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Abstract. Inferring 3D human pose from 2D images is a challenging
and long-standing problem in the field of computer vision with many
applications including motion capture, virtual reality, surveillance or gait
analysis for sports and medicine. We present preliminary results for a
method to estimate 3D pose from 2D video containing a single person
and a static background without the need for any manual landmark
annotations. We achieve this by formulating a simple yet effective self-
supervision task: our model is required to reconstruct a random frame
of a video given a frame from another timepoint and a rendered image
of a transformed human shape template. Crucially for optimisation, our
ray casting based rendering pipeline is fully differentiable, enabling end
to end training solely based on the reconstruction task.
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1 Introduction

Inferring 3D properties of our world from 2D images is an intriguing open prob-
lem in computer vision, even more so when no direct supervision is provided in
the form of labels. Although this problem is inherently ill-posed, humans are able
to derive accurate depth estimates, even when their vision is impaired, from mo-
tion cues and semantic prior knowledge about the perceived world around them.
This is especially true for human pose estimation. Self-supervised learning has
proven to be an effective technique to utilise large amounts of unlabelled video
and image sources. On a more fundamental note, self-supervised learning is hy-
pothesised to be an essential component in the emergence of intelligence and
cognition. Moreover, self-supervised approaches allow for more flexibility in do-
mains such as the medical sector where labels are often hard to come by. In this
paper we focus on self-supervised 3D pose estimation from monocular video, a
key element of a wide range of applications including motion capture, visual
surveillance or gait analysis.

Inspired by previous work, we model pose as a factor of variation throughout
different frames of a video of a single person and a static background. More
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formally, self-supervision is provided by formulating a conditional image recon-
struction task: given a pose input different from the current image, what would
that image look like if we condition it on the given pose? Differently from previ-
ous work, we choose to represent pose as a 3D template consisting of connected
parts which we transform and project to two-dimensional image space, thereby
inferring 3D pose from monocular images without explicit supervision.

More specifically, our method builds upon the recent emergence and success
of combining deep neural networks with an explicit 3D to 2D image formation
process through fully differentiable rendering pipelines. This inverse-graphics
approach follows the analysis by synthesis principle of generative models in a
broader context: We hope to extract information about the 3D properties of
objects in our world by trying to recreate their perceived appearance on 2D
images. Popular rendering techniques rely on different representations including
meshes and polygons, point clouds or implicit surfaces. In our work we make use
of volume rendering with a simple occupancy function or density combined with
a texture field that assign an occupancy between [0,1] and RGB colour value
¢ € R3 for every point defined on a regular 3D grid.

2 Related Work

Monocular 3D Human Pose Estimation Human pose estimation in general
is a long standing problem in computer vision with an associated large body
of work and substantial improvements since the advent of deep-learning based
approaches. Inferring 3D pose from monocular images however remains a chal-
lenging problem tackled by making use of additional cues in the image or video
such as motion or multiple views from synchronised cameras or introducing prior
knowledge about the hierarchical part based structure of the human body.
Lifting from 2D to 3D Many works break down the problem into first estimat-
ing 2D pose and subsequently estimate 3D pose either directly [19], by leveraging
self-supervision through transformation and reprojection [I5] or a kd-tree to find
corresponding pairs of detected 2D pose and stored 3D pose [4].

Motion Cues From Video Videos provide a rich source of additional temporal
information that can be exploited to limit the solution space. [16], [§], [2] and
[10] use recurrent architectures in the form of LSTMs or GRUs to incorporate
temporal context while [23] employ temporal convolutions and a reprojection
objective.

Multiple Views Other approaches incorporate images from multiple, synchro-
nised cameras to alleviate the ill-posedness of the problem. [22], [31] and [24]
fuse multiple 2D heatmaps while [26] and[27] utilize multi-view consistency as a
form of additional supervision in the objective function.

Human Body Prior Using non-paremetric belief propagation, [29] estimate
the 2D pose of loosely-linked human body parts from image features and use
a mixture of experts to estimate a conditional distribution of 3D poses. Many
more recent approaches rely on features extracted from convolutional neural
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Fig. 1. Our method — left to right— An input frame z passes through the pose extractor
encoder ¢ and produces the transformation parameters for each skeletal node of the
shape template T. The transformed template is then rendered and concatenated with
a random frame of the same sequence, xs¢, and is passed into an auto-encoder that’s
tasked to reconstruct the original frame.

networks [14]. Many works such as [7], [II] and [I0] make use of SMPL [Ig],
a differentiable generative model that produces a 3D human mesh based on
disentangled shape and pose parameters. [32] leverage kinematic constraints to
improve their predictions while [12] leverage a forward kinematics formulation in
combination with the transformation of a 2D part-based template to formulate
self-supervision in form of image reconstruction similar in some ways to our
approach.

