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Abstract. In the past few years, convolutional neural networks (CNNs)
have achieved milestones in medical image analysis. Especially, the deep
neural networks based on U-shaped architecture and skip-connections
have been widely applied in a variety of medical image tasks. How-
ever, although CNN has achieved excellent performance, it cannot learn
global and long-range semantic information interaction well due to the
locality of convolution operation. In this paper, we propose Swin-Unet,
which is a Unet-like pure Transformer for medical image segmentation.
The tokenized image patches are fed into the Transformer-based U-
shaped Encoder-Decoder architecture with skip-connections for local-
global semantic feature learning. Specifically, we use hierarchical Swin
Transformer with shifted windows as the encoder to extract context fea-
tures. And a symmetric Swin Transformer-based decoder with patch ex-
panding layer is designed to perform the up-sampling operation to re-
store the spatial resolution of the feature maps. Under the direct down-
sampling and up-sampling of the inputs and outputs by 4×, experi-
ments on multi-organ and cardiac segmentation tasks demonstrate that
the pure Transformer-based U-shaped Encoder-Decoder network outper-
forms those methods with full-convolution or the combination of trans-
former and convolution. The codes and trained models will be publicly
available at https://github.com/HuCaoFighting/Swin-Unet.

1 Introduction

Benefiting from the development of deep learning, computer vision technology
has been widely used in medical image analysis. Image segmentation is an impor-
tant part of medical image analysis. In particular, accurate and robust medical
image segmentation can play a cornerstone role in computer-aided diagnosis and
image-guided clinical surgery [1,2].

*Corresponding author
† Work done as an intern in Huawei Technologies

ar
X

iv
:2

10
5.

05
53

7v
1 

 [
ee

ss
.I

V
] 

 1
2 

M
ay

 2
02

1



2 Hu Cao et al.

Existing medical image segmentation methods mainly rely on fully convo-
lutional neural network (FCNN) with U-shaped structure [3,4,5]. The typical
U-shaped network, U-Net [3], consists of a symmetric Encoder-Decoder with
skip connections. In the encoder, a series of convolutional layers and continu-
ous down-sampling layers are used to extract deep features with large receptive
fields. Then, the decoder up-samples the extracted deep features to the input
resolution for pixel-level semantic prediction, and the high-resolution features
of different scale from the encoder are fused with skip connections to alleviate
the loss of spatial information caused by down-sampling. With such an elegant
structural design, U-Net has achieved great success in a variety of medical imag-
ing applications. Following this technical route, many algorithms such as 3D
U-Net [6], Res-UNet [7], U-Net++ [8] and UNet3+ [9] have been developed for
image and volumetric segmentation of various medical imaging modalities. The
excellent performance of these FCNN-based methods in cardiac segmentation,
organ segmentation and lesion segmentation proves that CNN has a strong abil-
ity of learning discriminating features.

Currently, although the CNN-based methods have achieved excellent perfor-
mance in the field of medical image segmentation, they still cannot fully meet
the strict requirements of medical applications for segmentation accuracy. Image
segmentation is still a challenge task in medical image analysis. Since the intrin-
sic locality of convolution operation, it is difficult for CNN-based approaches to
learn explicit global and long-range semantic information interaction [2]. Some
studies have tried to address this problem by using atrous convolutional lay-
ers [10,11], self-attention mechanisms [12,13], and image pyramids [14]. However,
these methods still have limitations in modeling long - range dependencies. Re-
cently, inspired by Transformer’s great success in the nature language processing
(NLP) domain [15], researchers have tried to bring Transformer into the vision
domain [16]. In [17], vision transformer (ViT) is proposed to perform the im-
age recognition task. Taking 2D image patches with positional embeddings as
inputs and pre-training on large dataset, ViT achieved comparable performance
with the CNN-based methods. Besides, data-efficient image transformer (DeiT)
is presented in [18], which indicates that Transformer can be trained on mid-size
datasets and that a more robust Transformer can be obtained by combining it
with the distillation method. In [19], a hierarchical Swin Transformer is devel-
oped. Take Swin Transformer as vision backbone, the authors of [19] achieved
state-of-the-art performance on Image classification, object detection and se-
mantic segmentation. The success of ViT, DeiT and Swin Transformer in image
recognition task demonstrates the potential for Transformer to be applied in the
vision domain.

