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Abstract. Algorithmic surgical workflow recognition is an ongoing re-
search field and can be divided into laparoscopic (Internal) and operating
room (External) analysis. So far, many different works for the internal
analysis have been proposed with the combination of a frame-level and an
additional temporal model to address the temporal ambiguities between
different workflow phases. For the External recognition task, Clip-level
methods are in the focus of researchers targeting the local ambiguities
present in the operating room (OR) scene. In this work, we evaluate the
performance of different combinations of common architectures for the
task of surgical workflow recognition to provide a fair and comprehen-
sive comparison of the methods for both settings, Internal and External.
We show that the methods particularly designed for one setting can be
transferred to the other mode and discuss the architecture effectiveness
considering the main challenges for both Internal and External surgical
workflow recognition.

Keywords: Surgical Workflow Analysis · Surgical Phase Recognition ·
Concept ablation · Cholecystectomy · Benchmarking · Analysis

1 Introduction

Automatic recognition of surgical workflow is essential for the Operating Room
(OR) of the future, increasing the patient’s safety through early detection of
surgical workflow variations and improving the surgical results [16]. By supplying
surgeons with the necessary information for each surgical step, a cognitive OR
can reduce the stress induced by an overload of information [20] and build the
foundation for more efficient surgical scheduling and reporting systems [3].

Research in Surgical workflow analysis is separated into two fundamental di-
rection (modes). The first mode is analyzing the internal surgical scene captured
by laparoscopic or robotic cameras, which has been the main research focus in
the past (Internal). Procedures such as laparoscopic cholecystectomy, colorectal
and laparoscopic sleeve gastrectomy have been widely analyzed [14].
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The other mode is closely related to activity and action recognition, where
cameras are placed inside the OR to capture human activities and external
processes (External) [29]. These external cameras are rigidly installed to the
ceiling or are attached to a portable cart. The goal of external OR workflow
analysis is to capture the events happening inside the OR such as patient roll-in
or docking of a surgical robot [27].

Automatic surgical workflow recognition remains challenging due to the lim-
ited amount of publicly available annotated training data, visual similarities of
different phases, and visual variability of frames among the same phase. The
External OR scene is a complex environment with many surgical instruments
and people working in a dense and cluttered environment. Compared to popular
action recognition datasets, such as the Breakfast Action [22] or the GTEA [11]
dataset, the duration of a surgery is considerably longer. Therefore, the amount
of information to be analyzed is substantially higher. Additionally, factors like
variation of patient anatomy or surgeon style and personal preferences impose
further challenges for the automatic analysis.

Our primary goal in this study is to identify the advantages and disadvan-
tages of the fundamental building blocks used for surgical phase recognition in
a structured and fair manner. We do not aim to establish a new state-of-the-
art model or directly compare out-of-the-box methods, similar to endoscopic
challenges. Our main objective and contribution is, considering the challenges
of surgical phase recognition, to compare different network architecture blocks
and main conceptual components that have been widely used for surgical phase
recognition, analysing their advantages and disadvantages.

1.1 Related Work

The analysis of the internal surgical workflow is an ongoing research topic [24]
that gained additional attention with the introduction of convolutional neural
networks (CNNs) for computer vision tasks [30]. The basic building blocks of such
approaches consisted of a frame-level method in combination with a temporal
method to analyze the temporal context. Even though the frame-level methods
got upgraded to more recent architectures [4, 18] with more learning capabilities,
the majority of research tried to improve the results with more capable tempo-
ral models such as Recurrent Neural Networks (RNNs) [31]. Jin et al. [19] used
Long short-term memory (LSTM) Networks [4] to temporally refine the surgi-
cal phase results with the prediction of the surgical tool and showed that both
tasks profited from this combination. Czempiel et al. [7] proposed to replace
the frequently used LSTMs with a multi-stage temporal convolution network
(TCN) [10] analyzing the long temporal relationships more efficiently. Addition-
ally, attention-based transformer architectures [32] have been proposed [13, 8] to
refine the temporal context even further and increase model interpretability.

Fair Evaluation. One of the biggest challenges in this domain is the limited
benchmarking between existing methods. New architectures are proposed, incre-
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Fig. 1. Stage 1 consists of the backbone models on both frame- and clip-level. Stage 2
describes the additional temporal training on extracted features

mentally improving the results on the datasets. However, tracing improvements
back to each fundamental architectural changes remains a challenging task.