Human Neural Rendering Recently, neural rendering approaches, ie. fully
differentiable rendering pipelines, have gained a lot of attention. Volume render-
ing techniques [[I7], [20]] have been demonstrated to be powerful tools to infer
3D properties of objects from 2D images when used in combination with neural
networks. The end-to-end differentiability offers the intriguing opportunity to di-
rectly leverage pixel-wise reconstruction losses as a strong self-supervision signal.
This has sparked a number of very recent works estimating human 3D shape and
pose via neural radiance fields [20] [[13], [30]] or signed-distance function based
rendering [6].

3 Method

Our approach relies on self-supervision through image reconstruction condi-
tioned on a transformed and rendered shape template. The images are sampled
from a video containing a single person moving in front of a static background.
More formally, the goal is to reconstruct a number of frames (x¢,,x;, ) from ran-
dom time points t1, ..., t, in a video with access to one frame x;, , again sampled
randomly, and rendered images of transformed templates T4y, ..., Ty.

Our method can be viewed in two distinct steps; regression of template trans-
formation parameters and image reconstruction, where both steps are parameter-
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ized using deep convolutional neural networks. An encoder network ¢ regresses
rotation, translation and scale parameters from frame x; in order to transform
each skeletal node of a 3D shape template, T. The generator network 1) takes
as input; (a) a frame x5, from a different time instance of the same sequence
where the same person assumes a different pose, and (b) a rendered image of
the transformed 3D template while being tasked to reconstruct frame x;.

The encoder ¢ consists of a convolutional neural network for feature ex-
traction followed by a number of linear layers and a reshape operation. The
generative network 1 resembles a typical convolutional encoder-decoder struc-
ture utilised for image translation, where feature maps are subsequently down-
sampled via strided convolutions and the number of features increases. For the
decoder we utilise bilinear upsampling and spatially adaptive instance normali-
sation (SPADE) [21] to facilitate semantic inpainting of the rendered template
image.

3.1 Template and Volume Rendering

Shape Template: A shape template, T, consists of K Gaussian ellipsoids
that are arranged in the shape of a human. Each skeletal node, denoted as
T, is defined on a regular volumetric grid and represents a single body part.
All ellipsoids are parameterized by their mean p; and co-variance 3. On the
volumetric grid wee define two functions: a scalar field f : R® — [0,1] that
assigns a value to each point (x,y,z) on the grid — in the volume rendering
literature it is commonly referred to as the occupancy function, and a vector
field ¢ : R? — C C R? specifying the RGB-colour for each point, commonly
referred to as the colouring function.

Raycasting and Emission Absorption Function: We make use of an ex-
isting implementation of the raycasting algorithm shipped with the PyTorch3D
package [25] to render the template image. Given a camera location ry € R3,
rays are “emitted” from ro that pass through each pixel u; € R? lying on a 2D
view plane S by sampling uniformly spaced points along each ray starting from
the intersecting pixel:

p; = u; + jés, (1)
where j is the step and Js the step size that depends on the maximum depth
and number of points along each ray.

The colour value at each pixel location u; is then determined by a weighted
sum of all colour values of the points sampled along the ray:

J
= wje (2)
j=0

The weights w; are computed by multiplying the occupancy function f(x) with
the transmission function T(x) evaluated at each point p along the ray:

w; = f(p;) - T(py), (3)
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where T'(x) can be interpreted as the probability that a given ray is not termi-
nated, i.e. fully absorbed, at a given point x and is computed as the cumulative
product of the complement of the occupancy function of all k£ points up until

Pj:
T(x) =[]0 - f(xs) (4)
k
Repeating this for all pixels in the view plane results in a 2D projection of our
3D object representing the rendered image f, € R3*hxw,

3.2 Pose regression and shape transformation

In order to estimate the skeletal pose of a given frame, we use the encoder
network, ¢ : R3*"*w — R3K+3 hased on the ResNet-34 architecture [I].

