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Abstract—The appearance of histopathology images depends
on tissue type, staining and digitization procedure. These vary
from source to source and are the potential causes for domain-
shift problems. Owing to this problem, despite the great success
of deep learning models in computational pathology, a model
trained on a specific domain may still perform sub-optimally
when we apply them to another domain. To overcome this, we
propose a new augmentation called PatchShuffling and a novel
self-supervised contrastive learning framework named IMPaSh
for pre-training deep learning models. Using these, we obtained a
ResNet50 encoder that can extract image representation resistant
to domain-shift. We compared our derived representation against
those acquired based on other domain-generalization techniques
by using them for the cross-domain classification of colorectal
tissue images. We show that the proposed method outperforms
other traditional histology domain-adaptation and state-of-the-
art self-supervised learning methods. Code is available at: https:
//github.com/trinhvg/IMPash.

Index Terms—Domain generalization, Self-supervised learning,
Contrastive learning, Colon cancer

I. INTRODUCTION

Although Deep learning (DL) models have been shown to
be very powerful in solving various computational pathology
(CPath) problems [1], they can be very fragile against the
variations in histology images [2]. One of the main challenges
in CPath is domain-shift where the distribution of the data
used for training and testing of the models varies significantly.
There are many sources that can cause domain-shift in CPath,
such as variation in sample preparation and staining protocol,
the colour palette of different scanners and the tissue type
itself.

In CPath, there have been several efforts attempting to solve
the domain-shift problem by using stain normalization, stain-
augmentation, domain adaptation or domain generalization
techniques [3], [4]. The objective of stain normalization (SN)
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is to match the colour distribution between the training and
testing domains [5], [6]. On the other hand, stain augmentation
(SA) tries to artificially expand the training set with stain
samples that could potentially be within the unseen testing set.
This is often achieved by randomly changing the stain/colour
information of source images [7]. In certain problems, radi-
cally altering the image colour from its usual distribution may
also be beneficial, such as by using medically-irrelevant style
transfer augmentation[8].

On the other hand, both domain adaptation and domain
generalization families try to directly reinforce the model’s
ability to represent images, such as via the loss functions, to
achieve robustness across training and testing domains. The
former relies on data from the unseen domain, whereas the
latter does not. And due to such reliance on the data of target
domains, domain adaptation techniques are thus also highly
dependent on the availability and quality of curated data in
such domains. Abbet et al. [9] recently proposed a training
scheme that we can consider a prime example of a domain
adaptation technique. In particular, they employed in-domain
and cross-domain losses for colorectal tissue classification.

As for domain generalization, recent proposals mostly focus
on pre-training models. In fact, self-supervised algorithms
such as MoCoV2 [10] or Self-Path [4] are particularly attrac-
tive because they can leverage a huge number of unlabelled
histology images. However, in order to effectively train such
a model based on self-supervised contrastive learning (SSCL)
methods, a careful selection of augmentations and their corre-
sponding parameters is of crucial importance.

In this research, we propose training a DL-based model
in self-supervised contrastive learning (SSCL) manner so that
the resulting model can extract robust features for colorectal
cancer classification across unseen datasets. We propose a
new domain generalization method inspired by [11], [10] that
does not rely on data in the domains to be evaluated. Our
contributions include:

• We propose PatchShuffling augmentation to pre-train the
model such that they can extract invariant representation.
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• We propose a new SSCL framework that combines
InfoMin[11] augmentations and PatchShuffling for model
pre-training called IMPaSh based on contrastive learning
with momentum contrast.

• We provide a comparative evaluation to demonstrate the
effectiveness of IMPaSh.

II. THE PROPOSED METHOD

A. Self-supervised contrastive learning

An overview of our proposed IMPaSh method is presented
in Fig. 1. As can be seen in the figure, encoders and projectors
that are of the same color have their weights shared. The
proposed method includes two types of augmentation: InfoMin
[11] and our proposed PatchShuffling (Section II-B). For each
approach, an input image x is augmented twice, resulting into
4 different views {v1, v2, v3, v4} of x. An encoder g and two
multilayer perceptron (MLP) projectors, called p1 and p2, are
applied on v1 and v3 to respectively extract feature vector q1
and q2 both in R128. As for v2 and v4, in a slightly different
manner, their corresponding feature vector q1m and q2m are
extracted by the momentum version of g and p, which we
subsequently denote as gm, p1m and p2m. These q1m and q2m
features are further used to update 2 queues of feature vectors
k1 and k2.

