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Abstract. Compressed Image Super-resolution has achieved great at-
tention in recent years, where images are degraded with compression arti-
facts and low-resolution artifacts. Since the complex hybrid distortions,
it is hard to restore the distorted image with the simple cooperation
of super-resolution and compression artifacts removing. In this paper,
we take a step forward to propose the Hierarchical Swin Transformer
(HST) network to restore the low-resolution compressed image, which
jointly captures the hierarchical feature representations and enhances
each-scale representation with Swin transformer, respectively. Moreover,
we find that the pretraining with Super-resolution (SR) task is vital
in compressed image super-resolution. To explore the effects of differ-
ent SR pretraining, we take the commonly-used SR tasks (e.g., bicubic
and different real super-resolution simulations) as our pretraining tasks,
and reveal that SR plays an irreplaceable role in the compressed im-
age super-resolution. With the cooperation of HST and pre-training, our
HST achieves the fifth place in AIM 2022 challenge on the low-quality
compressed image super-resolution track, with the PSNR of 23.51dB.
Extensive experiments and ablation studies have validated the effective-
ness of our proposed methods. The code and models are available at
https://github.com/USTC-IMCL/HST-for-Compressed-Image-SR.

Keywords: Hierarchical network, Transformer, Compressed image super-
resolution, Pretraining, AIM 2022 challenge

1 Introduction

Image super-resolution (SR) has achieved a quantum leap with the development
of deep neural networks, which aims to restore the high-resolution (HR) im-
ages from their low-resolution counterparts. Existing SR can be roughly divided
into three categories, simulated SR [12,30,19,57,47] (e.g., bicubic downsampling),
real-world SR [5,17,50,46,55,24,49] and blind SR [2,14,29,45,36], respectively. In
particular, real-world and blind SR are greatly developed in recent years, of
which the degradations are more consistent with unknown real-world distor-
tions. However, not all images suffer from real-world degradation. In most cases,

⋆ corresponding author

ar
X

iv
:2

20
8.

09
88

5v
2 

 [
cs

.C
V

] 
 2

 D
ec

 2
02

2

https://github.com/USTC-IMCL/HST-for-Compressed-Image-SR


2 B. Li et al.

the images are susceptible to various compression artifacts together with low-
resolution, since the image compression [52,25,40,41,4], transmission and storage.
This hybrid degradation poses a challenging image process task, i.e., compressed
image super-resolution.

As shown in Fig. 1, unlike general image SR and compression artifacts, the
degradations of compressed low-resolution images are more severe, which com-
poses of blurring, block artifacts, and noise, etc. Existing methods on image
SR [30,57,12,47] and compression artifacts removing [11,43,6,56,15] cannot work
well on such brand-new degradation, since the large distribution shift. As the pi-
oneering works, a series of works [58,27,51] began to investigate the compressed
video super-resolution. To further promote the development of compressed im-
age/video super-resolution, AIM2022 [53] firstly holds the significant competition
on compressed image super-resolution, where images are firstly down-sampled
with the scale 1/4, and then, are compressed with JPEG using an extreme low-
quality parameter Q = 10. A näıve and intuitive strategy to deal with it is
exploiting a well-trained SR network and JPEG artifacts removing network to
restore the distorted images in a sequential manner. However, the above strategy
always fails since the distribution shift between hybrid distortions [23,32] and
single distortion. Compressed image super-resolution requires that the restora-
tion network have the strong representation capability to learn structure and
texture jointly.

