Skip to main content

ExSwin-Unet: An Unbalanced Weighted Unet with Shifted Window and External Attentions for Fetal Brain MRI Image Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13803))

Included in the following conference series:

Abstract

Accurate fetal brain MRI image segmentation is essential for fetal disease diagnosis and treatment. While manual segmentation is laborious, time-consuming, and error-prone, automated segmentation is a challenging task owing to (1) the variations in shape and size of brain structures among patients, (2) the subtle changes caused by congenital diseases, and (3) the complicated anatomy of brain. It is critical to effectively capture the long-range dependencies and correlations among training samples to yield satisfactory results. Recently, some transformer-based models have been proposed and achieved good performance in segmentation tasks. However, the self-attention blocks embedded in transformers often neglect the latent relationships among different samples. Model may have biased results due to the unbalanced data distribution in the training dataset. We propose a novel unbalanced weighted Unet equipped with a new ExSwin transformer block to comprehensively address the above concerns by effectively capturing long-range dependencies and correlations among different samples. We design a deeper encoder to facilitate features extracting and preserving more semantic details. In addition, an adaptive weight adjusting method is implemented to dynamically adjust the loss weight of different classes to optimize learning direction and extract more features from under-learning classes. Extensive experiments on a FeTA dataset demonstrate the effectiveness of our model, achieving better results than state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  2. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  4. Clouchoux, C., et al.: Delayed cortical development in fetuses with complex congenital heart disease. Cereb. Cortex 23(12), 2932–2943 (2013)

    Article  Google Scholar 

  5. Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  6. Egaña-Ugrinovic, G., Sanz-Cortes, M., Figueras, F., Bargalló, N., Gratacós, E.: Differences in cortical development assessed by fetal MRI in late-onset intrauterine growth restriction. Am. J. Obstet. Gynecol. 209(2), 126-e1 (2013)

    Google Scholar 

  7. Gao, Y., Zhou, M., Metaxas, D.N.: UTNet: a hybrid transformer architecture for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 61–71. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_6

    Chapter  Google Scholar 

  8. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  9. Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: PCT: point cloud transformer. Comput. Vis. Media 7(2), 187–199 (2021)

    Article  Google Scholar 

  10. Guo, M.H., Liu, Z.N., Mu, T.J., Hu, S.M.: Beyond self-attention: external attention using two linear layers for visual tasks. arXiv preprint arXiv:2105.02358 (2021)

  11. Guo, R., Niu, D., Qu, L., Li, Z.: SOTR: segmenting objects with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7157–7166 (2021)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Li, Z., Pan, J., Wu, H., Wen, Z., Qin, J.: Memory-efficient automatic kidney and tumor segmentation based on non-local context guided 3D U-Net. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 197–206. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_20

    Chapter  Google Scholar 

  14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  15. Liu, L., et al.: Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379(9832), 2151–2161 (2012)

    Article  Google Scholar 

  16. Liu, Z., et al.: Swin transformer v2: scaling up capacity and resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12009–12019 (2022)

    Google Scholar 

  17. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  19. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  20. Payette, K., et al.: An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset. Sci. Data 8(1), 1–14 (2021)

    Article  MathSciNet  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Transformer for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7262–7272 (2021)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  24. Wu, H., Lu, X., Lei, B., Wen, Z.: Automated left ventricular segmentation from cardiac magnetic resonance images via adversarial learning with multi-stage pose estimation network and co-discriminator. Med. Image Anal. 68, 101891 (2021)

    Article  Google Scholar 

  25. Wu, H., Pan, J., Li, Z., Wen, Z., Qin, J.: Automated skin lesion segmentation via an adaptive dual attention module. IEEE Trans. Med. Imaging 40(1), 357–370 (2020)

    Article  Google Scholar 

  26. Zhang, M., Lucas, J., Ba, J., Hinton, G.E.: Lookahead optimizer: k steps forward, 1 step back. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  27. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  28. Zugazaga Cortazar, A., Martín Martinez, C., Duran Feliubadalo, C., Bella Cueto, M.R., Serra, L.: Magnetic resonance imaging in the prenatal diagnosis of neural tube defects. Insights Imaging 4(2), 225–237 (2013). https://doi.org/10.1007/s13244-013-0223-2

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported partly by National Natural Science Foundation of China (No. 61973221), Natural Science Foundation of Guangdong Province, China (No. 2019A1515011165), the Innovation and Technology Fund-Mainland-Hong Kong Joint Funding Scheme (ITF-MHKJFS) (No. MHP/014/20) and the Project of Strategic Importance grant of The Hong Kong Polytechnic University (No. 1-ZE2Q).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufei Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, Y., Liang, C., Lin, J., Wu, H., Qin, J. (2023). ExSwin-Unet: An Unbalanced Weighted Unet with Shifted Window and External Attentions for Fetal Brain MRI Image Segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25066-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25065-1

  • Online ISBN: 978-3-031-25066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics