
End-to-end Document Recognition and
Understanding with Dessurt

Brian Davis1, Bryan Morse1, Bryan Price2, Chris Tensmeyer2, Curtis
Wigington2, and Vlad Morariu2

1 Brigham Young University, Provo UT, USA {briandavis,morse}@byu.edu
2 Adobe Research, USA {bprice,tensmeye,wigingto,morariu}@adobe.com

Abstract. We introduce Dessurt, a relatively simple document under-
standing transformer capable of being fine-tuned on a greater variety
of document tasks than prior methods. It receives a document image
and task string as input and generates arbitrary text autoregressively
as output. Because Dessurt is an end-to-end architecture that performs
text recognition in addition to the document understanding, it does not
require an external recognition model as prior methods do. Dessurt is a
more flexible model than prior methods and is able to handle a variety
of document domains and tasks. We show that this model is effective at
9 different dataset-task combinations.

Keywords: Document understanding, end-to-end, handwriting recog-
nition, form understanding, OCR

1 Introduction

Document understanding is an area of research attempting to automatically
extract information from documents, whether that be specific key information,
answers to natural language questions, or other similar elements. While there
have been many approaches, the research community has begun to gravitate
around pre-trained transformers as general purpose solutions. Beginning with
LayoutLM [35], these models began as BERT-like transformers incorporating
spatial/layout information and later visual features. In general, we refer to these
as the LayoutLM family. The LayoutLM family of models are pre-trained on a
large corpus of document images and then fine-tuned to their particular tasks.

The LayoutLM family consists of encoder-only transformers, meaning pre-
dictions are only made for the input tokens. These state-of-the-art models are
two-stage models, where text recognition is first performed by an external OCR
model to obtain the input text tokens for the transformer. We see two limitations
coming from these architecture choices:

1. A limited output space, having predictions only for individual input tokens.
While they can classify the input tokens, they cannot produce additional
outputs, e.g., arbitrary text or token relationships, without additional sub-
modules.

ar
X

iv
:2

20
3.

16
61

8v
3

 [
cs

.C
V

]
 1

5
Ju

n
20

22

2 B. Davis et al.

Fig. 1. The LayoutLM family of document transformers require OCR and output is
tied to the tokens. Dessurt does not require any separate models and can generate
arbitrary text to solve a variety of tasks.

Table 1. Model class capabilities

Handwriting Arbitrary output Apply to different visual domain

LayoutLM family OCR dependant 7 Fine-tune two models
Dessurt X X Fine-tune single model

2. Dependence on high quality external OCR text segmentation and recogni-
tion. Encoder-only transformers are incapable of inserting new tokens if the
OCR missed or under-segmented text. A single incorrectly recognized char-
acter in an OCR’d word can cause a wrong word embedding to be used or
cause the word to be out of vocabulary. Relatedly, discrete input tokens lack
the uncertainty the text recognition model may have in its predictions. For
clean, modern documents, this generally isn’t an issue as the OCR mod-
els used are quite robust. However, for handwritten or degraded historical
documents, OCR quality can be poor and lead to prediction errors.

To combat these flaws we introduce Dessurt: DDocument eend-to-end sself-
ssupervised uunderstanding and rrecognition ttransformer. Dessurt is a novel, gen-
eral document understanding architecture that can perform a great variety of
document tasks. Dessurt operates in an end-to-end manner with a single pass:
text segmentation and recognition are learned implicitly. Dessurt takes only the
image and task text as input and can auto-regressively produce arbitrary text
as output. Fig. 1 compares Dessurt to the LayoutLM family at a high level ar-
chitecturally. The first limitation of the LayoutLM family is easily solved with
Dessurt’s auto-regressive output. Because text recognition is implicit, rather
than provided as explicit OCR results, Dessurt is able to resolve text recog-
nition uncertainty or ambiguity in a task-focused way. Additionally, the auto-
regresssive output decouples Dessurt’s output from the text recognition. These
together address the second limitation. See Table 1 for a comparison of archi-
tecture features.

Because Dessurt takes both an input image and text and can output any
arbitrary text, it can complete a greater variety of tasks compared to the Lay-
outLM family of transformers. Particularly we solve a form parsing task (form

End-to-end Document Recognition and Understanding with Dessurt 3

image to JSON) that the LayoutLM family cannot handle without additional
modules. Also, when retraining for a different visual domain, Dessurt’s simple
end-to-end design means only one model needs to be fine-tuned. For the Lay-
outLM family, both the recognition and transformer models would need to be
fine-tuned.