In this paper, we present Hierarchical Swin Transformer, namely HST, to
tackle the compressed image super-resolution problem. Specifically, previous
works [26,56] have shown superior advantages of hierarchical architecture on
compression artifacts removing due to their great representation ability. Mean-
while, the variants of the transformer have been explored for image processing
and quality assessment [8,31,35], e.g., SwinIR [28], which achieve remarkable
performance compared with their CNN counterparts, since their capability of
global contextual representation. Inspired by these, we present the Hierarchi-
cal Swin Transformer (HST) by incorporating the individual advantage of the
above two architectures. In particular, our HST consists of four modules: hierar-
chical feature extraction module, feature enhancement module, fusion module,
and HR reconstruction module. The hierarchical feature extraction module uses
multiple convolution layers with different strides to obtain hierarchical feature
maps at different scales. Then, the residual swin transformer block (RSTB) from
SwinIR [28] is used for the feature enhancement in each hierarchical branch. Af-
ter getting the enhanced hierarchical features, we fuse them by concatenating
the upsampling low-scale feature and high-scale feature, and then, input them
into a convolution layer to obtain the fused feature. Lastly, we can get the super-
resolved HR image with the HR reconstruction module, which is composed of
convolution layers and pixelshuffle layers.

We also investigate the compressed image super-resolution from the perspec-
tive of pretraining. We observe that the pretraining with image super-resolution
plays a vital role in the compressed image SR. Specifically, we systematically ex-
plore the effects of different image super-resolution tasks, including traditional
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1/4 bicubic

Q = 10

1/4 bicubic

w/ Q = 10

Fig. 1: A comparison between different degradations. The left image is the high-
resolution reference image. The images from the top right to bottom right are
1/4 bicubic downsampling, JPEG compression with a quality factor of 10, and
the combination of the above two distortions, respectively. Note that the bottom
right image has the most severe degradation, thus requiring a stronger represen-
tation ability for the network to remove distortion.

SR, i.e., bicubic downsampling, and two RealSR simulation methods from BSR-
GAN [55] and DRTL [22]. Extensive experiments reveal that the pretraining
with the RealSR simulation from DRTL [22] is better for compressed image SR.

The contributions of this paper can be summarized as:

1. We present the Hierarchical Swin Transformer (HST) for compressed image
super-resolution, which incorporating the advantages of strong representa-
tion ability and global information utilization.

2. We investigate compressed image super-resolution from the pretraining per-
spective. Based on the observation, we find one proper pretraining scheme
for compressed image super-resolution.

3. Extensive experiment results show that our HST achieve a remarkable result
on compressed image super-resolution task under heavy distortion (compres-
sion quality Q = 10 combined with 1/4 downsampling).
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2 Related Works

2.1 Single Image Super-Resolution

Single Image Super-resolution (SISR) has been developed expeditiously with the
advances of deep neural networks. SRCNN [12], as the pioneering work, firstly
introduces the CNN to SISR and learns the network by minimizing the mean
square error (MSE) between the generated images and their corresponding high-
resolution (HR) images. Then, a series of works for SISR [30,57] are proposed
by designing or modulating the network architecture. EDSR [30] revises the
conventional residual module by removing the BatchNorm layers. RCAN [57]
adds channel attention to the residual blocks, which focus on more informative
channels. And SAN [10] introduces the second-order channel attention to utilize
the second-order feature statistics for more discriminative representations.

However, the above works exhibit poor capability for subjective quality im-
proving. To tackle the above challenge, SRGAN [21] firstly introduces Genera-
tive Adversarial Network (GAN) to SISR, and adopts the adversarial loss for
approximating the natural image manifold. As an improved version of SRGAN,
ESRGAN [47] exploits Relativistic average GAN [18] to enhance the discrimi-
nator and computes the VGG feature before the activation function to calculate
the perceptual loss. To further improve the discriminator, FSMR [20] comes up
with feature statistics mixing regularization, which encourages the discrimina-
tor’s prediction to remain invariant to the style of the input image.

Recently, real-world image super-resolution (RealSR) [5,17,50,55,46] and blind
image super-resolution [14,29,2,45] have been proposed to solve more severe and
unknown hybrid distortions existed in real-world low-resolution images. To tackle
unseen distortions (i.e., blind distortions), KernelGAN [2] train an internal-gan
to estimate the degradation kernel contains in low-resolution images. IKC [14]
ameliorates the estimation process into an iterative one, which can deal with
more complex blind distortions. Different from the aforementioned works that
predict the degradation kernel, RealSR directly trains networks on synthesized
real-world distorted image pairs, such as BSRGAN [55] and ESRGAN [47]. In
this paper, we focus on the compressed image super-resolution, which is more
significant and valuable in the real world.