Motivated by the Swin Transformer’s [19] success, we propose Swin-Unet
to leverage the power of Transformer for 2D medical image segmentation in
this work. To our best knowledge, Swin-Unet is a first pure Transformer-based
U-shaped architecture that consists of encoder, bottleneck, decoder, and skip
connections. Encoder, bottleneck and decoder are all built based on Swin Trans-
former block [19]. The input medical images are split into non-overlapping image
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patches. Each patch is treated as a token and fed into the Transformer-based
encoder to learn deep feature representations. The extracted context features are
then up-sampled by the decoder with patch expanding layer, and fused with the
multi-scale features from the encoder via skip connections, so as to restore the
spatial resolution of the feature maps and further perform segmentation predic-
tion. Extensive experiments on multi-organ and cardiac segmentation datasets
indicate that the proposed method has excellent segmentation accuracy and ro-
bust generalization ability. Concretely, our contributions can be summarized as:
(1) Based on Swin Transformer block, we build a symmetric Encoder-Decoder
architecture with skip connections. In the encoder, self-attention from local to
global is realized; in the decoder, the global features are up-sampled to the in-
put resolution for corresponding pixel-level segmentation prediction. (2) A patch
expanding layer is developed to achieve up-sampling and feature dimension in-
crease without using convolution or interpolation operation. (3) It is found in
the experiment that skip connection is also effective for Transformer, so a pure
Transformer-based U-shaped Encoder-Decoder architecture with skip connection
is finally constructed, named Swin-Unet.

2 Related work

CNN-based methods : Early medical image segmentation methods are mainly
contour-based and traditional machine learning-based algorithms [20,21]. With
the development of deep CNN, U-Net is proposed in [3] for medical image seg-
mentation. Due to the simplicity and superior performance of the U-shaped
structure, various Unet-like methods are constantly emerging, such as Res-UNet [7],
Dense-UNet [22], U-Net++ [8] and UNet3+ [9]. And it is also introduced into
the field of 3D medical image segmentation, such as 3D-Unet [6] and V-Net [23].
At present, CNN-based methods have achieved tremendous success in the field
of medical image segmentation due to its powerful representation ability.

Vision transformers : Transformer was first proposed for the machine trans-
lation task in [15]. In the NLP domain, the Transformer-based methods have
achieved the state-of-the-art performance in various tasks [24]. Driven by Trans-
former’s success, the researchers introduced a pioneering vision transformer (ViT)
in [17], which achieved the impressive speed-accuracy trade-off on image recog-
nition task. Compared with CNN-based methods, the drawback of ViT is that it
requires pre-training on its own large dataset. To alleviate the difficulty in train-
ing ViT, Deit [18] describes several training strategies that allow ViT to train
well on ImageNet. Recently, several excellent works have been done baed on
ViT [25,26,19]. It is worth mentioning that an efficient and effective hierarchical
vision Transformer, called Swin Transformer, is proposed as a vision backbone
in [19]. Based on the shifted windows mechanism, Swin Transformer achieved
the state-of-the-art performance on various vision tasks including image classifi-
cation, object detection and semantic segmentation. In this work, we attempt to
use Swin Transformer block as basic unit to build a U-shaped Encoder-Decoder
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architecture with skip connections for medical image segmentation, thus provid-
ing a benchmark comparison for the development of Transformer in the medical
image field.

Self-attention/Transformer to complement CNNs : In recent years, re-
searchers have tried to introduce self-attention mechanism into CNN to improve
the performance of the network [13]. In [12], the skip connections with additive
attention gate are integrated in U-shaped architecture to perform medical image
segmentation. However, this is still the CNN-based method. Currently, some ef-
forts are being made to combine CNN and Transformer to break the dominance
of CNNs in medical image segmentation [2,27,1]. In [2], the authors combined
Transformer with CNN to constitute a strong encoder for 2D medical image seg-
mentation. Similar to [2], [27] and [28] use the complementarity of Transformer
and CNN to improve the segmentation capability of the model. Currently, var-
ious combinations of Transformer with CNN are applied in multi-modal brain
tumor segmentation [29] and 3D medical image segmentation [1,30]. Different
from the above methods, we try to explore the application potential of pure
Transformer in medical image segmentation.

