is
trained and validated on the DIV2K 3× dataset, and the comparison with other
efficient SR methods demonstrated that the NCNet can achieve high fidelity SR
results while using fewer inference times. Our codes and pretrained models are
publicly available at https://github.com/Algolzw/NCNet.

Keywords: Image super-resolution, real-time network, mobile device, nearest
convolution, quantization

1 Introduction

Image super-resolution (SR) is a fundamental task in computer vision that aims to re-
construct high-resolution (HR) images from their degraded low-resolution (LR) coun-
terparts. It is a hot topic in recent years since its importance and ill-posed nature. The
inherent challenge in the SR problem is that there always exists infinite solutions for
recovering the HR image, and different HR images can be degraded to the same LR
image, which makes it difficult to directly learn the super-resolution process.

During the past decade, we have witnessed the remarkable success of deep neu-
ral network (DNN) based techniques in computer vision [23,14,13,32]. SR algorithms
that are based on deep convolution networks have attracted lots of attention and rapidly
developed. As a result, many works have achieved impressive results on kinds of SR
tasks [37,6,4,5]. However, most superior methods heavily rely on using large network
⋆ Corresponding author.
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Tensor operation node CPU GPU delegate Android NNAPI

Conv3 - f3-16 19.1ms 13.9ms 20.1ms
w/ dilation 23.1ms 27.0ms 44.3ms
+ Add 24.4ms 14.7ms 21.5ms
+ Multiply 22.8ms 59.8ms 21.7ms
+ Concat 25.5ms - 50.7ms
+ Split 22.2ms 40.4ms 32.3ms
+ ReLU 19.1ms 14.5ms 28.4ms
+ LeakyReLU 44.7ms 14.2ms 66.8ms
+ Global_Avgpool 16.6ms 4.9ms 29.1ms
+ Global_Maxpool 102.0ms 5.0ms 21.1ms

Table 1. Inference times of different commonly used tensor operation nodes. ‘w/ dilation’ means
a dilated convolution. ‘ConvN - fA-B’ means the kernel size is N, input layer has A channels and
the output layer has C channels.

capacities and model complex to improve the SR performance, which limits their prac-
ticability on real-world resource-constrained mobile devices.

In order to apply DNN-based SR models to smartphones, a new research line called
efficient super-resolution is developed where various methods have been proposed to
reduce the model complexity and inference time [39,25]. A representative work is the
IMDN [15], which proposes an information multi-distillation block that uses feature
distillation and selective fusion parts to compress the model‘s parameters while preserv-
ing SR performance. Later, RFDN [27] builds a residual feature distillation network on
top of IMDN but replaces all channel splitting operations with 1×1 convolutions and
adds feature distillation connections. By doing so, RFDN has won 1st place in the AIM
2020 efficient super-resolution challenge [39]. In addition, some simplified attention
mechanisms are also used in the efficient super-resolution task [43,28]. Compared with
traditional superior SR networks, all these efficient-designed methods perform well and
fast on desktop GPU devices. But we noticed that performing super-resolution on smart-
phones has much tighter limits on computing capacities and resources: a restricted
amount of RAM, and inefficient support for many common deep learning layers and
operators.

A mobile-friendly SR model should take care of the compatibility of tensor oper-
ators on mobile NPUs. We need to know what operations are particularly optimized
by the mobile NN platform (Synaptics Dolphin platform). And the same tensor op-
eration could have different inference times on different smartphone AI accelerators
(e.g., CPU, GPU delegate, and Android NNAPI). Recent works [9,3,17] have inves-
tigated some limiting factors of running deep networks on a mobile device and what
kind of architecture can be friendly to INT8 quantization. They propose several useful
techniques such as “anchor-based residual learning”, “Clipped ReLU”, and “Quantize-
Aware Training” to accelerate inference while preserving accuracy on smartphones.
However, there is still no basic experiment that can illustrate the difference of tensor
operators on different smartphone AI accelerators.
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Convolution network CPU GPU delegate Android NNAPI

Conv1 - f3-3 5.3ms 4.7ms 9.6ms
Conv3 - f3-3 14.8ms 5.0ms 15.0ms
Conv5 - f3-3 21.3ms 5.8ms 27.2ms

Conv3 - f3-8 14.7ms 8.8ms 17.4ms
Conv3 - f3-16 19.1ms 13.9ms 20.1ms
Conv3 - f3-32 27.1ms 25.4ms 24.7ms

Conv3 - f3-8-8 31.4ms 9.8ms 24.9ms
Conv3 - f3-8-16 33.6ms 15.0ms 27.8ms
Conv3 - f3-16-16 50.4ms 25.8ms 27.8ms
Conv3 - f3-16-32 63.8ms 32.5ms 34.4ms
Conv3 - f3-32-32 103.2ms 60.7ms 34.3ms

Table 2. Inference times of different convolution network structures. ‘ConvN - fA-B-C’ means it
is a two-layer convolution network, where the kernel size is N, first layer has A channels, second
layer has B channels, and the number of output channel is C.

In this paper, we provide a comprehensive comparison of inference times for kinds
of tensor operation nodes and network architectures, as shown in Table 1 and Table 2.
We use DIV2K 3× [37] as the training and evaluation dataset. All experiments are
evaluated on AI Benchmark application [16,19]. As one can see, some commonly used
deep learning techniques (e.g., dilated convolution, concatenation, channel splitting,
and LeakyReLU) are not compatible with mobile Android NNAPI, even though they
have a good performance on CPU and GPU delegate. Based on these experiments and
analysis, we design a plain network that only contains 3×3 convolution layers and
ReLU activation functions. Moreover, we propose to use a novel nearest convolution to
replace the traditional nearest upsampling in network residual learning, which further
speeds up the inference and achieves the same effect as nearest interpolation residual
learning. In summary, our main contributions are as follows:

– We provide a comprehensive comparison of inference times for different tensor
operators and network architectures on a smartphone, which tells us what operation
is good for mobile devices and should be incorporated into the network.

– We propose a fast nearest convolution plain network (NCNet) that is mobile-friendly
and can achieve the same performance as nearest interpolation residual learning
while saving approximately 40ms on a Google Pixel 4 smartphone.

2 Related Work

2.1 Single Image Super-Resolution

Single Image Super-Resolution (SISR) is one of the most popular research topics in
computer vision due to its importance and ill-posed nature. The pioneering deep learn-
ing based method is SRCNN [35] which applies the bicubic downsampling on HR
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images to construct HR and LR pairs and employs a simple 3-layers convolution neural
network (CNN) to perform super-resolution. After then, various super-resolution ap-
proaches are proposed and have achieved remarkable performance in processing the
SISR problem [21,26,34,41,12,36,31,42,29,30]. For example, VDSR [35] proposes a
very deep CNN to improve the SR results and ESPCN [34] designs a simple yet ef-
ficient strategy, called pixel-shuffle, for real-time feature upsampling. EDSR [26] pro-
poses to enhance the CNN-based SR network by removing the batch normalization
layer of all residual blocks. Moreover, to improve the perceptual visual quality, recent
works [24,33,38] propose to employ some advanced losses such as the VGG loss [35],
perceptual loss [20], and GAN loss [11] to help the network to learn realistic image
details. However, these methods usually require huge memories and computational re-
sources which makes them hardly be applied to modern mobile devices.

2.2 Efficient Image Super-Resolution

To fit the growing demands of deploying models on real-world smartphone applica-
tions, many works have refocused their attention on efficient image super-resolution
techniques [2,8,15,27,36]. CARN [2] uses cascaded residual blocks and group convo-
lution to achieve a lightweight SR network. IMDN [15] designs an information multi-
distillation network that extracts hierarchical features and expresses the number of fil-
ters in each block to reduce the memories and FLOPs. The following work RFDN [27]
further improves the network by introducing feature distillation blocks that employ 1×1
convolution layers to replace all channel splitting operations. Although these networks
can perform efficient SR on desktop CPUs/GPUs, they are still not feasible to be de-
ployed on real-world applications since the computational resources on most smart-
phones are much lower than on computers. Address it, ABPN [9] and XLSR [3] are
winners of the Mobile 2021 Real-Time Single Image Super-resolution Challenge [17].
They investigated some limiting factors of the mobile device models and proposed
extremely lightweight SR networks for the mobile SR problem. Moreover, the INT8
quantization is widely used in mobile devices since it can accelerate inference and save
memories, as illustrated in Table 3 (for runtime we mainly focus on Android NNAPI).

Quantization #Params CPU GPU delegate NNAPI PSNR-int8

float-32 43K 506ms - 153ms 30.21
int-8 43K 509ms - 135ms 30.06

Table 3. Runtime and PSNR comparison on different quantization modes of ABPN [9].

3 Method

In this section, we will start by finding a proper network architecture for the mobile
device (especially for the Android NNAPI accelerator), based on Table 1 and Table 2.
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Fig. 1. Network architecture of the proposed NCNet. The main network backbone learns the
residual while the nearest convolution module directly delivers the low-frequency information
to the final result. Moreover, the nearest convolution achieves the same performance as nearest
interpolation but can be executed parallelly.