2.2 Compression Artifacts Removal

Compression artifacts removal aims to remove the distortions caused by im-
age/video codecs. Early works of compression artifact removal mainly focus on
the design of manual filters in the DCT domain. Due to the success of CNN in
image denoising and image super-resolution, Yu et al. [11] propose ARCNN, the
first CNN-based method for compression artifacts removal. Svoboda et al. [43] in-
troduce residual learning to deepen the network under the assumption of “deeper
is better”. However, ARCNN and its follow-up works only process artifacts in
the pixel domain. DDCN [15], DMCNN [56] and D3 [48] utilize DCT domain
prior on the basis of pixel domain. Based on the network of extracting the dual
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Hierarchical Swin Transformer Compressed Image Super-resolution network
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Fig. 2: The architecture of proposed HST

domain knowledge, Fu et al. [13] use dilated convolution for multi-scale fea-
ture extraction and added convolutional sparse coding to make the model more
compact and explainable. Recently, there are a series of works that explore the
hierarchical structures for compression artifacts removal. Lu et al. [34] prove
that adding multi-scale priors to the image restoration network can effectively
eliminate compression artifacts. Inspired by Lu et al. [34], Li et.al add a non-
local attention module to fuse multi-scale features effectively and obtain the
post-processing network MSGDN [26] of VCC Intra coding. Based on the above
excellent works, we also introduce the hierarchical module to our compressed
image super-resolution network.

3 Method

In this section, we will explain our HST and clarify our pretraining strategy in
detail. As shown in Fig. 2, our HST is composed of four main components, respec-
tively as hierarchical feature extraction module (HFM), feature enhancement
module (FEM), fusion module (FM) and HR reconstruction module (HRM).

3.1 Hierarchical Feature Extraction

Previous works [9,39] have revealed that extracting hierarchical features at differ-
ent scales from images and processing them in a divide-and-conquer manner, can
provide the network a strong representation ability. And thus, it can deal with
more severe and complex image degradation effectively. To achieve a trade-off
between network parameters and performance, we choose a three-branches hier-
archical architecture as our backbone. More specifically, the input LR image is
gradually passed through three different convolution layers with different kernel
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sizes and strides, to extract the hierarchical representations with three scales.
Following the implementation in [39], we design upper branch convolution by
k7n60s1p3, where k, n, s, p stands for kernel size, number of channels, stride and
padding respectively. For other two branches, we use convolution k5n60s2p2
to obtain the middle-scale feature map, and convolution k3n60s2p1 to obtain
the low branch’s feature map from the aforementioned feature map. The whole
process can be formed as Eq. 1.

Fh = Convk7n60s1p3(Il)

Fm = Convk5n60s2p2(Il)

Fl = Convk3n60s2p1(Fm)

(1)

where Il ∈ RH×W×C is the compressed low resolution image and H, W , C refer
to its height, width and color channel, respectively. Fh, Fm, Fl represent the
features of three branches.

Through this process, we obtain the hierarchical features {Fh, Fm, Fl} at
different scales. Then, we will input them into the feature enhancement module
to process in a divide-and-conquer manner.

3.2 Feature Enhancement and Fusion

The feature enhancement module and feature fusion module are the important
components of HST. We will clarify them carefully in this section.

Feature enhancement module Different from previous hierarchical networks
[33,26,56,39] for image restoration and super-resolution, where convolutional
neural network (CNN) is used as the feature enhancement module for each
branch, we use swin transformer architecture as ours. As proved by [28], swin
transformer-based architecture can model long-range dependency enabled by the
shifted window mechanism. Therefore, this architecture is more suitable for dif-
ficult degradation removal tasks, e.g., compressed image super-resolution. More-
over, with the help of swin transformer, we can get better performance with less
parameters.

