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Abstract. Compression plays an important role on the efficient trans-
mission and storage of images and videos through band-limited systems
such as streaming services, virtual reality or videogames. However, com-
pression unavoidably leads to artifacts and the loss of the original in-
formation, which may severely degrade the visual quality. For these rea-
sons, quality enhancement of compressed images has become a popular
research topic. While most state-of-the-art image restoration methods
are based on convolutional neural networks, other transformers-based
methods such as SwinIR, show impressive performance on these tasks.
In this paper, we explore the novel Swin Transformer V2, to improve
SwinIR for image super-resolution, and in particular, the compressed
input scenario. Using this method we can tackle the major issues in
training transformer vision models, such as training instability, resolu-
tion gaps between pre-training and fine-tuning, and hunger on data. We
conduct experiments on three representative tasks: JPEG compression
artifacts removal, image super-resolution (classical and lightweight), and
compressed image super-resolution. Experimental results demonstrate
that our method, Swin2SR, can improve the training convergence and
performance of SwinIR, and is a top-5 solution at the “AIM 2022 Chal-
lenge on Super-Resolution of Compressed Image and Video”.
Our code can be found at https://github.com/mv-lab/swin2sr.
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1 Introduction

Compression plays an important role on the efficient transmission and storage of
images and videos through band-limited systems such as streaming services, vir-
tual reality, cloud storage for images, videoconferences or videogames. However,
compression leads to artifacts and the loss of the original information, which
may severely degrade the visual quality of the image. For these reasons, quality
enhancement and restoration of compressed images has become a popular re-
search topic. Image restoration techniques, such as image super-resolution (SR)
and JPEG compression artifact reduction, aim to reconstruct the high-quality
clean image from its low-quality degraded (or compressed) counterpart. Dur-
ing the past decade, several revolutionary works were proposed for single image

ar
X

iv
:2

20
9.

11
34

5v
1 

 [
cs

.C
V

] 
 2

2 
Se

p 
20

22

https://github.com/mv-lab/swin2sr


2 Conde and Choi et al.

super-resolution, most of them are CNN-based methods [17,21,29,32,55,62–68].
We can also find plenty of proposed methods for the reduction of JPEG arti-
facts [19, 28, 46]. Recently, the blind super-resolution [23, 57, 63] methods have
been proposed. They are able to use one model to jointly handle the tasks of
super-resolution, deblurring, JPEG artifacts reduction, etc. Although the per-
formance of these deep learning methods significantly improved compared with
traditional methods [49], they generally suffer from two basic problems that arise
from the basic convolution layer receptive field: (i) the interactions between im-
ages and kernels are content-independent, therefore, using the same kernel to
restore different image regions may not be the best. (ii) Under the principle of
locality, convolution is not effective for long-range dependency modelling [33].

As an alternative to CNNs, Transformer [53] designs a self-attention mech-
anism to capture global interactions between contexts and has shown promis-
ing performance in several vision problems [6, 18, 37, 51]. Recently, Swin Trans-
former [37] has shown great promise as it leverages the advantages of both CNN
and Transformers (i.e. CNN to process image with large size due to the lo-
cal attention mechanism, and transformer to model long-range dependency with
the shifted window scheme). Compared with classical CNN-based image restora-
tion models, Transformer-based methods have several benefits: (i) content-based
interactions between image content and attention weights, which can be inter-
preted as spatially varying convolution [52]. (ii) long-range dependency mod-
elling are enabled by the shifted window mechanism. (iii) in some cases, better
performance with less parameters. In this context, Liang et al . SwinIR [33], based
on Swin Transformer [37], represents the state-of-the-art of transformer-based
models for image restoration.