Like prior methods, we pre-train on the IIT-CDIP dataset [17], a large col-
lection of document images, with a masked language modeling task. We also
introduce three synthetic document datasets to better capture natural language,
structured documents, and handwriting recognition. Finally, we introduce new
pre-training tasks to teach Dessurt to read and located text, and to parse struc-
tured documents.

We validate our claims of Dessurt’s flexibility by applying it to six different
document datasets across six different tasks: 1) Document question answering,
with both DocVQA [23] and HW-SQuAD [22], 2) Form understanding and 3)
Form parsing, with both the FUNSD [14] and NAF [5] datasets, 4) Full-page
handwriting recognition and 5) Named entity recognition on the IAM handwrit-
ing database, and 6) Document classification with the RVL-CDIP dataset. Of
particular interest, both NAF and IAM datasets require handwriting recognition,
the NAF being comprised of difficult historical documents. These are domains
in which the LayoutLM family would need to fine-tune its recognition model as
well, but Dessurt can fine-tune on without adjustments. We note that Dessurt
does not achieve state-of-the-art results on the most tasks evaluated, but it is
capable of operating on a larger range of tasks than individual state-of-the-art
models.

In summary, our primary contributions are
– Dessurt, a novel, general document understanding architecture capable of

both performing text recognition and document understanding in an end-
to-end manner and producing arbitrary text output,

– A collection of synthetic datasets and tasks for pre-training an end-to-end
document understanding model for a variety of possible final tasks,

– An evaluation of Dessurt fine-tuned on 9 dataset-task combinations, and
– Our code, pre-trained model, and datasets which will be made available at

https://github.com/herobd/dessurt

2 Related Work

2.1 LayoutLM Family

Document understanding has become largely dominated by transformer archi-
tectures. Beginning with LayoutLM(v1) [35] the goal was to bring the success of
transformers like BERT [8] in the natural language space into the more visual
domain of documents. LayoutLM pre-trained in a very similar manner to BERT,
but included 2D spatial position information.

BROS [12], TILT [24], and LayoutLMv2 [34] improved the architecture by
introducing spatially biased attention, making the spatial information even more

4 B. Davis et al.

Fig. 2. Dessurt architecture

influencial. LayoutLMv2 also introduced visual tokens as many layout cues are
captured more visually than spatially.

Visual tokens can be overshadowed by textual tokens. In an effort to make
the visual processing more important, DocFormer [1] forced feature updates to
be from both textual and visual features.

We note that TILT and DocFormer use only visual features extracted near
the text tokens spatially, making them blind to areas of the form without text.
LayoutLMv2 extracts visual tokens across the entire document.

2.2 End-to-end Models

Models in the LayoutLM family have been evaluated without taking text recog-
nition into account. Many document understanding datasets come with pre-
computed OCR results used by everyone. While this is useful in making com-
parisons, text recognition is an essential task and for visually difficult documents
can become a challange in itself.

One aim of an end-to-end method can be to accomplish both recognition and
understanding in one pass. Another aim might be to learn the output text in a
manner that allows arbitrary output predictions. DocReader [16] is an end-to-
end method for key information extraction. While it does rely on external OCR,
it uses an RNN to predict arbitrary text.

We note that a concurrent pre-print work on end-to-end document under-
standing, Donut [15], has been introduced, and shares an architecture similar in
design to Dessurt. It also utilizes a Swin [19] encoder but uses a BART-like [18]
decoder. Donut differs from Dessurt primarily in how the cross attention occurs
and in pre-training. Donut shares many of the same advantages of Dessurt.

3 Model

Dessurt is a novel end-to-end framework for handling general document un-
derstanding problems. It takes as input an image and query text, and outputs

End-to-end Document Recognition and Understanding with Dessurt 5

arbitrary text appropriate for the given tasks. It handles character recognition,
including handwriting recognition, implicitly as part of the network.

The architecture is shown in Fig 2. The model processes three streams of
tokens: 1) Visual tokens that encode visual information about the document
image, 2) Query tokens that encode the task the model is to perform, and 3)
Autoregressive response tokens where the output response is formed. The model
progresses through three main stages: Input encoding, cross-attention, and out-
put decoding.