Specifically, we directly apply multiple residual swin transformer blocks (RSTB)
from [28], as our feature enhancement module. The architecture of RSTB is
shown in Fig. 3. Each RSTB is composed of several swin transformer layers
(STL), a convolution layer and a residual skip connection. This process can be
formulated as Eq. 2

F0 = Fin

Fi = STL(Fi−1), i = 1, 2, . . . ,K

Fout = Conv(FK) + F0

(2)
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Fig. 3: Network structure of residual swin transformer block (RSTB)

where Fin is the input feature of one STL layer, and STL(·) means each STL
layer inside RSTB, which can be formulated as Eq. 3

X = MSA(LN(X))

X = MLP(LN(X))
(3)

where MSA(·) stands for multi-head self-attention, MLP(·) stands for a multi-
layer perceptron with two fully-connected layers and GELU as activation, and
LN(·) stands for LayerNorm. Since STL is not our contribution and previous
works have already proved the effectiveness of this module, we directly utilize
the same architecture as is presented in [28].

Feature fusion module After getting the enhanced features F ∗
l from the low-

branch enhancement module, composed of severe RSTB blocks. We will integrate
it into the higher feature with the fusion module, which aims to bring the contex-
tual information from low-scale to high-scale. To demonstrate the fusion process
clearly, we take the fusion of the low-branch feature and the middle-branch fea-
ture as an example. As described in Eq. 4, the low-branch feature Fl is enhanced
to F ∗

l with low-branch feature enhancement module FEMl. Then we concate-
nate the super-resolved low-branch feature F ∗

l ↑2 and middle-branch feature Fm,
and exploit the convolution layer to fuse these two components. Finally, we can
obtain the enhanced middle-branch feature F ∗

m by passing the fused feature Fm

into the middle-branch enhancement module FEMm. It is worthy to notice that,
the up-sampling operation is implemented with Pixelshuffle [42], which can bring
more stable results. The fusion of middle branch and high-branch features are
implemented in the same way in Eq. 2.

F ∗
l = FEMl(Fl),

Fm = Conv(Fm c○ F ∗
l ↑2)

F ∗
m = FEMm(Fm)

(4)
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3.3 HR Reconstruction Module

Since the compressed image super-resolution in the competition requires the res-
olution of network output to be 4× higher than their input image, the HR recon-
struction module aims to produce the final three-channel RGB high-resolution
clean image with the enhanced high-branch feature F ∗

h .

As shown in Fig. 2, this part is composed of two sub-pixel convolution layers,
including two convolution layers and two PixelShuffle layers [42]. Following the
previous SR works [30,57,28], we utilize two sub-pixel convolution layers for the
4× upsampling. Finally, a convolution layer is used to generate the output HR
image.

3.4 Pretraining with SR

To further boost the capability of the network, We also explore one simple but
effective pertaining strategy for compressed image super-resolution. It is note-
worthy that pretraining with more relevant distortions can bring better knowl-
edge transfer. Particularly, we select three SR tasks as the pretraining schemes,
i.e., traditional SR, two RealSR simulation methods from BSRGAN [55] and
DRTL [22], and explore their effectiveness for compressed image super-resolution.
The relevant experimental analyses are shown in Sec. 4.3, which demonstrates
pretraining with RealSR simulations leads to promising results, especially with
the simulation in DRTL [22].

3.5 Loss Functions

In order to enable our HST to be competent for the task of compressed image
super-resolution, we first pretrain our network on the ×4 super-resolution task,
and then finetune it for compressed image super-resolution. For the ×4 super-
resolution pretraining, we optimize network parameters by minimizing the L1

pixel loss as:

L = ∥ISR − IHR∥1, (5)

where ISR is obtained by passing low-resolution images through the network, and
IHR is the corresponding ground-truth HR image. For compressed image super-
resolution, we optimize network parameters by minimizing the Charbonnier loss
[7].