AIM 2022 challenge on Super-Resolution of Compressed Image and
Video This challenge is a step forward for establishing a new benchmark for
the super-resolution of JPEG images and videos. The methods proposed in this
challenge also have the potential to solve various super-resolution tasks. The
challenge utilizes the famous DIV2K [1] dataset for evaluating methods. Other
related challenges such as “NTIRE 2022 challenge on super-resolution and qual-
ity enhancement of compressed video” [58, 60] and “NTIRE 2020 challenge on
real-world image SR” [38] also represent the SOTA in this field.

In this paper, we propose Swin2SR, a SwinV2 Transformer-based model [36,37]
for Compressed Image Super-Resolution and Restoration. This model represents
a possible improvement or update of SwinIR [33] for these particular tasks.
SwinV2 [36] (CVPR ’22) allows us to tackle the major issues in training large
transformer-based vision models, including training instability and duration, and
resolution gaps between pre-training and fine-tuning [33]. We are the first work
to explore successfully other transformer blocks beyond Swin Transformer [37]
for image super-resolution and restoration. In some scenarios, our model can
achieve similar results as SwinIR [33], yet training 33% less.

We also provide extensive comparisons with state-of-the-art methods, and
achieve competitive results at the related AIM 2022 Challenge.
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2 Related Work

2.1 Image Restoration

Image restoration is split in a large number of sub-problems, for instance image
denoising, image deblurring, super-resolution and compression artifacts removal
among others. Traditional model-based methods for image restoration were usu-
ally defined by hand-crafted priors that narrowed the ill-posed nature of the
problems by reducing the set of plausible solutions [12, 48, 49]. Learning-based
methods based on CNNs have recently gained great popularity for image restora-
tion, and they represent current state-of-the-art in most low-level vision tasks
(i.e. denoising, deblurring, compression artifacts removal). The first remarkable
work on denoising with deep learning is probably Zhang et al. [64] DnCNN. Other
pioneering works include Dong et al . SRCNN [17] for image super-resolution and
ARCNN [16] for JPEG compression artifact removal. Since research has moved
towards deep learning, multiple CNN-based approaches have been proposed to
improve the learned representations using more more complex neural network
architectures, such as residual blocks, dense residual blocks, and laplacian oper-
ators [7,29,30,62,70,71]. Other solutions attempt to exploit the attention mech-
anism in CNNs, such as channel attention and spatial attention [15,34,42,43,68].

2.2 Vision Transformer

The Transformer architecture [53] has recently gained much popularity in the
computer vision community. Originally designed for neural machine translation,
the Transformer architecture has successfully been applied to image classifi-
cation [13, 14, 18, 37, 52], object detection [6, 51], object segmentation [4] and
perceptual quality assessment (IQA) [10, 22]. The attention mechanism learns
complex global interactions by attending to important regions in the image.
Due to its impressive performance, transformers have also been introduced to
image restoration [5, 8, 56]. More recently, Chen et al . [8] proposed IPT, a gen-
eral backbone model for multiple image restoration tasks based on the standard
Transformer [53]. This model shows promising performance on several tasks,
however, it relies on a large number of parameters and heavy computation (over
115.5M parameters), and a large-scale dataset like ImageNet (over 1M images).
VSR-Transformer proposed by Cao et al . [5] combines the self-attention mech-
anism and CNN-based feature extraction to fuse better features in video super-
resolution. Note that many transformer-based approaches such as IPT [8] and
VSR-Transformer [5] use patch-wise attention, which may not be optimal for im-
age restoration. Liang et al . proposed SwinIR [33] based Swin Transformer [37],
which represents the state-of-the-art in many restoration tasks.

In this context, the Swin Transformer [37] improved the Vision Transformer
architecture by using shifted window based self-attention with progressive image
downsampling like CNNs. Window self-attention is computed for non-overlapped
image patches reducing attention computational complexity from Eq. 1 to Eq. 2:

O(MSA) = 4hwC2 + 2(hw)2C (1)
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O(WMSA) = 4hwC2 + 2M2hwC (2)

for an image of size h × w and patches of size M × M . The former quadratic
computational complexity is replaced by a linear complexity when M is fixed.
Learned relative positional bias are also added to include position information
while computing similarities for each head.