3 Method

3.1 Architecture overview

The overall architecture of the proposed Swin-Unet is presented in Figure. 1.
Swin-Unet consists of encoder, bottleneck, decoder and skip connections. The
basic unit of Swin-Unet is Swin Transformer block [19]. For the encoder, to
transform the inputs into sequence embeddings, the medical images are split into
non-overlapping patches with patch size of 4 × 4. By such partition approach,
the feature dimension of each patch becomes to 4× 4× 3 = 48. Furthermore, a
linear embedding layer is applied to projected feature dimension into arbitrary
dimension (represented as C). The transformed patch tokens pass through several
Swin Transformer blocks and patch merging layers to generate the hierarchical
feature representations. Specifically, patch merging layer is responsible for down-
sampling and increasing dimension, and Swin Transformer block is responsible
for feature representation learning. Inspired by U-Net [3], we design a symmet-
ric transformer-based decoder. The decoder is composed of Swin Transformer
block and patch expanding layer. The extracted context features are fused with
multiscale features from encoder via skip connections to complement the loss
of spatial information caused by down-sampling. In contrast to patch merging
layer, a patch expanding layer is specially designed to perform up-sampling. The
patch expanding layer reshapes feature maps of adjacent dimensions into a large
feature maps with 2× up-sampling of resolution. In the end, the last patch ex-
panding layer is used to perform 4× up-sampling to restore the resolution of the
feature maps to the input resolution (W ×H), and then a linear projection layer
is applied on these up-sampled features to output the pixel-level segmentation
predictions. We would elaborate each block in the following
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Fig. 1. The architecture of Swin-Unet, which is composed of encoder, bottleneck, de-
coder and skip connections. Encoder, bottleneck and decoder are all constructed based
on swin transformer block.

3.2 Swin Transformer block

Different from the conventional multi-head self attention (MSA) module, swin
transformer block [19] is constructed based on shifted windows. In Figure. 2,
two consecutive swin transformer blocks are presented. Each swin transformer
block is composed of LayerNorm (LN) layer, multi-head self attention module,
residual connection and 2-layer MLP with GELU non-linearity. The window-
based multi-head self attention (W-MSA) module and the shifted window-based
multi-head self attention (SW-MSA) module are applied in the two successive
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Fig. 2. Swin transformer block.

transformer blocks, respectively. Based on such window partitioning mechanism,
continuous swin transformer blocks can be formulated as:

ẑl = W -MSA(LN(zl−1)) + zl−1, (1)

zl = MLP (LN(ẑl)) + ẑl, (2)

ẑl+1 = SW -MSA(LN(zl)) + zl, (3)

zl+1 = MLP (LN(ẑl+1)) + ẑl+1, (4)

where ẑl and zl represent the outputs of the (S)W-MSA module and the MLP
module of the lth block, respectively. Similar to the previous works [31,32], self-
attention is computed as follows:

Attention(Q,K, V ) = SoftMax(
QKT

√
d

+ B)V, (5)

where Q,K, V ∈ RM2×d denote the query, key and value matrices. M2 and d
represent the number of patches in a window and the dimension of the query
or key, respectively. And, the values in B are taken from the bias matrix B̂ ∈
R(2M−1)×(2M+1).

3.3 Encoder

In the encoder, the C-dimensional tokenized inputs with the resolution of H
4 ×

W
4

are fed into the two consecutive Swin Transformer blocks to perform representa-
tion learning, in which the feature dimension and resolution remain unchanged.
Meanwhile, the patch merging layer will reduce the number of tokens (2× down-
sampling) and increase the feature dimension to 2× the original dimension. This
procedure will be repeated three times in the encoder.
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Patch merging layer : The input patches are divided into 4 parts and con-
catenated together by the patch merging layer. With such processing, the feature
resolution will be down-sampled by 2×. And, since the concatenate operation
results the feature dimension increasing by 4×, a linear layer is applied on the
concatenated features to unify the feature dimension to the 2× the original di-
mension.

3.4 Bottleneck

Since Transformer is too deep to be converged [33], only two successive Swin
Transformer blocks are used to constructed the bottleneck to learn the deep
feature representation. In the bottleneck, the feature dimension and resolution
are kept unchanged.

3.5 Decoder

Corresponding to the encoder, the symmetric decoder is built based on Swin
Transformer block. To this end, in contrast to the patch merging layer used in
the encoder, we use the patch expanding layer in the decoder to up-sample the
extracted deep features. The patch expanding layer reshapes the feature maps
of adjacent dimensions into a higher resolution feature map (2× up-sampling)
and reduces the feature dimension to half of the original dimension accordingly.

Patch expanding layer : Take the first patch expanding layer as an example,
before up-sampling, a linear layer is applied on the input features (W

32 ×
H
32 ×8C)

to increase the feature dimension to 2× the original dimension (W
32 ×

H
32 × 16C).