L =

√
∥ISR − IHR∥2 + ϵ, (6)

where ϵ is set as default value 10−9.



HST 9

4 Experiments

4.1 Datasets

We produce the experimental results in our paper with two training datasets,
DIV2K [1] (including 800 high-resolution images) and Flick2K [44] (including
2650 high-resolution images). In the competition AIM2022 [53], we also collect
extra 746 high-resolution images from CLIC 2021 official website1 as the addi-
tional training data, which is only used for the competition results in Sec. 4.6.
For the testing stage in this paper, we adopt Set5 [3], Set14 [54], BSD100 [37],
Urban100 [16], Manga109 [38] and DIV2K [1] validation as our testing datasets.

4.2 Implementation Details

We use a three-branch HST for our experiments. The channel numbers of three
feature enhancement modules FEMh, FEMm, FEMl are set to 60, 60, 60,
respectively. The spatial resolution of the high branch is 64×64, and halved for
each downscale branch. Following [28], we set the number of swin transformer
layers (STLs) as 6 for all residual swin transformer blocks (RSTBs) in HST.
We use 2, 4, and 6 RSTBs for low branch, middle branch and high branch,
respectively. The window size is set to 8 throughout the experiment.

We train our HST using four NVIDIA 2080Ti GPUs, with a batch size of
16. We offline generate training image pairs by the MATLAB bicubic kernel,
then add JPEG compression with specified quality factor through the OpenCV
function. We randomly crop LR into 64×64 patches for training. For data aug-
mentation, we leverage random flipping and random rotation simultaneously.
In the stage of pretraining, the total training iterations are set to 400K. We
adopt Adam optimizer with β1 = 0.9 and β2 = 0.999, the initial learning rate is
set to 2e-4 and reduced by half at [100K, 250K]. In the stage of finetuning, we
load network parameters from the pretraining stage. We conduct experiments
on four different compression levels, with quality factors at 40, 30, 20 and 10,
respectively. The training is first finished on quality factor at 40, with the initial
learning rate and total iterations as 1e-4 and 200K. And the learning rate is
halved after 100K iterations. The rest of tasks are finetuned based on the first
task (i.e., quality factor at 40), with the learning rate as 8e-5 and total iterations
as 100K.

4.3 Effects of different pretraining schemes

As discussed in Sec. 3.4, pretraining is crucial for compressed image super-
resolution task. To find out the optimal pretraining scheme, we conduct an
ablation study on four different strategies, including: without pretraining, pure
bicubic ×4 pretraining, pretraining with RealSR simulation from BSRGAN [55],
and pretraining with RealSR simulation from DRTL [22]. BSRGAN [55] uses

1 http://clic.compression.cc/2021/tasks/index.html
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Table 1: Quantitative comparison for ablation study of network pretraining
scheme. Results are tested on ×4 with compression quality 10 on Urban100 [16]
dataset in terms of PSNR/SSIM. Best performance are in red.

Task
Methods(PSNR/SSIM)

w/o bicubic ×4 BSRGAN [55] DRTL [22]

×4, Q=10 19.70/0.5181 19.92/0.5301 20.04/0.5375 20.06/0.5383

w/o bicubic x4

BSRGAN DRTLLR

w/o bicubic x4

BSRGAN DRTLLR

Fig. 4: Qualitative comparison for different pretraining schemes on ×4 image
super-resolution with compression quality 10. Testing images are “011” and
“024” from Urban100 [16] respectively.

a practical complex degradation simulation process, which demonstrates its ef-
fectiveness on real-world distortion removal. DRTL [22] proposes a multi-task
degradation training scheme, to simulate distortion in real-world scenarios, and
works well on few-shot real-world image super-resolution problems. For fast con-
vergence and convincing results, we use SwinIR-s [28] as a training model, and
test network performance on Urban100 [16].