Input encoding: The input consists of an image and a query token string.
Because the Swin [19] layers we use require a fixed size image input, we use
an input image size of 1152 × 768. This large size is needed as we process an
entire page at once and must ensure small text is legible. The input image is
2-channeled, one being the grayscale document, the other being a highlight mask
used in some tasks. The query tokens begin with a special task token indicating
the desired task and then potentially have some text providing context for the
task (e.g., the question text). The response tokens are initialized with a task
specific start token and during training contain the previous ground truth token
for teacher-forcing.

The first step of the model is to encode the inputs into feature arrays to
initialize the three streams. The input image is tokenized by passing it through
a small downsampling CNN and adding learned 2D spatial embeddings. The
input query text and response text are tokenized using the same process as
BART [18] with standard sinusoidal position encoding. These feature arrays are
then passed to their respective token streams.

Note that the model does not require as input any OCR tokens corresponding
to the image. The network implicitly recognizes the text.

Cross-attention: The three streams then pass through a series of cross-
attention layers to allow them to share information and transfer that information
into the response. The visual array is processed by Swin [19] layers modified to
not only attend to the other elements in the local window but also the query
array. (We note that the biased attention remains for the visual elements.) The
query array has standard Transformer [31] attention, but attends to the entire
visual array in addition to the query array. The response array has standard
autoregressive attention to previous response elements but also attends to the
visual and query arrays. The arrays pass through series of eight of their respective
cross-attention layers. The last two layers of the model update only the query
and response arrays, with both layers attending to the final visual features.

Output decoding: The final response array is decoded into text using greedy
search decoding (where the most likely token is selected at each step), allowing it
to predict text not found in the document. Additionally, we also output a pixel
mask for use in training. This is produced by a small upsampling network using
six transpose convolutions that process the final visual features.

Specific implementation details for the model and its layers can be found in
the accompanying Supplementary Materials.

6 B. Davis et al.

Fig. 3. Examples of data used in pre-training. (a) IIT-CDIP dataset image with Text
Infilling task highlighting channel: highlight is magenta (value of 1), removed text is
turquoise (value of -1). (b) Synthetic Wikipedia text. (c) Synthetic handwriting. (d)
Synthetic form and its parse JSON.

4 Pre-training Procedure

The goal of the pre-training is to teach Dessurt to perform text recognition and
document understanding and to have general language model capabilities like
BERT. We pretrain several datasets with each dataset having multiple tasks
associated with it. An example from each dataset is in Fig. 3.

4.1 IIT-CDIP dataset

The IIT-CDIP dataset [17] is a pre-training dataset used by several other docu-
ment understanding transformers [35,34,1]. The OCR method we applied to the
IIT-CDIP dataset is in the Supplementary materials.

There are several tasks defined with this dataset all of which are described in
the Supplementary Materials. For brevity, we only describe the most important
ones here. The primary task (occurring 66% of the time) is a Text Infilling task.
It is a masked language modeling task inspired by the text infilling used to train
BART [18]; instead of replacing the removed text with a blank token, we delete
them from the image. The entire block of text and the deleted areas are marked
(with different values) in the input highlight channel, as seen in Fig. 3 (a). The
model then must predict the text of the entire block, filling in the deleted regions.
We also do a variant of this task where a single word is blanked from the image
and the model must predict that single word. There are several reading based
tasks as well, such as to read on from the text provided in the query.

4.2 Synthetic Wikipedia

We want our pre-training to help the model understand natural language; how-
ever, the IIT-CDIP dataset only represents a skewed slice of natural language.
Additionally, it represents a limited range of font styles. We choose to create an

End-to-end Document Recognition and Understanding with Dessurt 7

on-the-fly dataset by selecting random text from Wikipedia3 [9] and rendering
it as paragraphs in random locations with random fonts.

We pick a random article, random column width, random font, random text
height, and random spacing (between word and new line). We render the words
using the font and text height. We place the words in column/paragraph form,
adjusting the column width to fit as much of the article as possible. We find
blank space in the image where the paragraph can be added. If one is found the
paragraph is added and we attempt to add another paragraph; otherwise, the
image is complete. An example generated image is seen in Fig. 3 (b).

To obtain our font database, we scrape all the free-for-commercial-use fonts
from 1001fonts.com, giving us a set of over 10,000 fonts. The script we used
to scrape the fonts will be made available. More details on these fonts and our
synthetic dataset creation are found in the Supplementary Materials

This dataset uses the same distribution of tasks as the IIT-CDIP dataset.