The Swin Transformer V2 [36] modified the Swin Attention [37] module to
better scale model capacity and window resolution. They first replace the pre-
norm by a post-norm configuration, use a scaled cosine attention instead of
the dot product attention and use a log-spaced continuous relative position bias
approach to replace the previous parameterized approach. The attention output
is:

Attention(Q,K, V ) = Softmax(cos(Q,K)/τ + S)V (3)

Where Q,K, V ∈ RM2×d are the query, key and value matrices. S ∈ RM2×M2

are the relative to absolute positional embeddings obtained by projecting the
position bias after re-indexing. τ is a learnable scalar, non-shared across heads
and layers. This block is illustrated in Figure 1.

3 Our Method

Our method Swin2SR is illustrated in Figure 1. We propose some modifications of
SwinIR [33], which is based on Swin Transformer [37], that enhance the model’s
capabilities for Super-Resolution, and in particular, for Compressed Input SR.
We update the original Residual Transformer Block (RSTB) by using the new
SwinV2 transformer [36] (CVPR’22) layers and attention to scale up capacity
and resolution [36]. Our method has a classical upscaling branch which uses a
bicubic interpolation, as shown in the AIM 2022 Challenge Leaderboard [59]
and our results (5), this alone can recover basic structural information. For this
reason, the output of our model is added to the basic upscaled image, to enhance
it. We also explore different loss functions to make our model more robust to
JPEG compression artifacts, being able to recover high-frequency details from
the compressed LR image, and therefore, achieve better performance.

Advantages of updating to SwinV2 The SwinV2 architecture modifies the
shifted window self-attention module to better scale model capacity and window
resolution. The use of post normalization instead of pre normalization reduce
the average feature variance of deeper layers and increase numerical stability
during training. This allows to scale the SwinV2 Transformer up to 3 billion
parameters without training instabilities [36]. The use of scaled cosine attention
instead of dot product between queries and keys reduce the dominance of some
attention heads for a few pixel pairs. In some tasks, our Swin2SR model achieved
the same results as SwinIR [33], yet training 33% less iterations. Finally, the use
of log-spaced continuous relative position bias allows us to generalize to higher
input resolution at inference time.
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Fig. 1: The architecture of the proposed Swin2SR [11]. In this case, we show our
method applied to Super-Resolution of Compressed Image [59].

3.1 Experimental Setup

For a fair comparison and ensure reproducibility, we follow the same experimen-
tal setup as SwinIR [33] and other state-of-the-art methods [63,70].

We evaluate our model on three tasks: JPEG compression artifacts removal
(Section 4.1), classical and lightweight image super-resolution (Section 4.2) and
compressed image super-resolution (Section 4.4). We mainly use the DIV2K
dataset for training and validation [1], and following the tradition of image SR,
we report PSNR and SSIM on the Y channel of the YCbCr space [33,63,70].

Our model Swin2SR has the following elements, similar to SwinIR [33]: shal-
low feature extraction, deep feature extraction and high-quality image recon-
struction modules. The shallow feature extraction module uses a convolution
layer to extract features, which are directly transmitted to the reconstruction
module to preserve low-frequency information [33, 64]. The Deep feature ex-
traction module is mainly composed of Residual SwinV2 Transformer blocks
(RSTB), each of which utilizes several SwinV2 Transformer [36] layers (S2TL)
for local attention and cross-window interaction. Finally, both shallow and deep
features are fused in the reconstruction module for high-quality image recon-
struction. To upscale the image, we use standard a pixel shuffle operation.

The hyper-parameters of the architecture are as follows: the RSTB number,
S2TL number, window size, channel number and attention head number are
generally set to 6, 6, 8, 180 and 6, respectively. For lightweight image SR, we
explain the details in Section 4.2.

