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Abstract. In this paper, we tackle the problem of monocular bokeh
synthesis, where we attempt to render a shallow depth of field image from
a single all-in-focus image. Unlike in DSLR cameras, this effect can not
be captured directly in mobile cameras due to the physical constraints of
the mobile aperture. We thus propose a network-based approach that is
capable of rendering realistic monocular bokeh from single image inputs.
To do this, we introduce three new edge-aware Bokeh Losses based on
a predicted monocular depth map, that sharpens the foreground edges
while blurring the background. This model is then finetuned using an
adversarial loss to generate a realistic Bokeh effect. Experimental results
show that our approach is capable of generating a pleasing, natural Bokeh
effect with sharp edges while handling complicated scenes.

Keywords: Bokeh Rendering · Generative Models · Depth estimation ·
Edge Refinement · Image Translation

1 Introduction

The Bokeh effect is a highly desirable aesthetic effect in photography used to
make the subject stand out by blurring away the out-of-focus parts of the image.
This effect can be achieved naturally in Single-lens Reflex (SLR) cameras by
taking an image with a wide aperture lens and large focal length, producing an
image with a shallow depth of field (DoF). However, such shallow DoF effect
can not be achieved naturally on mobile devices, due to the short focal lengths,
small sensor and aperture sizes of mobile camera modules. As a result, the Bokeh
effect can only be rendered synthetically on mobile devices, for example with
stereo [23] or dual-pixel hardware [33] that provides a disparity map. This task is
further constrained when limited to a single, monocular camera which is common
particularly on mid to lower-end mobile devices.

In this paper, we propose a multi-stage, network-based approach that lever-
ages both edge refinement, adversarial training and bokeh appearance loss to
render a realistic bokeh effect from a single wide-DoF image. As Figure 2 shows,
our backbone bokeh generator network takes in a single image and its dispar-
ity map and outputs the rendered bokeh. We employ a depth estimation net-
work to produce a monocular disparity map which we use as a blurring cue for
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our backbone bokeh network. We also utilize this disparity map as a grey-scale
saliency mask, which is used to sharpen the foreground edges while smoothing
the background through three new loss functions. These losses create a strong,
yet slightly rough bokeh effect which is then refined adversarially through a
dual-scale PatchGAN [16] discriminator that we train jointly with the model
backbone in a process similar to [28].

(a) Original Image (b) Disparity Map (c) Bokeh Output

Fig. 1: Given a single wide depth-of-field image, our model estimates the
corresponding disparity map using a Depth Prediction Transformer (DPT).

This map is then concatenated with the input image and then run through the
trained NAFNet model to produce a shallow depth-of-field image. Best viewed

from computer screen.

In summary, our main contributions are:

(1) Three new loss functions that use a greyscale saliency mask for edge-aware
bokeh rendering from monocular images taken with wide depth-of-field

(2) A multi-stage training scheme that adversarially refines the output produced
using the three aforementioned losses

(3) A computationally efficient blurring backbone, successfully applying the
NAFNet architecture to the task of Bokeh

2 Related Work

2.1 Computational Bokeh

A variety of different methods have been explored for synthetic Bokeh render-
ing in recent years. Classical rendering methods take into account the physics
of the image scene, before combining various different modules to construct an
automatic Bokeh render. Earlier methods, such as [31,32,43] were limited to im-
ages in portrait mode. These methods relied on the segmentation of the image
foreground from the background, before applying a filter on the background to
achieve the Bokeh effect. Another class of methods, such as in [3,10,27,34,37,40],
blurred the image by making use of predicted depth maps, either through depth
estimates from monocular depth module [22,29,30], stereo vision [2,17], or through
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a moving camera using the parallax effect [5,39]. The input image is then de-
composed to multiple layers conditioned on the estimated depth map, and then
rendered back to front to prevent bleeding into the foreground. As for the actual
blur, many different methods have been adopted based on imaging physics in-
cluding convolutional filters such as in [31], or through physics-based scattering
methods such as in [27,33].