Researchers have to choose from a plethora of additional settings and meth-
ods that can influence the results such as data augmentation, choice of optimiz-
ers, learning rate schedules, or even dataset splits. The comparison gets even
more challenging for 2-Stage methods that split the training into an image to
feature and feature to prediction part which allows for long temporal modelling
which otherwise would not be possible due to computational hardware limita-
tions. In Figure 1 an overview of the different model combinations and configu-
rations as Stage 1 and Stage 2 models is visualized. The novelty of some works
is only limited to the Stage 2, however the quality of the extracted features from
Stage 1 is essential for a method’s overall prediction. Hence, the final results
generated in the Stage 2 heavily rely on the Stage 1 features making it difficult
to pinpoint the exact point of improvement. Finally, publicly available datasets
usually provide limited training data, compromising model performance on un-
seen data. Thus, the conclusions we get can be misleading or only applicable to
a particular dataset.

A very effective way to make a comparison fair for all participants is through
the creation of challenges with an unpublished test set that is used to evaluate
all submissions. The computer-assisted intervention community releases different
challenges every year such as the Endovis5 grand challenge. We strongly believe
that challenges are a fundamental tool to identify the best solution for a surgical

5 http://endovissub-workflow.grand-challenge.org
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workflow task. However, even in public challenges the choice of learning strate-
gies, learning rates, frameworks, optimizers vary among participants making the
impact of each methodological advancement hard to identify. Nevertheless, ar-
chitectural studies can provide additional insights to identify the methodological
advancements in a structured way.

To this end, we conduct a fair and objective evaluation on multiple architec-
tures for both Stages 1 and 2. We evaluate the various architectural components
on two datasets for internal and external surgical workflow recognition.

2 Analysis of Challenges: Local vs. Global

Descriptive Frames. In Fig. 2 we visualized the four main architectural differ-
ences for video classification that are discussed in this paper: end-to-end Image
and Clip level methods and 2-Stage Image and Clip methods with an additional
temporal model operating on extracted features. For descriptive frames such as
the ones visualized in Figure 2 all of the aforementioned main architectural di-
rections are likely to produce correct results. A single descriptive image is enough
in this case to correctly identify the Phase as clipping&cutting (IP3) mainly due
to the presence of the clipping tool that only appears in that particular phase.

Local Ambiguities. In the second row of Figure 2 two examples of frames
with Local Ambiguities are shown. In the external scene several occlusions of
the camera appear, caused by bulky OR equipment or medical staff operating
in a crowded environment. In the internal scene, the view can be impeded by
smoke generated during tissue coagulation or pollution of the endoscopic lens
through body fluids. Surgical frames do not receive a phase label purely based
on their visual properties but also based on their semantic meaning within the
OR. Surgical workflow analysis methods should be able to categorize ambiguous
frames, such as ones captured with a polluted lens, based on this global semantic
context. However, purely image-level methods lack the temporal context and
the semantic information of previous time points to resolve ambiguities reliably.
Clip-level methods are able to understand the context of a frame neighbourhood,
which is mostly sufficient as these Local Ambiguities in the internal and external
OR scene often only persist for a few seconds before the person in the scene moves
to a different location or the surgeon cleans the lens to continue the surgery safely.

Global Ambiguities. There are many activities in the external and internal
analysis with high visual similarities belonging to different phases (high inter-
class similarities). For instance, the phases of patient roll-in and roll-out in the
external dataset contain frames that look almost identical (Figure 2). To cor-
rectly differentiate these two phases only based on single images could be chal-
lenging even for an experience surgeon. Considering a limited temporal context
could also be insufficient for a correct classification, since the activity can be
considerably longer. However, the rich temporal context modeled in a 2-Stage
approach, can alleviate this confusion more effectively as it is clear that the
roll-out phase appears always after the roll-in phase.
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Fig. 2. Different types of Surgical Workflow Datasets Internal (IE) and External (EP)
along with three frames from each datasets that highlight Local and Global Ambi-
guities. On the right we highlight different architectural choices regarding the input
type and addition of a temporal component (+Temp) that can be used to address the
ambiguities