3.2 Implementation details

The method was implemented in Pytorch using as baseline https://github.

com/cszn/KAIR and the official repository for SwinIR [33]. We initially train

https://github.com/cszn/KAIR
https://github.com/cszn/KAIR


6 Conde and Choi et al.

Swin2SR from scratch using the basic L1 loss for reconstruction. While training,
we randomly crop HR images using 192px patch size and crop correspondingly
the LR image generated offline using MATLAB, we also use standard augmen-
tations that include all variations of flipping and rotations [50]. We use mainly
the DIV2K [1]. In some experiments, to explore the potential benefits of more
training data, we also use the Flickr2K dataset (2650 images).

In the particular scenario of Compressed Input Super-Resolution [59]
(Section 4.4), we explore different loss functions to improve the performance and
robustness of our method; these are represented in Figure 2.

First, we add an Auxiliary Loss that minimizes the L1 distance between the
downsampled prediction ŷ and the downsampled reference y .png, as follows:

Laux = ∥D(y)−D(ŷ)∥1 (4)

where x is the low-resolution degraded image, y is the high-resolution clean
image, f(x) = ŷ is the restored image using our model f , and D(.) is a down-
sampling operator (i.e. ×4 bicubic kernel). This helps to ensure consistency also
at lower-resolution. In order to minimize Eq. 4 the restored image at a lower res-
olution should not have artifacts (i.e. the prediction at lower resolution should
be close to the downsampled reference .png without artifacts).

Second, we extract the high-frequency (HF) information from the High-
Resolution images. This loss is formulated as follows:

Lhf = ∥(y − (y ∗ b))− (ŷ − (ŷ ∗ b))∥1 = ∥HF (y)−HF (ŷ)∥1 (5)

where HR(.) denotes the high-frequency information of an image. To obtain
this, we convolve a simple 5× 5 kernel b as a gaussian blur operation. This term
enforces the prediction to have the same high-frequency details as the reference,
and therefore, it helps to improve the sharpness and quality of the results.
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Fig. 2: Swin2SR training with additional regularization.
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4 Experimental Results

4.1 JPEG Compression Artifacts Removal

Table 1 shows the comparison of Swin2SR with state-of-the-art JPEG com-
pression artifact reduction methods: ARCNN [16], DnCNN-3 [64], QGAC [19],
RNAN [69], and MWCNN [35]. All of compared methods are CNN-based models
trained especifically for each quality type (i.e. four models per dataset). Due to
our limited resources, and seeking for a more flexible approach, we train a single
model able to deal with the four different quality factors. For this reason, we do
not compare directly with DRUNet [62], as we consider it an unfair comparison.
Moreover, Swin2SR only has 12M parameters, while DRUNet [62], is a large
model that has 32.7M parameters. Note that we perform these comparisons us-
ing the same setup as [33]. Following [33,62,71], we test different methods on two
benchmark datasets: (i) Classic5 [20] and (ii) LIVE1 [45]; using JPEG quality
factors (q) 10, 20, 30 and 40. As we can see in Table 1, our Swin2SR achieves
state-of-the-art results in compression artifacts removal.

Table 1: Quantitative comparison (average PSNR/SSIM) with state-of-the-art
methods for JPEG compression artifact reduction on benchmark datasets.
Best and second best performance are in red and blue colors, respectively. Note
that Swin2SR is a single model that generalizes to different qualities, meanwhile,
some methods are trained for each specific quality. Some numbers are from [28].
Dataset q ARCNN [16] DnCNN [64] QGAC [19] RNAN [69] MWCNN [35] SwinIR [33] Swin2SR

Classic5
[20]

10 29.03/0.79 29.40/0.80 29.84/0.83 29.96/0.81 30.01/0.82 30.27/0.82 30.02/0.81
20 31.15/0.85 31.63/0.86 31.98/0.88 32.11/0.86 32.16/0.87 31.32/0.85 32.26/0.87
30 32.51/0.88 32.91/0.88 33.22/0.90 33.38/0.89 33.43/0.89 31.39/0.853 33.51/0.89
40 33.32/0.89 33.77/0.90 - 34.27/0.90 34.27/0.90 31.38/0.85 34.33/0.90

LIVE1
[45]

10 28.96/0.80 29.19/0.81 29.53/0.84 29.63/0.82 29.69/0.82 29.86/0.82 29.67/0.82
20 31.29/0.87 31.59/0.88 31.86/0.90 32.03/0.88 32.04/0.89 31.00/0.86 32.07/0.89
30 32.67/0.90 32.98/0.90 33.23/0.92 33.45/0.91 33.45/0.91 31.08/0.86 33.49/0.91
40 33.63/0.91 33.96/0.92 - 34.47/0.92 34.45/0.93 31.05/0.86 34.49/0.92

In the case of SwinIR [33], which is also state-of-the-art for JPEG artifacts re-
duction, authors train one model per quality factor (i.e. four models) for 1600K
iterations, and q = 10/20/30 models are fine-tuned using the q = 40 model as
general baseline. We train a single model using the same setup [33], only for 800k
iterations (i.e. ×2 less training than SwinIR [33]), and JPEG compression as an
augmentation. For this reason in Table 1 we compare with SwinIR trained for
the most challenging q = 10. We also compare with MWCNN [35], IDCN [72]
and FBCNN-C [28] using RGB color images. Attending to Tables 1 and 2, we
consider our model a more general and flexible approach for grayscale or color
compression artifacts removal, since it can be trained faster and generalizes to
different compression quality factors. We also provide qualitative results in
Figure 3. Swin2SR can restore compressed images and generate high-quality
results. We provide additional results in the supplementary material.
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Table 2: Quantitative comparison on color JPEG images with single compres-
sion. We report average PSNR/SSIM on benchmark datasets. Our model out-
performs networks designed for this particular task (although we recognise that
training with more data). Some numbers are from [28].
Dataset q JPEG ARCNN [16] QGAC [19] MWCNN [35] IDCN [72] FBCNN-C [28] Swin2SR

LIVE1
[45]

10 25.69/0.74 26.91/0.79 27.62/0.80 27.45/0.80 27.63/0.81 27.77/0.80 27.98/0.82
40 30.28/0.88 - 32.05/0.91 - - 32.34/0.91 32.53/0.92

ICB
[44]

10 29.44/0.75 30.06/0.77 32.06/0.81 30.76/0.77 31.71/0.80 32.18/0.81 32.46/0.81
40 33.95/0.84 - 32.25/0.91 - - 36.02/0.86 36.25/0.86

Input Compressed FBCNN (q = 10) [33] Swin2SR (ours) Reference

Fig. 3: Qualitative samples of JPEG Compression Artifacts Removal. We show
the JPEG compressed image at quality q = 10. All images have the same reso-
lution. Images from Classic5 [20] and LIVE1 [45]. Best viewed by zooming.

4.2 Classical Image Super-Resolution

For classical and lightweight image SR, following [33,62,63], we train Swin2SR on
800 training images of DIV2K and 2650 images from Flickr2K. For fair compar-
ison with SwinIR [33], we use 64× 64 LQ image patches, and the HQ-LQ image
pairs are obtained by the MATLAB bicubic kernel. We train our model from
scratch during 500k iterations, and fine-tune it for the ×4 task. Table 3 shows
the quantitative comparisons between Swin2SR and state-of-the-art methods:
DBPN [24], RCAN [68], RRDB [55], SAN [15], IGNN [73], HAN [43], NLSA [42],
IPT [8] and SwinIR [33]. All the CNN-based methods perform worse than the
studied transformer-based methods, IPT [8], SwinIR [33] and Swin2SR. More-
over, Swin2SR was trained using only DIV2K+Flickr2K and achieves better
performance than IPT [8], even though IPT [8] utilizes ImageNet (more than
1.3M images) in training and has huge number of parameters (115.5M). In con-
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Table 3: Quantitative comparison (average PSNR/SSIM) with state-of-the-art
methods for classical image SR on benchmark datasets. Best and second best
performance are in red and blue colors, respectively.

