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Abstract. Video super-resolution (VSR) is the task of restoring high-resolution
frames from a sequence of low-resolution inputs. Different from single image
super-resolution, VSR can utilize inter-frames’ temporal information to recon-
struct results with more details. Recently, with the rapid development of con-
volution neural networks (CNN), the VSR task has drawn increasing attention
and many CNN-based methods have achieved remarkable results. However, only
a few VSR approaches can be applied to real-world mobile devices due to the
computational resources and runtime limitations. In this paper, we propose a
Sliding Window based Recurrent Network (SWRN) which can be real-time in-
ference while still achieving superior performance. Specifically, we notice that
video frames should have both spatial and temporal relations that can help to re-
cover details, and the key point is how to extract and aggregate these information
together. Address it, we input three neighboring frames and utilize a hidden state
to recurrently store and update the important temporal information. Our experi-
ment on REDS dataset shows that the proposed method can be well adapted to
mobile devices and produce visually pleasant results.

Keywords: Mobile Device; Efficient Algorithm; Video Super-resolution; Recur-
rent Network;

1 Introduction

Over the past decade, we have seen the great success of Deep Learning (DL) and
Convolution Neural Networks (CNNs) in computer vision [8,24]. By incorporating re-
cent advanced CNN architectures in video super-resolution (VSR), many methods have
achieved remarkable performances compared with traditional approaches. Thanks to
the deep learning, these improvements encourage the community to explore more so-
lutions for VSR such as sliding window-based methods [19,38,40] and recurrent-based
networks [37,9,17,18]. These CNN-based methods usually require high computational
resources and inference times, and the performance gains mainly come from their huge
parameters and complexity.

On the other hand, with the growing popularity of built-in smartphone cameras,
applying VSR networks to real-world mobile devices becomes vitally important and
has drawn great attention [26]. However, running CNN models on a smartphone is
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Time line from the 1st frame to 60th frame

1st 15st 30st 45st 60st

Fig. 1. Video sequence from the 1st frame to 60th frame. The top row is the low-resolution frames
and the middle row shows the bicubicly upsampled frames. Our method is illustrated in the bot-
tom row. Note that the same part of different frames could have different sharpness and details,
which enables us aggregate neighboring frames to recover an HR image with rich details.

difficult due to the limited memories and the real-time inference requirement [12,14].
Compared with single image super-resolution (SISR), VSR usually needs to recover a
sequence of inter-related frames, and the widely used techniques (e.g., frame alignment
and fusion) are too complicated and computationally expensive thus they can hardly be
used for smartphones directly. Moreover, the number of frames can linearly affect the
inference times which further aggravates the deployment of CNN-based VSR methods.
Some researchers treat VSR as an extension of SISR so that they could use efficient SR
architectures without considering the temporal information [31]. Such a solution can
achieve real-time inference but shows inferior performance.

To promote the development of real-time VSR, Mobile AI & AIM 2022 Real-Time
Video Super-Resolution Challenge [16] is held to evaluate VSR networks on mobile
GPUs which have strong resource-constraints. All participants were asked to design
efficient models and train them on the REDS [36] dataset with 4× video upscaling. And
participants should design models considering the balance between high restoration
accuracies (PSNR) and low resource consumptions (latency). To evaluate the model
efficiency, all solutions are asked to convert to ‘tflite’ models and tested on the Android
AI Benchmark application [13] which uses the Tensorflow TFLite library as a backend
for running all quantized deep learning models.

In this paper, we aim to design a lightweight VSR model by comprehensively in-
vestigating the effectiveness of different CNN architectures for smartphones. To reduce
the parameters and memories, our network is designed to contain only 3×3 convolution
layers and ReLU activation functions. Besides, we find that the same part of different
frames could have different sharpness and details, as illustrated in Figure 1. To improve
the accuracy, we further propose the sliding window recurrent network (SWRN) which
makes use of the information from neighboring frames to reconstruct the HR frame.
And an additional bidirectional hidden state is used to recurrently collect temporal spa-
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tial relations over all frames. By doing so, images produced by our model could have
rich details far beyond other single image super-resolution methods. The main contri-
bution of our work can be summarised as follows:

- We propose a lightweight video super-resolution network, known as SWRN, which
can be easily deployed on mobile devices and perform VSR in real-time.

- To make the SWRN more efficient while preserving high performance, we propose
the sliding-window strategy to utilize neighboring frames’ information to recon-
struct rich details.

- A bidirectional hidden state is incorporated to recurrently store and update temporal
information, which could be very useful to aggregate long-range dependencies to
improve the VSR performance.

2 Related Works

2.1 Single Image Super-Resolution

Single Image Super-Resolution (SISR) is the task of trying to reconstruct a high-
resolution image from its degraded low-resolution low-quality counterpart. In the past
few years, numerous works based on deep learning and deep convolution neural net-
works have achieved tremendous performance gains over traditional super-resolution
approaches [6,7,11,21,25,33,41,44,30]. SRCNN [6] is the first work that uses CNN in
super-resolution. Later, most subsequent works focus on optimizing the network archi-
tectures [7,23,44,30] and loss functions [20,25,41,32].