Recent advancements in Bokeh rendering have also seen the adoption of
neural-network based rendering methods to avoid boundary artifacts. For exam-
ple, [25,38] train a neural network to predict Bokeh effects from perfect (syn-
thetic) depth maps. Real perfect depth maps are hard to come by, however, so
other end-to-end network models have been introduced, such as in [6,12,14,28].
These models all use some sort of encoder-decoder structure to process the im-
age at multiples scales and use approaches such as monocular depth estimation
or image segmentation to improve bokeh results. Recent work by Peng et al.
[26] has also suggested combining the classical and network-based approaches to
improve controllability in the Bokeh process.

2.2 Monocular Depth Estimation

Many different approaches have been proposed for monocular depth estimation.
Earlier work by Eigen et al. [7] proposed a multi-scale DNN based on AlexNet
to generate a depth estimate. This method, however, suffered a number of key
dataset limitations, namely a small number of training samples and a lack of
variety.

Li et al. [22] proposed a new depth data collection system that allowed for
better generalization of depth models. This was followed by a breakthrough by
Ranftl et al. [30], who proposed a method for mixing multiple depth datasets
even with incomplete annotations. Both of these methods used a convolutional
architectures to create the depth prediction. Ranftl et al. [29] then showed that
a transformer backbone could be used to further improve the depth prediction
quality.

2.3 Generative Models

Generative Models [8] have been shown to generate realistic images while pre-
serving fine texture details. These models, however, have been shown to often
suffer from the problem of Modal Collapse. To remedy this, algorithms such as
WGAN [1] and WGAN-GP [9] have been proposed to enhance training stability.

Recent work has shown the success of GAN-based architectures on image
translation tasks such as in image deblurring [18], single-image super resolution
[19,35,36], semantic segmentation [24], and so on. Conditional Adversarial Net-
works [16], in particular, have shown to generalize to arbitrary image translation
tasks. Recently, this framework has also been adopted to the task of monocular
bokeh synthesis [28] in refining the bokeh rendering quality.
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3 Proposed Method

Rendering an accurate bokeh effect from an all-in-focus image is a complicated
task that requires processing the image at multiple scales. For a network to learn
an accurate blur effect, it must (a) learn how to accurately segment out the in-
focus object regions by processing the image at a global scale and (b) learn an
accurate blur on the out-of-focus regions by processing the image on a local
scale. When the image is poorly segmented (a), however, blur in the out-of-focus
regions (b) can often bleed into the foreground, creating an unnatural bokeh
effect at boundary edges. Tackling both tasks (a) and (b) in a single end-to-end
neural network is thus extremely challenging without additional cues that aid in
the individual tasks.

We add a series of modules that aid in both tasks during training and infer-
ence. As shown in Figure 2, the major components of our network are:

i. A Dense Prediction Transformer (DPT) [29] based depth estimation module
that estimate the relative depth of the scene.

ii. A Nonlinear Activation Free Network (NAFNet) based generator module [4]
that takes in the all-in-focus image and depth map of the scene, and outputs
the depth-aware bokeh image.

iii. A dual-receptive field patch-GAN discriminator similar to the one proposed
in [28].

iv. A bokeh model based loss function that encourages sharp content in the
in-focus area and smooth content in the background area.

The bokeh output is generated by first running the input image through the
depth prediction module to produce a depth map D. The output D is then
concatenated with the original input image I and then run through the NAFNet
generator G to produce a shallow depth-of-field output G(I⊙D).

3.1 Backbone Network

Given the translational nature of the Bokeh task, we adopt a backbone architec-
ture that performs well on such problems. Various backbone networks have been
proposed recently for image restoration tasks, such as [4,41]. In particular, the
NAFNet architecture [4] has been shown to maintain a relatively small memory
footprint while achieving exceptional output performance on such tasks. This
is achieved by replacing high complexity non-linear operators such as Softmax,
GELU, and Sigmoid with simple multiplications, thereby reducing the complex-
ity in computationally expensive attention estimation.