Method Scale
Training
Dataset

Set5 [3] Set14 [61] BSD100 [40] Urban100 [25] Manga109 [41]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RCAN [68] ×2 DIV2K 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
SAN [15] ×2 DIV2K 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
IGNN [73] ×2 DIV2K 38.24 0.9613 34.07 0.9217 32.41 0.9025 33.23 0.9383 39.35 0.9786
HAN [43] ×2 DIV2K 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
NLSA [42] ×2 DIV2K 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789

DBPN [24] ×2 DIV2K+Flickr2K 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775
IPT [8] ×2 ImageNet 38.37 - 34.43 - 32.48 - 33.76 - - -
SwinIR [33] ×2 DIV2K+Flickr2K 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
Swin2SR ×2 DIV2K+Flickr2K 38.43 0.9623 34.48 0.9256 32.54 0.905 33.89 0.9431 39.88 0.9798
Swin2SR-D ×2 DIV2K+Flickr2K 38.06 - 33.81 - 32.32 - 32.6 - 38.98 -

RCAN [68] ×4 DIV2K 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
SAN [15] ×4 DIV2K 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
IGNN [73] ×4 DIV2K 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182
HAN [43] ×4 DIV2K 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
NLSA [42] ×4 DIV2K 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184

DBPN [24] ×4 DIV2K+Flickr2K 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137
IPT [8] ×4 ImageNet 32.64 - 29.01 - 27.82 - 27.26 - - -
RRDB [55] ×4 DIV2K+Flickr2K 32.73 0.9011 28.99 0.7917 27.85 0.7455 27.03 0.8153 31.66 0.9196
SwinIR [33] ×4 DIV2K+Flickr2K 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
Swin2SR ×4 DIV2K+Flickr2K 32.92 0.9039 29.06 0.7946 27.92 0.7505 27.51 0.8271 31.03 0.9256
Swin2SR-D ×4 DIV2K+Flickr2K 32.41 - 28.75 - 27.69 - 26.4 - 30.96 -

trast, Swin2SR has only 12M parameters, which is competitive even compared
with state-of-the-art CNN-based models (15.4∼44.3M). Note that our models
achieve essentially the same performance as SwinIR [33], yet trained for 400k
iterations from scratch, without fine-tuning or pre-training, in comparison with
SwinIR [33] models trained during 500k, and in the case of ×4 fine-tuned using
the ×2 model. We provide visual comparisons in Figures 5. Swin2SR can remove
artifacts and recover structural information and high-frequency details.

Dynamic Super-Resolution Likewise Section 4.1, we explore the performance
of a single super-resolution model to upscale directly using any arbitrary ×
factor. We call this a Dynamic Super-Resolution model, referred as Swin2SR-D.

In SwinIR [33] we can find an upsampling layer designed to upscale images
using s particular factor (i.e. ×2). This layer cannot be adjusted to a different
factor on-line, therefore, SwinIR [33] trains one model for each different factor.
To deal with this problem, we implemented a Dynamic upsampling layer, which
initially can super-resolve the images using ×2, ×3, and ×4 factors on-line in
the same module. We show in Table 3 the potential of this method, as this single
model can perform ×2 and ×4 super-resolution indistinctly.

Lightweight image SR. We also provide comparison of Swin2SR-s with state-
of-the-art methods lightweight image SR methods: CARN [2], FALSR-A [9],
IMDN [26], LAPAR-A [31], LatticeNet [39] and SwinIR (small) [33].
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Our lightweight model is designed as SwinIR (small) [33], we decrease the
number of Residual Swin Transformer Blocks (RSTB) and convolution channels
to 4 and 60, respectively. However, the number of Swin Transformer Layers
(STL) in each RSTB, window size and attention head number still set to 6, 8
and 6, respectively (as in Swin2SR base model).