For the SSCL task, query q1 and query q2 are then re-
spectively compared to k1 and k2 to allow the model to
learn the similarity between the different views. Training is
thereby achieved by optimizing the InfoNCE loss (LNCE)
[12]. Specifically, new q1 and q2 treat existing features that
are from different images in the queue as negative samples
for optimization.

For the transfer learning task, we first freeze the encoder
g and projector p1 and then add another classifier on top of
projector p1. We further describe the implementation of the
PatchShuffling augmentation and momentum contrast in the
following sections.

B. Learning Pretext-Invariant Representation

Self-supervised learning endows the model with the ability
to extract robust representation by maximizing the similarity
across variations of the same image. Traditionally, such varia-
tions are obtained by covariant transformations like translation
or rotation [13], [14]. However, recent investigations have
shown that invariant transformations, such as Jigsaw Puzzle
Solving [15] and PIRL [16], are more powerful. In the
case of PIRL in particular, the model is forced to learn a
representation of the image based on its constituent smaller
patches, regardless of their positions. In this paper, we propose
PatchShuffling based on PIRL for learning invariant represen-
tation and pre-train the model using not only PatchShuffling
but also InfoMin.

1) PatchShuffling:: We first randomly crop a portion of
from the image x such that its size is around [0.6, 1.0] of
the original image area. We then resize it to 255 × 255 pixels
and randomly flip the image using the settings in [16], [11].
Afterward, we divide the image into a grid of 3 × 3 cells
each which occupies 85 × 85 pixels. We further crop each cell

randomly to 64 × 64 pixels and then randomly re-assemble
them back to an image of 192 × 192 pixels. In comparison to
PIRL, which first extracts the patch feature and then shuffles
the the placement of the features within the original image,
PatchShuffling only performs the shuffling on the original
image itself.

2) InfoMin:: We construct views v1 and v2 of a given
image x by using the augmentation setup in [11]. In particular,
InfoMin augmentation is specifically designed so that the
mutual information of the original image and the augmented
images is as low as possible while keeping any task-relevant
information intact.

C. Momentum Contrast
In contrastive learning, the most common approach for end-

to-end learning is by using only the sample in the current
iteration [17]. However, in order to obtain a good image
representation, contrastive learning requires a large set of
negative samples. Thus a large batch size is required for the
training processes (i.e., high GPU memory demand). To handle
this memory problem, Wu et al. [18] proposed a memory
bank mechanism that stores all the features obtained from
previous iterations. Then, from this memory bank, a set of
negative samples are randomly selected for the current training
iteration. As a result, a large number of samples can be
obtained without relying on back-propagation, which in turn
dramatically decreases the required training time. However,
because the selected samples may come from different training
iterations (i.e., from vastly different encoders), there may exist
a large discrepancy between them which can severely hinder
the training process. To alleviate this problem, MoCo [19]
introduced momentum contrast which allows the construc-
tion of a consistent dictionary of negative samples in near
linear scaling. Inspired by this, to best exploit contrastive
learning, we utilize momentum contrast for both InfoMin
and PatchShuffling by constructing two dedicated momentum
branches as introduced in Fig. 1.

The first momentum contrast branch encodes and stores a
dictionary of image representations from an image augmented
based on InfoMin. Meanwhile, the second one handles the
representation of PatchShuffling. Parameters of these mo-
mentum encoders and projectors are updated following the
momentum principle. Formally, we denote the parameters of
the momentum branch {gm, p1m, p2m} as θm and {g, p1, p2}
as θq , we update θm by:

θm ← αθm + (1− α)θq. (1)

Here, α is a momentum coefficient to condition the training
process to update θm more than θq . We empirically set α =
0.9999 to the value as used in MoCo [19].

1) Loss function:: Our proposed loss function is an ex-
tended version of InfoNCE loss [12]. In essence, the loss
maximizes the mutual information between positive pair ob-
tained from an encoder and its momentum version. At the
same time, the loss also tries to minimize the similarity in
the representation of the current view of the image compared
to other K = 65536 negative samples from the momentum
encoder.
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Fig. 1. Overview of the proposed self-supervised contrastive learning method. FC denotes a fully connected layer that acts as
a classifier (i.e., the classification head). In the figure, encoders that are of the same color have their weights shared.