Then, we use rearrange operation to expand the resolution of the input features
to 2× the input resolution and reduce the feature dimension to quarter of the
input dimension (W

32 ×
H
32 × 16C → W

16 ×
H
16 × 4C). We will discuss the impact

of using patch expanding layer to perform up-sampling in section 4.5.

3.6 Skip connection

Similar to the U-Net [3], the skip connections are used to fuse the multi-scale
features from the encoder with the up-sampled features. We concatenate the
shallow features and the deep features together to reduce the loss of spatial
information caused by down-sampling. Followed by a linear layer, the dimension
of the concatenated features is remained the same as the dimension of the up-
sampled features. In section 4.5, we will detailed discuss the impact of the number
of skip connections on the performance of our model.

4 Experiments

4.1 Datasets

Synapse multi-organ segmentation dataset (Synapse): the dataset in-
cludes 30 cases with 3779 axial abdominal clinical CT images. Following [2,34],
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Table 1. Segmentation accuracy of different methods on the Synapse multi-organ CT
dataset.

Methods DSC↑ HD↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

V-Net [35] 68.81 - 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98
DARR [36] 69.77 - 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96

R50 U-Net [2] 74.68 36.87 87.74 63.66 80.60 78.19 93.74 56.90 85.87 74.16
U-Net [3] 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58

R50 Att-UNet [2] 75.57 36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95
Att-UNet [37] 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
R50 ViT [2] 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95

TransUnet [2] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

SwinUnet 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

18 samples are divided into the training set and 12 samples into testing set. And
the average Dice-Similarity coefficient (DSC) and average Hausdorff Distance
(HD) are used as evaluation metric to evaluate our method on 8 abdominal or-
gans (aorta, gallbladder, spleen, left kidney, right kidney, liver, pancreas, spleen,
stomach).

Automated cardiac diagnosis challenge dataset (ACDC): the ACDC
dataset is collected from different patients using MRI scanners. For each patient
MR image, left ventricle (LV), right ventricle (RV) and myocardium (MYO)
are labeled. The dataset is split into 70 training samples, 10 validation samples
and 20 testing samples. Similar to [2], only average DSC is used to evaluate our
method on this dataset.

4.2 Implementation details

The Swin-Unet is achieved based on Python 3.6 and Pytorch 1.7.0. For all train-
ing cases, data augmentations such as flips and rotations are used to increase
data diversity. The input image size and patch size are set as 224×224 and 4, re-
spectively. We train our model on a Nvidia V100 GPU with 32GB memory. The
weights pre-trained on ImageNet are used to initialize the model parameters.
During the training period, the batch size is 24 and the popular SGD optimizer
with momentum 0.9 and weight decay 1e-4 is used to optimize our model for
back propagation.

4.3 Experiment results on Synapse dataset

The comparison of the proposed Swin-Unet with previous state-of-the-art meth-
ods on the Synapse multi-organ CT dataset is presented in Table. 1. Differ-
ent from TransUnet [2], we add the test results of our own implementations
of U-Net [3]and Att-UNet [37] on the Synapse dataset. Experimental results
demonstrate that our Unet-like pure transformer method achieves the best per-
formance with segmentation accuracy of 79.13%(DSC↑) and 21.55%(HD↓). Com-
pared with Att-Unet [37] and the recently method TransUnet [2], although our
algorithm did not improve much on the DSC evaluation metric, we achieved ac-
curacy improvement of about 4% and 10% on the HD evaluation metric, which
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Fig. 3. The segmentation results of different methods on the Synapse multi-organ CT
dataset.

Table 2. Segmentation accuracy of different methods on the ACDC dataset.

Methods DSC RV Myo LV

R50 U-Net 87.55 87.10 80.63 94.92
R50 Att-UNet 86.75 87.58 79.20 93.47

R50 ViT 87.57 86.07 81.88 94.75
TransUnet 89.71 88.86 84.53 95.73

SwinUnet 90.00 88.55 85.62 95.83

indicates that our approach can achieve better edge predictions. The segmen-
tation results of different methods on the Synapse multi-organ CT dataset are
shown in Figure. 3. It can be seen from the figure that CNN-based methods
tend to have over-segmentation problems, which may be caused by the local-
ity of convolution operation. In this work, we demonstrate that by integrating
Transformer with a U-shaped architecture with skip connections, the pure Trans-
former approach without convolution can better learn both global and long-range
semantic information interactions, resulting in better segmentation results.
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Table 3. Ablation study on the impact of the up-sampling