In addition to PSNR and SSIM, we also report the total numbers of parame-
ters and multiply-accumulate operations for different methods [33]. These MACs
are calculated using a 1280× 720 image. As shown in Table 4, Swin2SR outper-
forms competitive methods [2, 9, 26, 31] on different benchmark datasets, with
similar total numbers of parameters and multiply-accumulate operations. In our
experiments, Swin2SR can achieve the same results as SwinIR (small) [33], yet,
training almost 33% less iterations.

Table 4: Quantitative comparison (average PSNR/SSIM) with state-of-the-art
methods for lightweight image SR ×2 on benchmark datasets. Best and sec-
ond best performance are in red and blue colors, respectively. In our experiments,
Swin2SR-s converges faster than SwinIR (small) [33].

Method # Params # Mult-Adds
Set5 [3] Set14 [61] BSD100 [40] Urban100 [25] Manga109 [41]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CARN [2] 1,592K 222.8G 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
FALSR-A [9] 1,021K 234.7G 37.82 0.959 33.55 0.9168 32.1 0.8987 31.93 0.9256 - -
IMDN [26] 694K 158.8G 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774
LAPAR-A [31] 548K 171.0G 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
LatticeNet [39] 756K 169.5G 38.15 0.9610 33.78 0.9193 32.25 0.9005 32.43 0.9302 - -
SwinIR [33] 878K 195.6G 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783
Swin2SR-s 1000K 199.0G 38.17 0.9613 33.95 0.9216 32.35 0.9024 32.85 0.9349 39.32 0.9787

4.3 Real-world Image Super-Resolution

We also test our approach using real-world images and prove the generalization
capabilities of Swin2SR . We use the same setup as SwinIR [33] for training
and testing our methods to exploit the full potential of these transformer-based
approaches. Since there is no ground-truth high-quality images, we only provide
visual comparison with representative bicubic model in Figure 4. Our model pro-
duces detailed images without artifacts. Due to the limitations of space and vi-
sualization in this document, we include the comparison with ESRGAN [55] and
state-of-the-art real-world image SR models such as RealSR [27], BSRGAN [63],
Real-ESRGAN [54] and SwinIR [33] in the supplementary material.

4.4 Compressed Image Super-Resolution

The “AIM 2022 Challenge on Super-Resolution of Compressed Image” [59] is
a step forward for establishing a benchmark of the super-resolution of JPEG
images. In this challenge, we use the popular dataset DIV2K [1] as the training,
validation and test sets. JPEG is the most commonly used image compression
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standard. We target the ×4 super-resolution of the images compressed with
JPEG with the quality factor of 10. Figure 1 illustrates this process. We propose
two solutions for this problem based on previous Sections 4.1 and 4.2:

1. Swin2SR-CI An end-to-end model for JPEG artifacts removal and super-
resolution (i.e. Figure 1).

2. A 2-stage approach where first we remove JPEG compression artifacts in
the LR input image using Swin2SR-DJPEG, and second, we upscale using
Swin2SRx4 (i.e.the model trained for Classical SR, Section 4.2). We refer
to this experiment as “Swin2SR-CI2”.

As we show in Table 5 (3), our method is a top solution at the challenge. We
trained Swin2SR using only DIV2K [1] and Flickr2K [47] datasets, in comparison
with other teams like CASIA LCVG, which trained using 1 million images. Our
average testing time of Swin2SR model is 1.41s using single GPU A100.

In Figure 5 we show extensive qualitative results of compressed input super-
resolution [59]. Our model can recover information from the low-quality low-
resolution input image, and generates high-resolution high-quality images. Among
the limitations of our model, we can appreciate a clear blur effect, nevertheless,
we find SwinIR [33] (and other state-of-the-art methods) to have the same issues.

Table 5: Results of AIM 2022 Challenge on Super-Resolution of Compressed
Image. Our solutions are placed among the top teams, while our methods can
process a single image in under a second (w/o self-ensemble).