2.2 Video Super-Resolution

Starting from the pioneer network SRCNN [7], deep convolution neural network
based methods have brought significant achievement in both image and video super-
resolution tasks [21,30,43,1,40,29,2,35,34,27,4]. Particularly, in video super-resolution,
where the most important parts are frame alignment, many advanced techniques have
been developed to improve the accuracy. For example, VESPCN [3] and TOFlow [42]
propose to use optical flow to align frames. TDAN [38] and EDVR [40] point out that
estimating an accurate flow for occlusion and large motion frames is difficult and they
choose to align frames using deformable convolution [5,45]. Especially, EDVR enjoys
the merits of implicit alignment and its PCD module uses a pyramid and cascading ar-
chitecture to handle occlusion and large motions. Another line of VSR methods also
incorporates recurrent networks in video process [37,17,9,18], they usually use the hid-
den state to record the important temporal information. For the frame reconstruction
part, residual blocks [10] and attention mechanism [39] are widely used to improve the
performance. And recent transformer-based methods [29,28] also have shown attractive
in image/video restoration.
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2.3 Efficient Super-Resolution

Although most CNN-based approaches can obtain remarkable results in video super-
resolution, their performance gains are often up to the network capacities [12,26]. It
means that they usually require huge memories and computational resources, which
makes it difficult to apply these state-of-the-art models on real-world smartphones that
have constrained resources and inference times. Thus the network that is deployed on
mobile devices should take care of the particularities of mobile NPUs and DSPs [12,14].
To deal with it, AI Benchmark application [13,15] is designed to allow researchers to
run neural networks on the mobile AI acceleration hardware. Based on the AI Bench-
mark application, Mobile AI 2021 [12] and Mobile AI & AIM 2022 Real-Time Video
Super-Resolution Challenge is held to promote the development of real-time mobile
VSR networks. In this paper, we’d like to follow the setting of these challenges and
design an efficient yet mobile-compatible network for smartphones.

3 Method

In this section, we introduce basic concepts of video super-resolution and provide
a detailed description of the main techniques and strategies of the proposed SWRN for
efficient video super-resolution.

3.1 Sliding-Window Recurrent Network

The core idea of our method is to grasp and aggregate complementary information
from neighbouring frames to improve the performance of video reconstruction. As il-
lustrated in Figure 2, given the low-resolution frame sequence {xi}Ni=1, xi ∈ Rh×w×c,
at each time step t, our network accepts three basic inputs (including previous frame
xi−1, current frame xi and future video frame xi+1) and output a high-quality frame
yi, which seems like a sliding window multi-frame super-resolution algorithm [40,34],
given by

yi = f(xi−1, xi, xi+1; θ), (1)

where f is the VSR network and θ represents its learnable parameters. Inspired by [18],
we take the advantage of recurrent hidden states to preserve previous and future infor-
mation. Specifically, the initial hidden states (forward and backward) are set to 0 and
will be updated when the window slides to the next frames. Then we can reformulate
Equation (1) as follows:

yi, (h
+
i+1, h

−
i+1) = f(xi−1, xi, xi+1, h

+
i , h

−
i ; θ), (2)

where h+
i and h−

i are i-th frame’s forward hidden state and backward hidden state, re-
spectively. Note here previous frame xt−1, current frame xt and forward hidden state
are concatenated as a forward group, then future frame xt+1, current frame xt and
backward hidden state compose the backward group. Deep features for each group are
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Fig. 2. Overview architecture of the proposed Sliding Window Recurrent Network. The for-
ward and backward hidden states are recurrently updated and concatenated with neighboring
two frames to provide extra information to reconstruct HR images.

separately extracted and concatenated to aggregate multi-frame information to recon-
struct the HR frame as:

fea+i = f1(concat(xi−1, xi)), (3)

fea−i = f2(concat(xi+1, xi)), (4)

outputi = f3(concat(fea
+
i , fea

−
i )), (5)

where f1 and f2 are the NN extractors that learn to obtain forward and backward fea-
tures, respectively. Then f3 is the aggregation function that merges all information to
get final upscaled frames. Meanwhile, the extracted features of forward and backward
groups will update the corresponding forward and backward hidden states by using two
simple convolution layers. Then these hidden states can be used for the next frames.

3.2 Architecture & Loss

In training, we use the robust L1 Charbonnier loss [23] to achieve high-quality video
reconstruction, which can be formulated as follows:

Lcb =

N∑
i=1

√
(f(xi−1, xi, xi+1, h

+
i , h

−
i )− yi)2 + ϵ2, (6)

where N is the number of training samples, and ϵ is fixed to 1× 10−6.
There are totally of 14 convolution layers as shown in Figure 2. To save the infer-

ence time on the mobile device, all layers of our network only consist of a single 3× 3
convolution layer with the ReLU activation function. The number of channels for all
convolution layers is set to 16. And as described in Section 3.1, three additional concate-
nation layers are used to combine information of frames and hidden states. Moreover,
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Method #Params CPU GPU delegate PSNR

FSRCNN [21] 25K 420ms 86ms 26.75
Mobile RRN [18] 37K 803ms 73ms 27.52

SWRN(ours) 43K 883ms 79ms 27.92

Table 1. The table shows the model runtime and PSNR on the Huawei Mate 10 Pro Smartphone.