We denote the encoded query as q, where q1 = p(g(v1)),
and q2 = p(g(v3)), and denote the set of keys from momentum
branch as k, where k1 = pm(gm(v2)), and k2 = pm(gm(v4)).
Objective function LNCE for each pair of query q and queue
k is defined as

LNCE(q, k) = −E

[
log

exp(qi · ki/τ)∑K
j=1 exp(qi · kj/τ)

]
(2)

where the temperature hyper-parameter τ = 0.07. In summary,
the objective function for our contrastive learning framework
is as follows,

LNCE =LNCE(q1, k1) + LNCE(q1, k2)

+ LNCE(q2, k1) + LNCE(q2, k2)
(3)

D. Transfer learning task

After pre-training the self-supervised task, we obtain en-
coder g and projector p. Instead of discarding the momentum
branch and all projectors, we keep and freeze both the pro-
jector p and the encoder g to embed the input image to 128-
dimensional features. Then, in a supervised manner, we can
train another classifier f on top of these features using cross-
entropy loss (LCE) and the labels from the corresponding
training dataset.

III. EXPERIMENT

A. The Datasets

We employed two publicly available datasets of colorectal
histology images to evaluate our method: 1) K19 [20] dataset,
which includes 100,000 images of size 244×224 pixels from 9
tissue classes as the source domain, and 2) K16 [21] containing
5,000 images of size 150×150 pixels from 8 classes as the

target domain. Example images from these two datasets are
shown in Fig. 2. Since these two datasets have different class
labels, we followed [9] to group 9 classes from the training
dataset (K19) into 7 classes that are best matched to the 7
classes in the test set (K16). In particular, stroma/muscle and
debris/mucus are grouped as stroma (STR) and debris (DEB),
respectively. Additionally, for K16, we excluded 625 “complex
stroma” images due to the lack of that group in the training
domain, leaving us with a test set of 4,375 images. In total,
the 7 classes that we evaluate are: adipole (ADI), background
(BACK), debris (DEB), lymphocyte (LYM), normal (NORM),
stroma (STR) and tumour (TUM).

B. Experimental Settings

In this study, we adopted ResNet-50 [22] feature extractor as
our backbone network (i.e the encoder). All the projectors in
the self-supervised training stage consist of 2 fully-connected
layers. Meanwhile, the classifier f in the transfer-learning
stage consists of only one fully-connected layer. Both pre-
trained encoder g and classifier f were trained using 4 GPUs
with a batch size of 256 and optimized with SGD default
parameters. We trained the encoder g following MoCo settings
which utilized 65,536 negatives samples. The encoder was
trained for 200 epochs with an initial learning rate of 0.03
and decayed based on a cosine annealing schedule. On the
other hand, the linear classifier f was trained for 40 epochs.
Its learning rate started at 30 and then reduced by 5 at epoch
30. For evaluating the performance, we measured the accuracy
(Acc), recall (Re), precision (Pre) and F1 of each class, then
we took the averaged and reported the results.
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Fig. 2. Example images from the two used datasets of colorectal histology images: K19 and K16. Since these two datasets
have different class definitions, stroma/muscle and debris/mucus in K19 are grouped into the stroma (STR) and debris (DEB)
in K16. On the other hand, complex stroma (COMP) in K16 is excluded from the analyses.

C. Comparative Experiments

We compare our methods with several existing domain
generalization methods.

1) Domain-specific methods: 1) (SN Macenko) [23] is a
stain normalization method proposed by Macenko, which is
used to stain normalized the whole training dataset. 2) SN
Vahadane [5] is another stain normalization method aiming to
preserve histology images’ structure.

2) Self-supervised methods: 1) InsDis [18] formulate the
supervised problem as instance-level discrimination, which
stores feature vectors in a discrete memory bank and directly
compares distances (similarity) between instances. 2)PIRL
[16] is a self-supervised method that employs the pre-text task
representation, and memory bank [18] to store the negative
sample in the self-supervised contrastive task. There are two
views in PIRL; one is the original image while the other
is cropped into nine patches, encoding these nine patches
into nine 128 dimension vectors and then concatenating them
in random order. 3) MocoV2 [10] is similar to InsDis in
constructing multiple views, but in MoCoV2, negative samples
are stored in the momentum updated manner. 4) InfoMin [11]
is a combination of InfoMin augmentation and PIRL [16].
InfoMin constructs two views while PIRL constructs one more
view; there is only one momentum encoder that constructs
a dictionary of negative samples, i.e., negative samples only
come from the InfoMin augmentation.

D. Ablation Study

We conducted experiments to investigate the contribution
of the projection heads and the momentum encoders on
the model’s overall performance when testing on a different
domain. In addition to that, we also compared the benefits of
shuffling only on the original images (PatchShuffling) against
doing the shuffling in feature space (PIRL).