As shown in Table 1, quantitative results show that the pretraining with
RealSR leads to a gain of 0.36dB/0.0202 on the test dataset, which reveals
that the pretraining is vital for compressed image super-resolution. Another
observation is that pretraining with RealSR can achieve a better performance
compared with simple bicubic downsampling, especially with the simulation in
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DRTL [22]. The reason for this might be that RealSR simulations contain lots
of hybrid distortions, which are more complex and the knowledge is more likely
to be transferred to the severely compressed image super-resolution task.

4.4 Effects of hierarchical architecture

To explore the advantage of introducing a hierarchical network structure, we
set network branches from 1 to 3 and observe their performances on ×4 super-
resolution with compression quality 40. Note that, one branch framework is
almost the same as SwinIR-M [28]. As shown in Table 2, more branches lead
to higher performance. However, it also brings an increase of computational
complexity. In this paper, we choose a three-branch HST to achieve the best
performance. In addition, benefits from structure and texture information com-
pensation from lower branches, three-branch HST can generate images with
clearer lines and more structural components, as shown in Fig. 5

Table 2: Quantitative comparison for ablation study of network scales. The num-
ber of parameters is listed in the bracket. Results are tested on ×4 with com-
pression quality 40 in terms of PSNR/SSIM. Best performance are in red.

Methods Q
Datasets(PSNR/SSIM)

Set5 Set14 BSD100 Urban100 Manga109

HST-1(11.90M)
40

25.28/0.726 23.78/0.613 23.82/0.583 22.21/0.652 23.69/0.767
HST-2(12.98M) 25.35/0.727 23.82/0.614 23.84/0.584 22.21/0.651 23.78/0.769
HST-3(16.58M) 25.39/0.728 23.84/0.614 23.87/0.584 22.23/0.651 23.85/0.768

4.5 Comparison with other frameworks

We compare our HST with two other state-of-the-art models in image super-
resolution, and one real-SR method [46] for qualitative comparison. Among them,
RRDB [47] uses residual in residual dense blocks to deepen the network structure,
thus having the ability to better aggregate image structure and texture informa-
tion from multi-levels. SwinIR [28] introduces transformer into image restoration
tasks and outperforms previous CNN-based models. The performances are tested
on Set5 [3], Set14 [54], BSD100 [37], urban100 [16], Manga109 [38], respectively,
with PSNR and SSIM in RGB channels. Moreover, we also test three models’
performance on AIM2022 [53] official validation dataset, which includes 100 im-
ages from the DIV2K validation dataset. Quantitative and qualitative results
are shown in Table 3,4 and Fig. 6, respectively. We denote the model using a
self-ensemble strategy [30] with ∗.

Extensive experiments show that our HST outperforms other methods by
0.25dB at most on compressed image super-resolution tasks. Even without self-
ensemble, HST can still achieve an increase of 0.16dB at most. As shown in Fig.
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HST-1

HST-3(ours) HR

HST-2

LR

LR

HST-1

HST-3(ours) HR

HST-2

Fig. 5: Qualitative comparison for different network scales on ×4 image
super-resolution with compression quality 40. Testing images are “095” from
BSD100 [37] and “002” from Urban100 [16] respectively.

6, Real-ESRGAN [46] generates unnatural textures although its degradation pro-
cess includes JPEG compression. Compared with other methods, our HST can
generate SR with fewer artifacts. Moreover, HST performs better in rich tex-
ture areas, resulting in pleasant perception. All these benefit from a hierarchical
network structure, which captures features at different scales and enhances the
network’s representation ability.

4.6 AIM2022 challenge

To further explore the performance of our HST, we follow the training process
we used in AIM2022 [53] competition to train our HST. More specifically, we use
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Table 3: Quantitative comparison for compressed image super-resolution on
benchmark datasets. Results are tested on ×4 with different compression quali-
ties in terms of PSNR/SSIM. Best performance are in red.