Method #Params CPU GPU delegate PSNR

Baseline 24K 489ms 51ms 27.05
+ sliding window 34K 711ms 61ms 27.48
+ hidden states 43K 883ms 79ms 27.92

Table 2. Ablation of the sliding-window and hidden states on the Huawei Mate 10 Pro.

we take the bilinear upsampled current frame as a low frequency residual connection to
improve the restoration accuracy.

4 Experiment

4.1 Dataset

Our model is trained on the high-quality (720p) REDS [36] dataset, which is pro-
posed in the NTIRE 2019 Competition [36] and is widely used in recent VSR re-
searches. In the Mobile AI & AIM 2022 Real-Time Video Super-Resolution Chal-
lenge [16], the REDS dataset contains 240 video clips for training, 30 video clips for
validation and 30 video clips for testing (each clip has 100 consecutive frames). All
low-resolution videos are produced by bicubic downsampling with a scale factor of 4.

4.2 Implementation Details

For training, the batch size is 16 and all training LR images are randomly cropped
to 64 × 64 patches. The total training iterations are set to 250000, and the number of
video frames in the training phase is set to 10 and changes to 100 in the testing phase.
We use Adam [22] optimizer with an initial learning rate of 1 × 10−3, and decrease it
by half every 50000 iterations. Our network is implemented using TensorFlow2.6 and
Keras framework with a single Titan Xp GPU.

4.3 Experimental Result

To evaluate the proposed method on Video Super-Resolution, we compare SWRN
with FSRCNN [21] and mobile RRN [18]. The former is a pioneer lightweight CNN-
based network and consists of 7 convolution layers (two 1×1 layers for feature shrink-
ing and expanding) and a transpose convolution layer for upscaling. The latter is a lite
version of Revisiting Temporal Modeling (RRN) which is a recurrent network for video
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Fig. 3. Visual comparison of the video sequence 002 from the 1st frame to 60th frame.

Method #Params CPU GPU delegate PSNR

Channel-8 13K 548ms 45ms 26.68
Channel-16 43K 883ms 79ms 27.92
Channel-32 156K 2209ms 232ms 28.24

Table 3. Analysis of the impact of number of channels on the Huawei Mate 10 Pro.

super-resolution to run on mobile. Both our SWRN and FSRCNN are quantized with
INT8 mode. We use the Peak Signal-to-Noise Ratio (PSNR) as the evaluation metric,
and we will also consider the number of parameters and runtime on different mobile
accelerators.

The inference times and quantitative results are reported in Table 1. One can see
that although the proposed SWRN has more parameters and performs slower on the
CPU device, SWRN is more compatible with the mobile TFLite GPU delegate accel-
erator and has lower latency than FSRCNN. In addition, our method achieves a higher
performance in terms of PSNR, which surpass FSRCNN by 1.2dB and surpass mobile
RNN by 0.4dB. The qualitative results are illustrated in Figure 3 and Figure 4. One
can seen that video sequences produced by our method are much sharper and clear, and
are visually pleasant. The result demonstrates our method satisfies the realistic runtime
requirement while preserving a high PSNR performance.
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Fig. 4. Visual comparison of the video sequence 008 from the 1st frame to 60th frame.

4.4 Ablation Study

In this section, We conduct an ablation study to analyze the impact of the main com-
ponents of the proposed SWRN framework: sliding-window strategy and (forward and
backward) hidden states. For a fair comparison, we use a plain network as our base-
line method that only receives the current frame and output a super-resolved image.
Moreover, the baseline model uses 3×3 convolution layers with the ReLU activation
function, and the number of channels is the same as SWRN. As shown in Table 2, al-
though the baseline model has fewer parameters and requires lower runtime, it can only
achieve 27.05dB in terms of PSNR. By adding the sliding window strategy and hidden
states, our method increases the PSNR by nearly 0.9dB, which further demonstrates the
superiority of the proposed method. In addition, we also provide the analysis of the im-
pact of the number of channels in Table 3. As we see, although the setting of 8 channels
and 32 channels can achieve faster inference time and PSNR performance respectively,
the 16-channel setting is more balance in runtime and fidelity metrics.

5 Conclusion

In this paper, we propose a Sliding Window based Recurrent Network (SWRN)
which can be real-time inference on mobile devices while still achieving a superior
performance. The basic strategies incorporated are sliding-window and recurrent hid-
den states. To improve the inference time on smartphones, all layers in our network only
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contain 3×3 convolution and ReLU activation function. Our method is evaluated on the
REDS dataset with a scale factor of 4. The results shows our method is well compatible
with mobile TFLite GPU delegate and can run faster than FSRCNN while preserving a
high PSNR performance.
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