3 Methodology

We conduct a fair and objective evaluation on multiple architectures under the
same settings. We evaluate our results on two different datasets for internal and
external surgical workflow recognition. Each surgical workflow video consists of
different amount of frames T . For each frame xt ∈ {x1, x2, . . . xT } the target is
to create an accurate prediction corresponding to the label yt of the frame-level
model fframe(xt) = ŷt. For the clip-level model the input is not a single frame
but a sequence of frames x⃗n

t = (xt−n, xt−n+1, . . . , xt) were n is the size of the
input clip to generate one prediction f clip (x⃗n

t ) = ŷt. In the feature extraction
process we extract for each time point t of a video a feature vector v⃗t. The
feature vectors from an entire video V⃗T = {v⃗1, v⃗2, . . . , v⃗T } are then used as input
for the temporal models of the second Stage that predict a corresponding output
probability for all feature vectors f temp(V⃗T ) = ˆ⃗yT , where ˆ⃗yT = (ŷ1, ŷ2, . . . , ŷT ).

3.1 Visual Backbone - Stage 1

Frame-level. Frame-level methods operate on a single image using the visual
contend to create a classification (Figure 1 - Prediction Frame). For the task
of surgical workflow recognition a purely frame-level model has problems in
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resolving Local Ambiguities as discussed in section 2. The one exception to this
is when a particular local ambiguity only appears in a single phase of the surgery
which would make the local ambiguity a descriptive frame for both algorithm and
clinician. A surgeon would still be able to resolve local ambiguities by considering
the frames proceeding the ambiguous one.
Clip-level.We can imitate the strategy to also consider proceeding frames using
Clip-level models that take as input multiple frames to refine the frame-level
prediction. Clip-level models usually have a limited temporal knowledge but
have the ability to detect motion patterns and directions which is critical when
predicting activities. In contrast to frame-level models, clip-level models are more
resilient to local ambiguities by design. However, both frame and clip level models
have trouble handling Global Ambiguities. Thus, using a Temporal Model in an
additional training Stage can be used to address this challenge.
Models. For the frame-level methods we build up on the many previous works
in this domain by using the CNN based ResNet-50 [15] model. Additionally, we
utilize a novel visual transformer network Swin [23] into our study, that does not
perform any convolutions but purely relies on self-attention, with state-of-the-
art performance on the large scale Imagenet image classifcation task [9]. Both
models have a similar amount of parameters and memory requirements. For
the Clip-level methods we choose the expanding architectures for efficient video
recognition (X3D) [12] based on 3D CNNs and residual layers, which outperform
many methods with a substantially higher number of learnable parameter on the
challenging kinetics human action dataset [28].

Feature Extraction. Due to hardware memory limitations, training the Visual
Backbone end-to-end with a temporal model is often impossible. Hence, training
the temporal models is done in a second Stage using the feature embedding v
extracted from the Stage 1 models.

3.2 Temporal Models - Stage 2

To address the Global Ambiguities discussed in section 2 an additional temporal
model can be used with the capabilities to analyse the entire surgical procedure
at once.
Models. For the temporal models of the Stage 2 we first utilize commonly used
architectures, such as RNNs and specifically Gated Recurrent Units (GRU) [1]
which have been shown to achieve comparable results to LSTMs with a sim-
plified architecture [5]. RNNs follow an autoregressive pattern for the inference
where each prediction builds up on the previous one. Temporal convolutions [10]
(TCN), on the other hand, follow a non-autoregressive structure taking all the
past time points as input for the current prediction. Temporal transformer ar-
chitectures follow a similar non-autoregressive pattern but tend to overfit more
easily due to their increase amount of learable parameters. TCNs are lightweight
and fast to train which is why we selected them as the architectural choice for
the non-autoregressive group. In Figure 1 the different combinations of Stage 1
frame- and clip-based models with a Stage 2 temporal model is visualized.
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Table 1. Phase Definitions for the datasets used in this study Cholec80 as the Internal
dataset with Internal Phases (IP) and External DS as External dataset with External
Phases (EP).

Cholec80 Phase Names External DS Phase Names

IP1 preparation EP1 sterile preparation
IP2 calot triangle dissection EP2 patient roll-in
IP3 clipping&cutting EP3 patient preparation
IP4 gallbladder dissection EP4 robot roll-up
IP5 gallbladder packaging EP5 robot docking
IP6 cleaning & coagulation EP6 surgery
IP7 gallbladder retraction EP7 robot undocking

EP8 robot rollback
EP9 patient close
EP10 patient roll-out

4 Experimental Setup

In the following we conducted an ablation of the aforementioned methods while
keeping the hyperparameters of the architecture comparable to conduct a fair
and comprehensive study on two dataset for surgical workflow recognition. The
phase names of both datasets are summarized in Table 1. The Cholec80 dataset
contains surgery specific phases while the External dataset phases are less specific
to an intervention.