Then we describe the main idea of the nearest convolution module. By assembling
the manually designed backbone and the nearest convolution in the form of residual
learning, we can obtain the final efficient SR network, as shown in Figure 1.

3.1 Network Architecture Selection

To build a real-time mobile-friendly SR network, our first thing is to figure out what
tensor operators are compatible and efficient for the Android NNAPI accelerator. To
make use of the NPU’s parallel property, the baseline operation node is set to a 3×3
convolution with 16 output channels, so we could add kinds of multi-channel (element-
wise) tensor operations to it as in Table 1. In addition, we also want to know which
convolution architecture and channel are better. So we compared the arrangement and
combination of convolution layers in Table 2. Note that all experiments are based on a
Google Pixel 4 smartphone, using INT8 quantization.

From our observation, we find that the inference times of channel splitting and con-
catenation on NPUs are much lower than on CPUs, which means these operators are not
friendly to NPU parallelism, and the runtime will exponentially increase if the number
of channels doubles. This situation also happens on ‘LeakyReLU’ and ‘Global Aver-
age Pooling’. In recent years, many advanced methods like using LeakyReLU as their
default activation function [38], but it is obviously not suitable for mobile NPUs. Sim-
ilarly, the attention mechanism is widely used in state-of-the-art SR approaches [7,40]
but it is time-consuming and not a good choice for mobile devices. For the choice of
convolution layers, we find the 5×5 convolution is wasteful and inefficient, and the 1×1
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convolution is not convincing to achieve a good performance. Thus we choose to set the
kernel size to 3×3 for all convolution layers. For multi-layer structures, we surprisingly
find that keeping all layers the same number of channels has approximately the same
runtime as changing channels. Note the latter has fewer parameters, which means we
could use a larger network to achieve better performance while preserving the same in-
ference time on mobile NPUs. Therefore, the main backbone of our network is designed
to only contain 3×3 convolution layers with ReLU activation functions. And inspired
by ABPN [9], our solution also incorporates the residual learning of RGB images to im-
prove the final result. The overview of the proposed fast Nearest Convolution (NCNet)
network is shown in Figure 1.

3.2 Nearest Convolution

The most important component of the NCNet is the Nearest Convolution module, which
is actually a special 1× 1 convolution layer with stride 1. To achieve the nearest inter-
polation, the weights of the convolution are freezed and manually filled by s2 groups of
3 × 3 identity matrix (where s is the upscale factor) and each group would produce an
RGB image, which just like a copy operation to repeat the input image s2 times. Then
these s2 RGB images can reconstruct an HR image through a depth-to-space operation.
In this way, the reconstructed image will be exactly the same as the nearest interpolated
HR image but is much faster especially using mobile GPUs/NPUs. The reason is that
when the 1×1 nearest convolution is performed on the NPU devices, it can be executed
in parallel thus showing superior to other normal interpolation operations. The infer-
ence time of different upsampling methods is shown in Table 4. As one can see, the
proposed nearest convolution can save approximately 40ms compared with the original
nearest upsampling operation.

3.3 Residual Learning

In practice, we’d like to add these s2 RGB images to the output of the plain network be-
fore the depth-to-space layer then the plain network could focus on learning the residual
information. Let x be the HR image and y be its degraded LR image. We could obtain
the super-resolved image x̂ by:

x̂ = f(y; θ) = D2S(fres(y; θ) + fnc(y)), (1)

where f(·) represents the SR network and θ is the network’s parameters. fres(·) and
fnc(·) represent the residual learning network and nearest convolution, respectively.
D2S means the depth-to-space layer. To illustrate the effectiveness of our network, we
use L1 loss to optimize our model, which is formulated as follows:

L1(θ) =
1

N

N∑
i=1

(f(y; θ)− x). (2)

To accelerate the inference time, we only incorporate 7 layers of 3 × 3 convolution
with the ReLU activation function for the whole network, and the number of channels
is fixed to 32. Since the runtime of element-wise operation is non-negligible, we didn’t
use the residual connection for each convolution layer.
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Upsample methods CPU GPU delegate NNAPI PSNR

nearest 23.1ms 19.0ms 55.0ms 26.67
bilinear 77.7ms 21.0ms 128.2ms 27.67

Conv-3 + depth2space 30.8ms 26.5ms 43.8ms -
nearest convolution + depth2space 15.9ms 20.3ms 14.8ms 26.67

Table 4. The table shows the inference time between the proposed nearest convolution and other
commonly used upsample methods on different mobile accelerators. The proposed nearest con-
volution can save approximately 40ms compared with the original nearest upsampling operation.