The encoder maps a color input image of size h X w to K rotation and
scale vectors, (r,s)1.x € R3, and a single global translation vector, t € R3
for the camera. K denotes the number of transformable parts in the template.
Here, rotation is parameterised via axis-angle representation, and is subsequently
converted to 3D transformation matrices using the Rodrigues’ rotation formula.
Combined with the scaling parameter for each axis, the resulting matrix defines
the affine mapping, excluding the sheer component, for spatial transformation
of each skeletal node.

After construction of the 3D transformation matrix, each Gaussian ellipsoid
of the template T, with occupancy f(x) and colour field ¢ (x), gets transformed
according to the regressed parameters. Finally, utilising the aforementioned ray-
tracing method we render an image based upon our transformed template by
summing together all transformed occupancy and colour fields and clipping to a
maximum value of 1:

Ty = 24,(Ty) (5)
£, :R(ka(x)vzck(x))’ (6>
k

,where R denotes the rendering operation.

3.3 Kinematic chain

Instead of relying on an additional loss to enforce connectivity between body
parts as in [28], we define a kinematic chain along which each body part is
reconnected to its parent via a translation after rotation and scale have been
applied.

Given a parent and child body part with indices n and m respectively, we define
anchor-points a;' and aj" € R3 on each part representing the area of overlap
in the non-transformed template (see Figure 2| right). If body part m is being
transformed, the position of the anchor point changes: aj' = Haj", where H €
R3*3 specifies a transformation matrix. To ensure continuous connectivity, we
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Fig. 2. llustration of the kinematic chain. Red circles denote anchor-points. Following
a transformation of the upper part, the translation t = a7 — aj" is applied to enforce
continuity

apply the transformation for the child body part in an analogous way, it is
reconnected with the parent node by applying translation t = aj —a;". We first
transform the core, and then proceed with all other parts in an iterative fashion
along the kinematic chain as depicted in Figure [2] left.

3.4 Loss function

The loss function is a sum of individual components: the reconstruction loss as
the pixel-wise {?>-norm between the decoder output and the original image and
a boundary loss of the form

. Qg i, if |azq| >1 ,
‘*f{o“ RIS W AR

,where a, ; is the x-component of a projected and transformed anchor point.
Note that we normalise image coordinates to (—1,1).

We also regularise the pose regression via the I2-norm of the rotation vector
r and decay this term linearly to 0 after 500 iterations. Overall, our objective
function is:

L= Lrccon + Lp + ax Z [lrkll2, «=min(1— 0.02 x iter) (8)
K

4 Experiments

We train and evaluate our model on Human 3.6M [3], a motion-capture dataset
including 11 actors performing various activities while being filmed by four dif-
ferent cameras in a studio setting. Following [5] and [28], we train on subjects 1,
5, 6,7, test on 9 and 11 and restrict activities to mostly upright poses, resulting
in roughly 700,000 images for training. We sample video frames in pairs contain-
ing the same person in different poses, but with the same background utilising
bounding boxes derived from the masks and utilise the Adam optimizer [9].
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Fig. 3. Results on the two evaluation subjects. Top row: input image. Bottom row:
predicted pose in the form of a transformed and rendered 3d shape template.

5 Results

We restrict our evaluation to qualitative results in figure |3 These demonstrate
that the concept of self-supervision through conditional image translation can
be extended to 3D pose estimation. However, there are several issues that still
need to be solved: The model is currently not able to distinguish left and right,
as can be observed in figure 3| (fourth image from the right), where the subject is
facing away from the camera, but the template remains in the front-facing con-
figuration. The model also mostly generates limbs facing away from the camera
(third image from the right). We hypothesise that due to depth ambiguity in 2D
and limitations in pose variety due to the restricted sampling the decoder can
perfectly reconstruct the image despite the wrong orientation of the limb.

6 Conclusion

We presented preliminary results for a method to estimate human pose in 3d from
monocular images without relying on any landmark labels. Despite issues with
depth ambiguity the qualitative results are encouraging and demonstrate the
feasibility of combining differentiable rendering techniques and self-supervision.
A straightforward improvement would be weak supervision in the form a small
labelled dataset. Replacing the image translation task with a purely generative
approach with separate fore- and background similarly to [33] might prove to be
very successful in extending the approach to non-static backgrounds as well.

Acknowledgements: supported by EPSRC EP/S013687/1.
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