4.1 Datasets

Cholec80. The internal workflow recognition capabilities are evaluated with
the publicly available Cholec80 [30] dataset that includes 80 cholecystectomy
surgeries were every RGB-frame belongs to one out of seven surgical phases (Ta-
ble 1). We split the dataset into half training and half testing as described in [30]
For a fair comparison between datasets we did not use the additional surgical
tool labels in Cholec80.
External DS. The external dataset (External DS) includes 400 videos from
103 robotic surgical cases. The dataset includes 10 different phases describing
the workflow in the OR (Table 1). Every surgery is recorded from four different
angles. We treat each angle as a separate input for our model and strictly sepa-
rate the recordings on a procedural level. Recordings of the same surgery from
different views were always in the same train or test split. In this work, we do
not consider the combination of multiple views of one surgery as this is out of
scope for our work. We used time of flight cameras (ToF) not only for improved
privacy compared to RGB but ToF also provides geometrical rich information
about the scene. External DS contains 10 general, surgery type agnostic, classes
for robotic surgery in a multi-label setting. The dataset contains 28 different
surgery types all recorded using an daVinci Xi surgical system. We used 80%
of all videos for training and the remaining 20% of all videos for testing. To
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ensure generalizability of our approach to various minimally invasive surgical
procedures, all training videos originated from 16 surgery types and all testing
videos from the remaining 12 surgery types with no overlap.
Model Training. For our training setup we keep the training configuration
options constant between the different methods to establish a fair evaluation.
This way, we try to develop a comparison focusing on the main architectural
design choices without unwanted metric advantages by using, e.g., a more so-
phisticated optimizer or training scheme. For the learning on the multi-class
Cholec80 dataset we are using the Cross-Entropy and the Binary Cross-Entropy
loss for the multi-label External DS. For all our experiments we used the Adam
optimizer with a learning rate of 1e-4 for the Stage 1 models and 1e-3 for the
Stage 2 models with a step learing rate scheduler (beta: 0.1, interval: 10 epochs).
For the training of the Stage 1 models we used the RandAugment [6] which com-
bines a multitude of different augmentation techniques in an optimized manner.
For both datasets, we resize all the frames from each video to 224x224 pixels
which allowed us to use pretrained weights on ImageNet [9] (ResNet, Swin) and
Kinetics [21] (X3D) to accelerate the convergence. We further follow the related
work and subsample both datasets to 1 frame per second. All of our experiments
are performed using python and the deep learning training library pytorch.

4.2 Architecture Settings

For all our models we adapted the size of the output fully-connected layer to
match the number of surgical phases for each dataset (Output layer - Internal
dataset: 7, Output layer - External dataset: 10).
ResNet. We choose the ResNet-50 model with pretrained ImageNet weights.
Swin. For the visual transformer architecture we choose the Swin-T version with
initialized weights from Imagenet.
X3D. For the X3D architecture we choose X3D-M a efficient compromise be-
tween model size and performance. We set the size of the input clip n to 16
frames resulting in a temporal receptive window of 16 seconds. The weights are
initialized from Kinetics.
GRU For GRU we used a hidden dimensionality matching the dimensionality of
the features extrated from the Stage 1 models. Additionally we selected 2 GRU
layers.
TCN. For the TCN model we used 15 layers over 2 Stages and ensured to set
the models in causal inference mode for online phase recognition results without
temporal leakage.

4.3 Evaluation Metrics and Baselines.

To comprehensively measure the results we report the the harmonic mean (F1)
of Precision and Recall [24]. Precision and Recall are calculated by averaging
the results for each class over all samples followed by an average over all class
averages. In that way the metrics are reported on a video level to make sure
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Table 2. Comparative study of architectural components for surgical phase recognition
using different model backbones for Stages 1 and 2 on our selected surgical workflow
datasets.