Methods Q
Datasets(PSNR/SSIM)

Set5 Set14 BSD100 Urban100 Manga109

RRDB [47]

10

22.36/0.629 21.75/0.538 22.13/0.514 20.24/0.553 20.66/0.677
SwinIR [28] 22.45/0.636 21.79/0.541 22.16/0.517 20.35/0.561 20.81/0.685
HST 22.49/0.637 21.84/0.542 22.18/0.517 20.38/0.559 20.88/0.684
HST∗ 22.51/0.637 21.86/0.542 22.20/0.518 20.43/0.561 20.94/0.686

RRDB [47]

20

23.73/0.674 22.81/0.575 23.06/0.550 21.17/0.599 22.17/0.722
SwinIR [28] 23.81/0.682 22.87/0.577 23.09/0.551 21.32/0.608 22.35/0.729
HST 23.91/0.683 22.93/0.578 23.11/0.551 21.33/0.607 22.41/0.728
HST∗ 23.96/0.684 22.95/0.579 23.13/0.551 21.38/0.607 22.48/0.729

RRDB [47]

30

24.74/0.708 23.42/0.599 23.53/0.569 21.77/0.630 23.09/0.750
SwinIR [28] 24.83/0.713 23.43/0.600 23.53/0.571 21.85/0.636 23.20/0.755
HST 24.89/0.713 23.49/0.600 23.57/0.571 21.91/0.635 23.30/0.754
HST∗ 24.94/0.714 23.52/0.601 23.59/0.571 21.96/0.636 23.39/0.756

RRDB [47]

40

25.05/0.717 23.67/0.609 23.78/0.581 21.93/0.638 23.37/0.756
SwinIR [28] 25.28/0.726 23.78/0.613 23.82/0.583 22.21/0.652 23.69/0.767
HST 25.39/0.728 23.84/0.614 23.87/0.584 22.23/0.651 23.85/0.768
HST∗ 25.43/0.729 23.87/0.614 23.89/0.585 22.29/0.653 23.94/0.771

Table 4: Quantitative comparison for compressed image super-resolution on
DIV2K [1] validation datasets. Results are tested on ×4 with different com-
pression qualities in terms of PSNR/SSIM. Best performance are in red.

Datasets Q
Methods(PSNR/SSIM)

RRDB SwinIR HST HST∗

DIV2K [1]

10 23.52/0.6400 23.57/0.6436 23.62/0.6436 23.65/0.6443
20 24.68/0.6746 24.73/0.6771 24.77/0.6769 24.80/0.6777
30 25.31/0.6949 25.32/0.6966 25.38/0.6963 25.41/0.6971
40 25.58/0.7038 25.67/0.7077 25.74/0.7085 25.78/0.7093

all three training datasets described in Sec. 4.1 to finetune the network. After
100k iterations’ finetuning with Charbonnier Loss [7], we further use MSE Loss
to optimize the network until convergence. The result on the official validation
dataset shows that, with hierarchical network architecture, HST outperforms the
one-branch network we used in the competition by 0.05dB, with a final PSNR
of 23.80dB.
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Fig. 6: Qualitative comparison for ×4 image super-resolution with compression
quality 20. Testing images are “004” from Urban100 [16] and “KarappoHigh-
school” from Manga109 [38], respectively.

5 Conclusion

In this paper, we propose the Hierarchical Swin Transformer for compressed
image super-resolution, which incorporates the advantages of the hierarchical
structure and Swin Transformer. Moreover, we find that pretraining with SR is
vital and effective for compressed image super-resolution. Particularly, we ex-
plore three pretraining tasks, i.e., traditional SR, and two RealSR simulations
from BSRGAN and DRTL, respectively, of which the experimental results show
that pretraining with RealSR simulations can bring better performance, espe-
cially with the simulation in DRTL [22]. Extensive experiments demonstrate
that, with a pretraining and hierarchical network structure, our HST achieves
the best performance on compressed image super-resolution tasks. In addition,
our model achieves the fifth place in the AIM2022 challenge, with a PSNR of
23.51dB.
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