Due to the similar nature of the prediction task, we therefore use the NAFNet
architecture for our Bokeh backbone. Experimental results have shown (see sec-
tion 4.3) that on the scale necessary for mobile devices (around width 12 or less),
that the difference in NAFNet width does not result in that large of a difference
in the quality of the output images. We thus use a smaller NAFNet model with
a width of 8. We empirically set the number of NAFblocks for the encoder to be
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Fig. 2: Bokeh-Loss GAN pipeline: We first generate the depth of the scene from
the all-sharp input, then combine the depth map and the input image, and feed
them to the bokeh generator network to produce the bokeh image. Besides

conventional L1 and SSIM losses, we introduce a depth-weighted bokeh loss, in
addition to a dual-scale discriminator loss.

[2,2,2,20] and the number of NAFBlocks for the decoder. We also concatenate 2
NAF blocks in the middle for a total of 36 NAFBlocks in the network. The total
number of parameters comes to around 1.047M parameters.

3.2 Depth Estimation Network

Our model uses a depth map estimate during both training and inference stages
as a blur and edge cue (see section 3.4). The depth map of the scenes are esti-
mated from a single monocular image by a dense prediction transformer (DPT)
[29]. We use the depth prediction model that was pre-trained on a large-scale
mixed RGB-to-depth “MIX 5” datasets [30]. We find empirically that such net-
works can generate realistic depth maps with smooth boundaries and fine-grain
details at object boundaries.

Fig. 3: Comparison of Input images (left) with Depth Maps generated with
MegaDepth (center) and DPT (right) for two EBB inputs
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The generated depth map provides extra blurring clues to assist the back-
bone generator in creating better bokeh blur. Particularly, we found that accu-
rate depth boundaries help to generate noticeably more natural looking bokeh
boundaries than in previous methods.

3.3 Discriminator Loss

To improve perceptual quality of the final Bokeh output, we utilize a discrimi-
nator loss to ensure the perceived visual quality of the generated bokeh images.
Similar to [28], we use a multi-receptive-field Patch-GAN discriminator [16] as
part of our loss function. The model takes two patch-GAN discriminators, one

Fig. 4: Multi Receptive Discriminator

of depth 3 and one of depth 5 and averages the adversarial losses from both dis-
criminators into one loss. We use a λ value of 1 for the WGAN gradient penalty
for the discriminator loss.

3.4 Bokeh Loss

In addition to the conventional L1, SSIM, and discriminator loss functions, we
propose a bokeh-specific loss. The core idea is that, for a natural bokeh, the
in-focus area should be sharp and the out-of-focus area should be blurred. Using
the depth map we generate in the DPT module as a greyscale saliency mask M,
we introduce the following loss functions:

First, we introduce a Foreground Edge Loss that tries to maximize the inten-
sity of the foreground edges. To do this, we first multiply our input image Î with
the greyscale saliency mask M to obtain the in-focus regions of the image. We
compute the edge map (gradients) using Sobel filters in the 0◦, 90◦ and ±45◦

directions which provides richer structure information, we then sum up the L1-
norms of the gradients, before normalizing. We then take the negative of this
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sum to maximize the foreground edge intensity rather than minimize it. The loss
is computed as follows:

Lforeedge(Î,M) = −

∑
z∈{0◦,±45,◦90◦}

∥∥∥Sz(Î ·M)
∥∥∥
1

hÎ · wÎ

(1)

where Sz is the sobel convolution operator in the z direction to maximize the
intensities of the foreground.

While we wish to strengthen the intensity of the edges however, we also want
to create edges that are of a similar intensity to that of the output image. To
achieve this, we add an Edge Difference Loss:

Ledgediff (I, Î,M) = ||Lforeedge(Î ·M)| − |Lforeedge(I ·M)|| (2)

that attempts to minimize the difference in foreground edge strength between
the input and the output image.