Architecture Cholec80 External DS
Stage 1 Stage 2 Acc F1 mAP F1

ResNet 81.23±2.5 71.27±3.0 67.50±1.9 58.66±0.7
Swin 82.16±1.7 71.86±2.3 68.89±1.8 59.89±0.4
X3D 82.62±2.6 77.55±1.8 69.33±1.4 68.42±0.9

ResNet GRU 85.62±2.4 76.68±1.7 70.8±1.9 65.12±1.5
Swin GRU 87.73±2.2 80.65±1.2 67.81±2.0 63.65±1.3
X3D GRU 85.53±1.7 78.99±1.4 80.35±1.5 76.70±1.1

ResNet TCN 87.37±1.4 82.48±1.8 67.34±1.9 65.35±0.9
Swin TCN 87.55±0.7 81.70±1.6 73.02±3.1 71.08±2.0
X3D TCN 85.81±1.4 80.41±1.3 77.15±1.5 74.96±1.6

that a long and short intervention contribute equally to the results. For the
multiclass cholec80 dataset we also used the mean accuracy following Endonet
[30], averaged over all videos of the test set, since it is a commonly used metric
for surgical workflow recognition. For the multi-label external surgical workflow
dataset we chose the mean average precision (mAP [17]) as an objective metric
similar to other works in the field of activity and action recognition [27]. All of
the models are run with 3 different random seeds and the mean and standard
variation across the runs are reported.

5 Results and Discussion

In Table 2 the models with temporal components in Stage 2 (GRU, TCN) have
been trained with extracted features from the respective visual backbones of
Stage 1 (ResNet, Swin, X3D). On both Cholec80 and External DS the image-level
Swin backbone improves the results of the ResNet architecture on all metrics.
The clip-level modeling with local temporal context in X3D further improves the
results which is especially noticeable in the F1 score for both Cholec80 (+5.69%)
and the External DS (+8.62%).

Furthermore, with the addition of a temporal model we can refine the results,
leading in an increase in both Accuracy and F1 on Cholec80 for both the TCN
and GRU. On Cholec80, the TCN improves the results more than GRU on
most settings (ResNet, X3D) but the combination of Swin and GRU achives the
highest accuracy. For the External DS although the F1 results are generally more
stable with the addition of TCN, the best result is achieved with a combination
of X3D with GRU (80.35 mAP, 76.70 F1).

In the discussion we want to bring together the implications of the Analysis
of Challenges (Section 2) and the practical results of the architectural study. In
Figure 1 we see that the addition of the temporal models should indeed improve
the results as it is more capable to establish a longer temporal context and
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resolving the global ambiguities. In fact, the results (section 5) showcase that
the addition of a temporal model such as GRU or TCN improves the metrics
across the board.

Additionally, as we reasoned in Section 2, Clip-level models would be able to
resolve Local Ambiguities more effectively in comparison to Image-level models.
Indeed, our results highlight that the clip-level model achieves higher Acc (82.62)
compared to both image-level models and outperforms them regarding their F1-
score on both datasets (+6% and +8%).

Interestingly, all metrics on Cholec80 highlight that the addition of a tem-
poral model is beneficial, as expected. However, for External DS SwinGRU and
ResTCN achieve marginally lower mAPs (67.81 and 67.34 respectively) com-
pared to Swin (68.89) and ResNet (67.50). However, the F1-score for the Exter-
nal DS is still consistently improved by the addition of a Stage 2 model, which
shows the need for evaluating multiple metrics to determine which model would
be better suited for computer-aided surgical workflow systems.

Moreover, our results show that the clip-level backbone could not reach the
performance of the frame-level backbones when combined with a temporal model
on Cholec80. This could be attributed to the limited amount of training data
in comparison to External DS and to the increased amount of learnable param-
eters, that could cause overfitting on the clip-level backbone. We believe, that
since clip-level models are capable of overcoming Local Ambiguities and have
shown to outperform image-level architectures on the External DS, they will be
more widely used and preferred once the internal surgical workflow recognition
datasets, as soon as they expand further.

6 Conclusion

In this work we presented a fair analysis of models for the task of surgical work-
flow recognition on two datasets. We conducted an analysis of the challenges
related to surgical workflow recognition and provided an intuition on how archi-
tectures can be chosen specifically to address them.

Our results show that utilizing a Temporal Model is a critical component
of a model for surgical workflow and can help overcome Global Ambiguities.
TCNs are particularly suitable as temporal models, combining a low number of
trainable parameters and a large receptive field. Furthermore, we showed that
clip-level models can alleviate Local Ambiguities on the External DS and have
the potential of benefiting Internal Datasets as they expand in training data size.
Future work includes utilizing recently introduced transformer architectures [8,
13] as temporal backbones, since they have the potential to increase the model
performance. However, using larger datasets is critical when training such com-
plex architectures or analyzing procedures including more surgical phases with
longer duration and higher surgical complexity.