IV. RESULTS AND DISCUSSION

Table I reports the performance of ResNet50 when training
and validating on K19 and testing on the unseen dataset K16.
It is clear that using pre-trained ImageNet weights for the
ResNet50 feature extractor and training the classification head

f on a dataset is enough to achieve good results on the test
data from the same domain with a 0.942 accuracy (ImageNet -
Upper Bound). However, when we trained the same model on
the K19 dataset and tested it on the K16 dataset, it performed
poorly, with a drop of more than 25% in accuracy (ImageNet
- Lower Bound). Despite the simplicity of the task at hand
and the well-known capacity of deep neural networks, these
results demonstrate that when a testing dataset is of different
distribution compared to the training set, the deep learning
model can still fail to generalize. As such, our main target
is to identify techniques that can improve the performance of
any model trained on K19 (ImageNet - Lower Bound) to the
extent that they can be comparable to those trained directly
on K16 (ImageNet - Upper Bound).

Given the fact that K16 and K19 were obtained via different
protocols, i.e., their color distribution is different, the above
premise and results suggest that utilizing simple domain-
specific adaptation techniques such as stain normalization
could improve the model performance. In this work, we
evaluated this hypothesis by employing the Macenko method
[23] and Vandadane method [5]. From Table I, we demonstrate
that such conjecture is plausible as the model performance on
F1 scores on the unseen K16 dataset was improved by about
2-3%.

We further evaluated the effectiveness of domain general-
ization techniques. Table I shows that not all self-supervised
learning approaches are noticeably superior to the more simple
stain normalization methods. In fact, out of all comparative
self-supervised learning methods, only PIRL and InfoMin
achieved higher performance compared to the baseline Im-
ageNet encoder and stain normalization techniques with more
than 10% difference in F1 and at least 7% difference in
accuracy.

From Table I, it can also be observed that our proposed IM-
PaSh outperformed all other domain-specific techniques and
state-of-the-art SSCL approaches such as stain normalization
and MoCoV2 [10], [11], [16], [24], [18]. In particular, the
F1 score on the unseen K16 dataset increases by 24% using
our proposed SSCL approach compared to using ImageNet
weights without using any stain normalization during test time.
In comparison with MoCoV2 [10] which has a single momen-
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TABLE I. Results of the domain generalization experiments between a different source domain (K19) and target domains
(K16) using various domain-adaptation techniques

Method Training Set Acc Re Pre F1

ImageNet - Upper Bound K16 (Target) 0.942 0.942 0.941 0.941
ImageNet - Lower Bound K19 0.654 0.654 0.741 0.626

SN Macenko [23] K19 0.660 0.660 0.683 0.645
SN Vahadane [5] K19 0.683 0.683 0.696 0.656

InsDis [18] K19 0.694 0.694 0.766 0.659
PIRL [16] K19 0.818 0.818 0.853 0.812

MocoV2 [10] K19 0.675 0.675 0.816 0.642
InfoMin [11] K19 0.750 0.750 0.824 0.752

IMPaSh (Ours) K19 0.868 0.868 0.887 0.865

TABLE II. Ablation results when we trained each component of IMPaSh on K19 (the source domain) and then independently
tested them on the K16 (the target domain). ME denotes using extra Momentum Encoder while Head denotes using an additional
projector

Method Head Add ME Acc Re Pre F1

InfoMin + PIRL X 0.862 0.862 0.875 0.859
InfoMin + PIRL X X 0.838 0.838 0.867 0.836

InfoMin + PatchShuffling
(IMPaSh — ours) X 0.855 0.855 0.870 0.852

InfoMin + PatchShuffling
(IMPaSh — ours) X X 0.868 0.868 0.887 0.865

tum branch and PIRL [16] which only uses Jigsaw Puzzle
Solving augmentation, our method respectively achieved 22%
and 5% higher F1-score.

We conducted an ablation study and reported the results in
Table II. The results suggest that PatchShuffling provided bet-
ter performance compared to PIRL when used in conjunction
with additional projection heads and momentum branches. On
the other hand, using momentum encoders can be detrimental
to model overall performance when jointly utilizing InfoMin
and PIRL.