Google Pixel 4 CPU GPU delegate NNAPI #Params PSNR-float32 PSNR-int8

NCNet 535.1ms 263.0ms 104.0ms 53K 30.27dB 30.18dB
Table 5. The table shows the runtime on different accelerators and the PSNR performance of the
proposed NCNet on a Google Pixel 4 smartphone.

4 Experiments

4.1 Dataset and Implementation Details

We use DIV2K [1] as the training (800 image pairs) and testing (100 image pairs)
dataset. The scale factor is fixed to 3 and the batch size is set to 64. The patch size of
LR images is 64 and the total iterations are set to 500,000. All parameters are initialized
using Xavier initializer [10]. We use the Adam optimizer [22], where the initial learn-
ing rate is 1× 10−3 and decreases by half every 200,000 iterations. Inspired from [25],
we also finetune the trained model with a larger LR patch size of 128 for additional
200,000 iterations. In this paper, we follow the Mobile AI & AIM 2022 Real-Time
Image Super-Resolution Challenge [18] to measure super-resolved results in the RGB
space. Moreover, we use a single NVIDIA RTX 2080Ti with 8 CPUs to train and eval-
uate the original non-quantized model.

4.2 Model Quantization

For network quantization, we use the standard Tensorflow Quantization tool - TFLite -
to quantize the trained model as the Post-Quantization strategy. To evaluate the PSNR of
the quantized models (float32 and int8), we set the input shape to [1, None,None, 3] to
allow super-resolving arbitrary shape images. To evaluate the inference time, we fix the
input shape to [1, 360, 640, 3] and test the model in the AI Benchmark [16] application
on a Google Pixel 4 smartphone.
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Method #Params CPU GPU delegate NNAPI PSNR-int8

FSRCNN [8] 24K 476ms 226ms 251ms 28.34
ABPN [9] 43K 509ms - 135ms 30.15

NCNet(ours) 53K 535ms 263ms 104ms 30.18
Table 6. Runtime and PSNR comparison with FSRCNN [8] and ABPN [9]. Note the ABPN fails
to run on the mobile GPU delegate.

Bicubic FSRCNN XLSR

ABPN Ours GTLR image in DIV2K

Bicubic FSRCNN XLSR

ABPN Ours GTLR image in DIV2K

Bicubic FSRCNN XLSR

ABPN Ours GTLR image in DIV2K

Fig. 2. Visual comparison of LR Img 846, Img 820 and Img 819 in DIV2K validation dataset [1].
All results are produced by the INT8 quantization model, for scale factor 3.
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4.3 Experimental Results

After training and quantizing, we can show the overall information of the proposed
model in Table 5. As one can see, our NCNet is NPU-friendly. The runtime on NNAPI
is 5× faster than CPU and 2.5× than GPU. With 53K parameters, the INT8 quantized
NCNet only loses 0.09dB on the mobile device compared with its float32 model.

50 75 100 125 150 175 200 225 250
Inference time (ms)

27.0

28.0

29.0

30.0
PS

NR
(d

B)

Nearest

Bilinear
FSRCNN

NCNet(ours)

Fig. 3. Comparison of PSNR and inference time on Google Pixel 4 with INT8 quantization.

We compare the proposed NCNet with other lightweight real-time SR algorithms,
such as FSRCNN [8] and ABPN [9]. The former is the pioneering DL-based SR net-
work and the latter is a superior method in Mobile AI 2021 Real-Time Single Image
Super Resolution Challenge [17]. The quantitative results are illustrated in Table 6.
The proposed NCNet is faster than ABPN and FSRCNN on Android NNAPI and also
achieves the best PSNR performance. In addition, we also compared two classical up-
sampling methods: Nearest upsampling and Bilinear upsampling. Both of them can be
quantized to INT8 and are well compatible with Android NNAPI. The result is illus-
trated in Figure 3. Our method is even faster than bilinear upsampling while achieving
an impressive performance.

The visual comparison of our method and other approaches with INT8 quantization
is shown in Figure 2. The proposed NCNet has more textures and can produce visually
pleasant SR images.

5 Conclusion

In this paper, we introduce an efficient fast nearest convolution network (NCNet) for
real-time super-resolution. It is well compatible with INT8 quantization and Android
NNAPI accelerator. By assembling the CNN-based plain network and the nearest con-
volution as residual learning architecture, NCNet achieves a remarkable performance
while preserving real-time inference. By utilizing the NPU’s parallel property, our model’s
runtime on the Android NNAPI is even faster than the traditional bilinear upsampling.
We also provide a comprehensive comparison of inference times for different tensor
operators and network architectures on the smartphone, which could help to select op-
erators and architectures for real-world mobile devices.
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