Up-sampling DSC Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

Bilinear interpolation 76.15 81.84 66.33 80.12 73.91 93.64 55.04 86.10 72.20
Transposed convolution 77.63 84.81 65.96 82.66 74.61 94.39 54.81 89.42 74.41

Patch expand 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

Table 4. Ablation study on the impact of the number of skip connection

Skip connection DSC Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

0 72.46 78.71 53.24 77.46 75.90 92.60 46.07 84.57 71.13
1 76.43 82.53 60.44 81.36 79.27 93.64 53.36 85.95 74.90
2 78.93 85.82 66.27 84.70 80.32 93.94 55.32 88.35 76.71
3 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

4.4 Experiment results on ACDC dataset

Similar to the Synapse dataset, the proposed Swin-Unet is trained on ACDC
dataset to perform medical image segmentation. The experimental results are
summarized in Table. 2. By using the image data of MR mode as input, Swin-
Unet is still able to achieve excellent performance with an accuracy of 90.00%,
which shows that our method has good generalization ability and robustness.

4.5 Ablation study

In order to explore the influence of different factors on the model performance,
we conducted ablation studies on Synapse dataset. Specifically, up-sampling, the
number of skip connections, input sizes, and model scales are discussed below.

Effect of up-sampling: Corresponding to the patch merging layer in the en-
coder, we specially designed a patch expanding layer in the decoder to per-
form up-sampling and feature dimension increase. To explore the effective of the
proposed patch expanding layer, we conducted the experiments of Swin-Unet
with bilinear interpolation, transposed convolution and patch expanding layer
on Synapse dataset. The experimental results in the Table 3 indicate that the
proposed Swin-Unet combined with the patch expanding layer can obtain the
better segmentation accuracy.

Effect of the number of skip connections: The skip connections of our Swin-
UNet are added in places of the 1/4, 1/8, and 1/16 resolution scales. By changing
the number of skip connections to 0, 1, 2 and 3 respectively, we explored the
influence of different skip connections on the segmentation performance of the
proposed model. In Table 4, we can see that the segmentation performance of the
model increases with the increase of the number of skip connections. Therefore,
in order to make the model more robust, the number of skip connections is set
as 3 in this work.
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Table 5. Ablation study on the impact of the input size

Input size DSC Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

224 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
384 81.12 87.07 70.53 84.64 82.87 94.72 63.73 90.14 75.29

Table 6. Ablation study on the impact of the model scale

Model scale DSC Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

tiny 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
base 79.25 87.16 69.19 84.61 81.99 93.86 58.10 88.44 70.65

Effect of input size: The testing results of the proposed Swin-Unet with
224 × 224, 384 × 384 input resolutions as input are presented in Table. 5. As
the input size increases from 224× 224 to 384× 384 and the patch size remains
the same as 4, the input token sequence of Transformer will become larger,
thus leading to improve the segmentation performance of the model. However,
although the segmentation accuracy of the model has been slightly improved,
the computational load of the whole network has also increased significantly. In
order to ensure the running efficiency of the algorithm, the experiments in this
paper are based on 224× 224 resolution scale as the input.

Effect of model scale: Similar to [19], we discuss the effect of network deep-
ening on model performance. It can be seen from Table. 6 that the increase of
model scale hardly improves the performance of the model, but increases the
computational cost of the whole network. Considering the accuracy-speed trade
off, we adopt the Tiny-based model to perform medical image segmentation.

4.6 Discussion

As we all known, the performance of Transformer-based model is severely affected
by model pre-training. In this work, we directly use the training weight of Swin
transformer [19] on ImageNet to initialize the network encoder and decoder,
which may be a suboptimal scheme. This initialization approach is a simple one,
and in the future we will explore the ways to pre-train Transformer end-to-end for
medical image segmentation. Moreover, since the input images in this paper are
2D, while most of the medical image data are 3D, we will explore the application
of Swin-Unet in 3D medical image segmentation in the following research.

5 Conclusion

In this paper, we introduced a novel pure transformer-based U-shaped encoder-
decoder for medical image segmentation. In order to leverage the power of Trans-
former, we take Swin Transformer block as the basic unit for feature represen-
tation and long-range semantic information interactive learning. Extensive ex-
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periments on multi-organ and cardiac segmentation tasks demonstrate that the
proposed Swin-Unet has excellent performance and generalization ability.
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