Team Test PSNR (dB) Runtime (s) Hardware

VUE 23.6677 120 Tesla V100
BSR 23.5731 63.96 Tesla A100
CASIA LCVG 23.5597 78.09 Tesla A100
USTC-IR 23.5085 19.2 2080ti
Swin2SR-CI2 23.4946 24 Tesla A100
MSDRSR 23.4545 7.94 Tesla V100
Giantpandacv 23.4249 0.248 RTX 3090
Swin2SR-CI 23.4033 9.39 Tesla A100
MVideo 23.3250 1.7 RTX 3090
UESTC+XJU CV 23.2911 3.0 RTX 3090
cvlab 23.2828 6.0 1080 Ti

Bicubic ×4 22.2420 - -

Ensembles and fusion strategies. We use classical self-ensemble tech-
niques where the input image is flipped and rotated several times, and the re-
sultant images are averaged [38, 50]. We only use this technique in the related

3 online leaderboard https://codalab.lisn.upsaclay.fr/competitions/5076

https://codalab.lisn.upsaclay.fr/competitions/5076
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AIM 2022 Challenge (Section 4.4 and Table 5), and the marginal improvement
of this technique was approximately 0.02dB PSNR.

In Table 6 we show our ablation studies using the challenge DIV2K [1] val-
idation set. The use of additional loss functions helped the model to converge
faster, however after certain number of iterations (i.e. 250k) the model con-
verges. As previously mentioned, among the limitations of our model, we can
appreciate a clear blur effect in the qualitative samples in Figure 5, indicating
that our model is struggling to recover fine details and sharpness. Nevertheless,
we find SwinIR [33] (and other state-of-the-art methods) to have the same is-
sues to recover the high-frequency details. However, the overall results look very
impressive considering the level of degradation of the input image ( downsam-
pled and compressed using JPEG at quality q = 10). We also provide additional
results and samples for DIV2K [1] in the supplementary material.

Table 6: Ablation study of our experiments in the AIM 2022 Compressed Image
Super-Resolution Challenge. The additional loss functions, and our new design
Swin2SR help to converge faster and produce competitive results. Note that
we compare with SwinIR pre-trained model while we trained using only the
challenge DIV2K [1] data.

Exp. Method PSNR

1 Bicubic 22.350
2 RDN [70] 23.320
3 SwinIR [33] 23.546
4 Swin2SR (Ours) 23.580
5 Swin2SR + AuxLoss 23.585
6 Swin2SR + AuxLoss + HFLoss 23.590
7 Self-ensemble Exp6 23.616

5 Conclusion

In this paper we propose Swin2SR, a SwinV2 Transformer-based model for super-
resolution and restoration of compressed images. This model is a possible im-
provement of SwinIR (based on Swin Transformer), allowing faster training and
convergence, and bigger capacity and resolution. Extensive experiments show
that Swin2SR achieves state-of-the-art performance on: JPEG compression arti-
facts removal, image super-resolution (classical and lightweight), and compressed
image super-resolution. Our method also achieves competitive results at the
“AIM 2022 Challenge on Super-Resolution of Compressed Image and Video”,
being ranked among the top-5, and therefore, it helps to advance the state-of-
the-art in super-resolution of compressed inputs, which will play an essential role
in industries like streaming services, virtual reality or video games.
Acknowledgments This work was partly supported by The Alexander von
Humboldt Foundation (AvH).
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LR Bicubic Swin2SR (ours)

Fig. 4: Qualitative results on real-world SR datasets (RealSRSet, 5images). Our
model can recover textures, remove noise and produce pleasant results.
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Input LR (q = 40) SwinIR+ [33]

Reference Swin2SR (ours)

Input LR (q = 40) SwinIR+ [33]

Reference Swin2SR (ours)

Fig. 5: Qualitative samples from the AIM 2022 Challenge on Super-Resolution
of Compressed Image. Validation images from the DIV2K [1].
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