Furthermore, as has been recently shown [26] the choice of the evaluation
metric is crucial and should carefully consider for each task. This is in line with
the results of our study, where models’ mAP, Acc and F1-score were critical for
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the fair evaluation and comparison of each architecture. Finally, when comparing
model architectures for surgical workflow analysis, the model robustness [25] and
tolerance to outliers [2] could additionally be taken into account.
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internship by Tobias Czempiel at Intuitive Surgical Inc.
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20. Katić, D., Schuck, J., Wekerle, A.L., Kenngott, H., Müller-Stich, B.P., Dillmann,
R., Speidel, S.: Bridging the gap between formal and experience-based knowledge
for context-aware laparoscopy. International Journal of Computer Assisted Radiol-
ogy and Surgery 11(6), 881–888 (2016). https://doi.org/10.1007/s11548-016-1379-
2

21. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S.,
Viola, F., Green, T., Back, T., Natsev, P., Suleyman, M., Zisserman, A.: The Ki-
netics Human Action Video Dataset (may 2017), http://arxiv.org/abs/1705.06950

22. Kuehne, H., Arslan, A., Serre, T.: The language of actions: Recovering the syntax
and semantics of goal-directed human activities. Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition pp. 780–
787 (2014). https://doi.org/10.1109/CVPR.2014.105

23. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Trans-
former: Hierarchical Vision Transformer using Shifted Windows. In: IEEE/CVF
International Conference on Computer Vision (ICCV). pp. 9992–10002 (2021),
http://arxiv.org/abs/2103.14030

24. Padoy, N., Blum, T., Ahmadi, S.A., Feussner, H., Berger, M.O., Navab,
N.: Statistical modeling and recognition of surgical workflow. Medical Im-



14 T. Czempiel et al.

age Analysis 16(3), 632–641 (2012). https://doi.org/10.1016/j.media.2010.10.001,
http://dx.doi.org/10.1016/j.media.2010.10.001

25. Paschali, M., Conjeti, S., Navarro, F., Navab, N.: Generalizability vs. robustness:
investigating medical imaging networks using adversarial examples. In: Interna-
tional Conference on Medical Image Computing and Computer-Assisted Interven-
tion. pp. 493–501. Springer (2018)

26. Reinke, A., Maier-Hein, L., Christodoulou, E., Glocker, B., Scholz, P., Isensee, F.,
Kleesiek, J., Kozubek, M., Reyes, M., Riegler, M.A., et al.: Metrics reloaded-a new
recommendation framework for biomedical image analysis validation. In: Medical
Imaging with Deep Learning (2022)

27. Sharghi, A., Haugerud, H., Oh, D., Mohareri, O.: Automatic Operating
Room Surgical Activity Recognition for Robot-Assisted Surgery. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 12263 LNCS, 385–395 (2020).
https://doi.org/10.1007/978-3-030-59716-0 37

28. Smaira, L., Carreira, J., Noland, E., Clancy, E., Wu, A., Zisserman, A.: A
Short Note on the Kinetics-700-2020 Human Action Dataset. arXiv (i) (2020),
http://arxiv.org/abs/2010.10864

29. Srivastav, V., Issenhuth, T., Kadkhodamohammadi, A., de Mathelin, M., Gangi,
A., Padoy, N.: MVOR: A Multi-view RGB-D Operating Room Dataset for
2D and 3D Human Pose Estimation. MICCAI-LABELS pp. 1–10 (2018),
http://arxiv.org/abs/1808.08180

30. Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., De Mathelin, M.,
Padoy, N.: EndoNet: A Deep Architecture for Recognition Tasks on Laparo-
scopic Videos. IEEE Transactions on Medical Imaging 36(1), 86–97 (jan 2017).
https://doi.org/10.1109/TMI.2016.2593957

31. Twinanda, A.P., Padoy, N., Troccaz, M.J., Hager, G.: Vision-based Approaches
for Surgical Activity Recognition Using Laparoscopic and RBGD Videos. Thesis
(Umr 7357) (2017), https://tel.archives-ouvertes.fr/tel-01557522/document

32. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. Advances in Neural Information Pro-
cessing Systems 2017-Decem(Nips), 5999–6009 (2017)