To qualitatively assess the impact of each technique on
the actual image representation, we utilized UMAP (Uniform
Manifold Approximation and Projection) [25] for visualizing
the distribution of samples (i.e., their ResNet50 features) from
both source (K19) and target domain (K16) in Fig. 3. For
NORM (purple) and STR (brown) classes, we observed that
the top three methods (PIRL, InfoMin and our proposed
IMPaSh) were able to noticeably increase the distance between
these two clusters while keeping the samples from the source
(lime green) and target domains (cyan) that belong to each of
these clusters close to each other. On the other hand, image
features obtained using methods with less competitive results
like the baseline or stain normalization are highly clumped
together or visibly closer. These observations suggest that the
features from IMPaSh are highly resistant when switching
the domain from K19 to K16 for NORM and STR. In the
same vein, IMPaSh seems to provide better representation
compared to PIRL and InfoMin on LYM (red), given the small
area occupied by their samples. Nonetheless, all methods have
little success in making NORM (purple) and DEB (green)
categories more distinguishable. In our case, while IMPaSh
features for NORM and DEB samples are nicely separated
into clusters that are far from each other, the samples from

the source (lime green) and target (cyan) domains for the same
label are not close, thus indicating a strong shift in distribution.

In addition to the qualitative results, we further utilized
silhouette scores to measure the degree of separation of the
clusters obtained from each method in terms of the classes
and the domain alignment. Intuitively, from a better domain
generalization technique, we would be able to obtain clusters
that satisfy: a) the clusters of each class across all domains
will get further apart from each other while b) the clusters
of each domain within each class cluster get pulled closer.
In other words, a better method has higher silhouette scores
when measuring the clusters of class labels across domains
(class-level scores). At the same time, for methods that have
close class-level scores, one that has a smaller silhouette
score when measuring for domain alignment within each
class label (domain-level score) is the better. We present the
class-level scores in Table IIIa and domain-level scores in
Table IIIb. Consistent with our intuition, we observe that
methods that have better performance in Table I achieved
higher scores than others in Table IIIa. Interestingly, PIRL
has a higher score than IMPaSh while having noticeably
lower classification performance. When measuring domain-
level separability in IIIb, IMPaSh achieved the lowest score
when averaging across all classes, but PIRL is the closest in
terms of overall performance. All in all, results in IIIa and
IIIb further demonstrate the benefits of IMPaSh framework.
However, contradictory observations for PIRL and IMPaSh
suggest further investigations in the future are required.

V. CONCLUSION

We proposed a new augmentation named PatchShuffling and
a new SSCL framework called IMPaSh that utilize momentum,
PatchShuffling and InfoMin to pre-train a neural network
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Fig. 3. The UMAP [25] visualization of the source (K19) and target (K16) domain feature representation vectors for domain
alignment (top row) and the different classes’ representations (bottom row). We compare our (g) IMPaSh methods and the a)
baseline ImageNet encoder, b) ImageNet encoder+SN and 2 other self-supervised methods e) MoCoV2 and f) InfoMin.

encoder. We demonstrated that the resulting encoder was able
to extract discriminative image representation while being
highly robust against distribution shift. However, our research
stops short of evaluating only colorectal tissue classification.
Further investigations are required to identify if our IMPaSh
can scale for other tasks and/or with more data. In addition,
as PatchShuffling is quite modular, investigations on using it

in combination with other domain-specific augmentations may
also be beneficial for improving IMPaSh.
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TABLE III. Quantitative measurements on the degree of separations across clusters in term of class label and domain alignment
for each method

(a) Silhouette scores when measuring clusters of each class (higher is better)

Domains ImageNet SN
Vahadane InsDis PIRL MoCov2 InfoMin IMPaSh

Target 0.402 0.461 0.465 0.485 0.410 0.471 0.553
All 0.144 0.199 0.246 0.360 0.171 0.264 0.311

(b) Silhouette scores when measuring clusters of each domain within each class cluster (lower is better)

Class ImageNet SN
Vahadane InsDis PIRL MoCov2 InfoMin IMPaSh

ADI 0.557 0.559 0.497 0.580 0.689 0.544 0.667
BACK 0.808 0.671 0.617 0.614 0.687 0.707 0.580
DEB 0.214 0.139 0.137 0.132 0.067 0.056 0.057
LYM 0.815 0.719 0.652 0.517 0.500 0.436 0.332

NORM 0.304 0.181 0.282 0.291 0.335 0.384 0.320
STR 0.448 0.499 0.405 0.418 0.413 0.442 0.418
TUM 0.647 0.512 0.448 0.426 0.582 0.580 0.545

All 0.542 0.469 0.434 0.425 0.468 0.450 0.417
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