Finally, we add a Background Blur Loss Lbackblur that encourages a smoother
blur for the background. We first multiply the input image Î with the inverse of
the greyscale saliency mask M to obtain the out-of-focus regions. We then try
to minimize the total variation of the scene:

Lbackblur(Î,M) =
1

hÎ · wÎ

TV (Î · (1−M)) (3)

where the added factor is used to normalize the loss.
In summary, we add three new loss functions:

– A Foreground Edge Loss that encourages sharper edges seperating the fore-
ground and the background

– An Edge Difference Loss that encourages similar edge intensities for the
input and output image

– A Background Blur Loss that encourages a smoother background with less
noise.

Qualitative results have shown that these losses induce sharp, albeit slightly
distorted edges, along with a smooth background, which when combined with
the adversarial loss, appears to increase the overall MOS of the output (see
section 4.3).

3.5 Training Setup

In order to get the sharp edges and smooth background induced by the Bokeh
losses while maintaining a natural blur and avoiding edge artifacts, we adopt a
dual-stage strategy for model training.

In the first, “pretraining” stage, we use a weighted sum of L1 loss, SSIM loss,
and our three aforementioned “Bokeh” losses, using the depth map as a greyscale
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mask to separate the foreground from the background. The final loss-function
for this stage was given by

Lpretrain = 0.5× L1 + 0.05× LSSIM + 0.005× Ledgediff (4)

+ 0.1× Lbackblur + 0.005× Lforeedge

where the final weights were determined experimentally. This pretraining stage
then creates a rough bokeh effect with sharp, albeit slightly distorted edges and
a smooth background.

In the second stage, the model is finetuned with a weighted sum of L1 loss,
SSIM loss, VGG perceptual loss, and an adversarial loss from the dual-scale
PatchGAN discriminator that is trained jointly in the second stage using the
WGGAN-GP method [9]. This second stage refines the distorted edges and the
background to generate a realistic bokeh effect. The refinement loss thus took
the form

Lrefinement = 0.5× L1 + 0.1× LV GG + 0.05× LSSIM + Ladv (5)

where the weights were again determined experimentally. The adversarial loss
Ladv is weighted the highest with a coefficient of 1 in order to allow the discrim-
inator to play the leading role in the refining phase.

4 Experiments

In this section, we introduce our experimental setting and compare both the
qualitative and quantitative performance of our solution to current state-of-the-
art architectures that were designed for this problem, along with other models
that were submitted as part of the AIM 2022 Real-Time Rendering Realistic
Bokeh challenge. We also conduct a series of ablation studies to analyze the
different effects of various factors.

4.1 Experimental Setup

Technical Specifications Our method uses standard Pytorch packages and
the Pytorch Lightning framework for training. All models were trained on 8 32G
Nvidia V100 GPUs, 383G RAM, and 40 CPUs.

In training, we cropped all images to 1024 × 1024 sized patches as inputs.
The final models were all trained with batch size 2, with 60 epochs for the first
stage and 60 epochs for the second stage. For optimization, we use the Adam
optimizer with learning rate 1e− 4 for both the backbone and the discrminator,
with (β1, β2) = (0, 0.9).

Dataset The Everything is Better with Bokeh! (EBB!) dataset [12] was released
as part of the AIM 2022 Real-Time Rendering Realistic Bokeh Challenge. The
dataset consists of 4696 shallow/wide depth-of-field image pairs for training and
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200 images for validation and testing respectively. The image pairs were shot
with a Cannon 7D DSLR camera taken with a narrow aperture (f/16) for the
all-in-focus input image and a wide aperture (f/1.8) for the Bokeh ground truth
image. The photos are taken in a wide variety of scenes, all in automatic mode,
and are aligned using SIFT keypoint matching and the RANSAC method as
in [11], before being cropped to a common region. Despite this, we found that
many of the images suffered from either poor alignment or inconsistent lighting.
We thus manually pruned the training dataset down to 4425 images, to help the
model learn a better bokeh effect. We then took out 200 images for validation
(which we call Val200 ) before submitting our final results.

4.2 Quantitative and Qualitative Evaluation

Quantitative Evaluation Our model was submitted to the AIM 2022 Real-
Time Rendering Realistic Bokeh Challenge [15], where the goal is to achieve
shallow depth-of-field with the best perceptual quality compared to the ground
truth .

Our solution was submitted only to Track 2 (unconstrained time) due to
flex delegates that were used in the conversion from Pytorch to TFLite which
makes our model unable to run on a mobile GPU. Our model achieved the best
Learned Perceptual Image Patch Similarity (LPIPS) [42] score (lower is better),
as shown in Table 1 which shows the performance of our model. Our model
also yielded high scores on fidelity metrics, achieving the second best PSNR
and SSIM scores. All models were run on a Kirin 9000 5G Processor, with the
corresponding runtime being checked through the AI Benchmark [13] app.

Team PSNR ↑ SSIM ↑ LPIPS ↓ Avg. Run-
time(s)

xiaokaoji 22.76 0.8652 0.2693 0.125

MinsuKwon 22.89 0.8754 0.2464 1.637

hxin 20.08 0.7209 0.4349 1.346

sensebrain 22.81 0.8653 0.2207 12.879

Table 1: Quantitative results of our method from the Unconstrained CPU track
of AIM 2020 Rendering Realistic Bokeh Challenge.

Note that the runtime shown in the table above is the runtime of the TFLite
model. The runtime of the pytorch model on CPU is 0.95s.

Qualitative Evaluation In this section, we provide sample visual results of our
model compared to the results of the current state-of-the-art solutions trained
specifically for Bokeh rendering [12,28]. As shown in Figure 5, our model has a
blur quality that is similarly natural compared to BGGAN [28], while performing
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better in quality than PyNET. On the other hand, the edges are sharper and
more prominent in our model compared to other models, while the salient regions
also remain sharper.

Fig. 5: Results of our model on the EBB test dataset. From left to right: input
image, results of PyNET, results of BGGAN, our results. Our model is able to
attain a strong blur while maintaing a sharp foreground. Best viewed from

computer screen.
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4.3 Ablation Studies

As mentioned before, our model consists of various different components and is
trained in a multi-stage manner with a combination of different losses and cues.
In this section, we analyze the effects of different parts of the model through a
comparison of the outputs on the Val200 validation set.

Blurring Cues One of the main aspects of our network is the addition of a
depth prediction module in DPT to help guide the blur. This is done through
a concatenation of the original input image I with the depth map generated by
running the input image through a depth estimation module D, before running
through a backbone.

Other blur cues, such as a binary saliency mask or a defocus map can also
be used, however, to help guide the blur. We thus tried concatenating various
different alternatives to the depth map we generated using the DPT module,
including a binary saliency mask generated through the TRACER algorithm
[21] and a defocus map generated by DMENet [20].

As we are only trying to compare the concatenated input map (eg. depth
map, saliency map, defocus map) as a blurring clue and not a saliency mask
for sharpening during the Bokeh Loss (see 4.3), we only compare the result of
concatenating the input channel and running the NAFNET/GAN setup without
any bokeh losses.

Blur Cue PSNR SSIM MOS

Depth Map (DPT) 23.70 0.867 4.01

Saliency Mask
(TRACER)

23.26 0.863 3.72

Defocus Map
(DMENet)

22.00 0.800 3.30

Table 2: Quantitative and qualitative results of GAN-based training with
various different blur cues on the Val200 dataset.

As shown in Table 2, we found that the depth map performed the best in
terms of blur cues across all metrics. This was largely due to the quality of
the depth map that was geenrated, compared to the saliency and defocus maps
that were generated through the TRACER [21] and DMENet [20] algorithms
respectively. We thus chose the depth map as our main blurring cue.

In particular, we found that the bokeh images generated using the depth
map had not only the best blur quality, but also the most natural foreground
boundaries. This motivated us to use the depth map for the bokeh loss as well.

Bokeh Loss To test the effectiveness of the Bokeh losses, we ran an ablation
study comparing results of the model with and without them. All models here
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use the depth map as a blur cue. The second model uses the depth map also as
a greyscale mask for the bokeh loss.

Model PSNR SSIM MOS

NAFNet8 (GAN/No
Bokeh Loss)

23.70 0.867 4.01

NAFNet8
(GAN/Bokeh Loss
during pretraining)

23.475 0.868 4.23

Table 3: Results of different training strategies for the Bokeh Loss

As shown in table 3, the addition of the Bokeh loss provides a substantial
increase in the MOS, with the edges being noticeably sharper and the background
smoother.

Model Backbone To test the effectiveness of our model backbone, we tested
the effect of switching the 8-layer NAFNet backbone with two cascading U-Nets
(GlassNet) similar to in [28]. Both models were trained with the full pipeline,
using the Bokeh losses in the pretraining stage (as described in section 3) and
the dual-scale GAN in the refinement stage.

Backbone No. of
Parameters

PSNR SSIM MOS

GlassNet 10.353M 22.956 0.875 4.25

8-Layer NAFNet 1.047M 23.475 0.868 4.23

Table 4: Results of different backbones for the pipeline

We found that the 8-layer NAFNet performed almost identically similar to
the GlassNet proposed in [28] despite having only around a tenth of the parame-
ters. This justified our choice of switching the model backbone for the NAFNet.

NAFNet Width As discussed in section 3.1, the NAFNet contains a variable
number of width and number of enclosing/decoding/middle blocks. The main
two factors in determining model complexity are the width of the NAFBlocks
and the number of NAFBlocks. As discussed in [4], an increase in the number of
blocks has shown to not increase latency greatly while greatly improving model
performance on the original image restoration task. On the other hand, due to
memory constraints of mobile devices, the bottleneck in the model prediction is
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instead the width of the NAFBlocks, due to the amount of processing needed
for wider blocks.

We thus chose to reduce the width of the individual NAFBlocks from the
original NAFBlock width of 32. This reduction of width, however, must be bal-
anced with our desire to process the input images at multiple (global and local)
scales. Based on these considerations, we ran an ablation study to find a suitable
balance between model width and computational complexity.

NAFBlock
Width

No. of
Parameters

PSNR SSIM MOS

4 277K 23.603 0.850 3.57

8 1.047M 23.475 0.868 4.23

12 2.311M 23.298 0.866 4.31

Table 5: Quantitative and qualitative results of 36-block NAFNet with various
different widths

Due to model size considerations, we found that the backbone needed to have
a width of 12 or lower to fit on a mobile device. As shown in table 5, there is not
a significant difference in MOS for widths above 8 layers, while the parameter
count increases greatly, unlike in the shift from a width of 4 to 8 (where there is
a big increase in MOS). We thus chose a final NAFBlock width of 8.

5 Conclusions

We have presented a new method for monocular bokeh synthesis to generate
natural shallow depth-of-field images. By using a monocular depth estimate as
both a blur cue and a greyscale saliency mask for three new “bokeh-specific”
loss functions, our model was able to produce images with sharp foreground
edges and a smooth background. Coupled with a multi-receptive field conditional
adversarial network [16] as part of a dual-stage training process, our model was
able to achieve a sharp, yet natural bokeh render. Extensive ablations are then
presented to validate the effect of each of the individual modules. In the future,
we can explore adding radiance modules to help render the bokeh effect in a
more physics-based manner, along with using a smaller depth-prediction module
to decrease the inference time on TFLite.

A Pytorch to TFLite Conversion

Our model was converted from Pytorch to TFLite through a two-part process.
First, we converted the trained NAFNet model using the Pytorch → Onnx →
Tensorflow pipeline, and then combined a pretrained DPT net (which was pre-
written in Tensorflow) in tensorflow with our saved Tensorflow NAFNet module.
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We then ran a conversion from Tensorflow → TFLite by first saving the resulting
Tensorflow Module as a frozen graph and then exporting it to TFLite using the
version 2 converter.
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