4.3 Synthetic Handwriting

Dessurt must be able handle handwriting as several document understanding
tasks require this. The IIT-CDIP dataset contains little handwriting and while
our font database has “handwritten” fonts, they do not capture the variation
present in real handwriting. There is, unfortunately, not a publicly available
dataset of handwriting comparable in size to the IIT-CDIP datset. The IAM
handwriting database [21] is frequently used, but with fewer than 800 instances
to train on, an autoregressive transformer could overfit during pre-training.

We choose instead to use synthetic handwriting. This allows us to generate a
larger breadth of text, but at the cost of realism. We use the full line handwrit-
ing synthesis method of Davis et al. [7] to generate 800,000 lines of sequential
text from Wikipedia articles, with a randomly sampled style for each line. We
compose a document by sampling a random number of consecutive handwrit-
ing lines (to maintain language flow), selecting a random text height, random
newline height, and random starting location on the page, and then placing the
lines in the document in block/paragraph style. We additionally apply warp grid
augmentation [32] to each line to further add to the visual variation. An example
image can be seen in Fig. 3 (c).

For the learning task, the model must read the entire page of handwriting.

4.4 Synthetic Forms

We want Dessurt to be capable of extracting the information from highly struc-
tured documents, but given the lack of structured information present in our
IIT-CDIP annotations, we decided to generate synthetic forms with known struc-
ture. The structure is based on the annotations of the FUNSD [14] dataset, which
is primarily label-value pairs (or question-answer pairs) which are occasionally
grouped under headers. We also include tables.

3 https://huggingface.co/datasets/wikipedia

8 B. Davis et al.

To come up with label-value pairs, we use GPT-2 [25] to generate synthetic
“forms”. We give GPT-2 a prompt text (e.g., “This form has been filled out.”) fol-
lowed by an example label-value pair, newline and a label with colon (e.g., “Date:
23 Mar 1999\nName:”). GPT-2 then usually generate a series of label-value pairs
separated by colons and newlines, which is easily parsed. All the label-value
pairs from one generation are a label-value set in our dataset. We sometimes
use Wikipedia article titles as part of the prompt (e.g. “This form should be
filled out regarding Marvel Universe”) which then become the header for that
label-value set. We reuse previously generated labels and label-value pairs as new
form prompts. The quality of GPT-2 output is limited, but we hope it reflects
at least some of the semantics of label-value relationships.

The data for tables is more random. The row and column headers are random
1 to 3 word snippets from Wikipedia. A cell value is either a random number
(with various formatting) or a random word.

A document is composed by randomly placing label-value sets and tables
until a placement fails due to there not being enough room. Some cells and
values are blanked. More details on the form generation process can be found in
the Supplementary Materials.

The primary task on the forms (occurring about half the time) is to parse it
into a JSON capturing the text and structure of the form. An example synthetic
form and its corresponding JSON are seen in Fig. 3 (d). We also have tasks where
the query has an entity on the form and the model must predict the class of the
entity and then read the entities it is linked to. To ensure an understanding of
tables, there are also table-specific tasks such as retrieving a cell based on a
query with the row and column header, or listing all the row/column headers
for a table. All the tasks used are described in the Supplementary Materials.

4.5 Distillation

Because Dessurt has a unique architecture, we could not use pre-trained trans-
former weights to initialize our model (like Donut [15] or models in the LayoutLM
family). This is clearly a disadvantage, so we attempt to infuse pre-trained lan-
guage knowledge into Dessurt in a different way: cross-domain distillation. We
feed text to a pre-trained transformer teacher, and then render that text in a
document image to pass to the student, Dessurt. Then we apply the standard dis-
tillation loss introduced by Hinton et al. [11], which guides the logit predictions
of the student to match the teachers logits (the “dark knowledge”).

Distillation is generally applied with a student and teacher getting the ex-
act same inputs. We are attempting something fairly unique which is to apply
distillation across domains, textual to visual.

To ensure architectural similarity, we need the teacher to be an autoregres-
sive model. For this we use BART, an encoder-decoder transformer where the
decoder is an autoregressive model with cross attention to the encoder (a vanilla
transformer encoder). Both BART and Dessurt will be given the Text Infilling
task which BART was pre-trained with. BART gets the masked text as input

End-to-end Document Recognition and Understanding with Dessurt 9

to its encoder, and Dessurt gets the rendered text with deleted regions as in-
put (and the query token indicating the Test Infilling task) and then they both
autoregressively output the input text with the blanks filled in.

The token probabilities Dessurt predicts for a blanked region reflect not only
its language modeling, but also the uncertainty it has in reading the other words
on the page. For BART the probabilities are only the language modeling; it has
no uncertainty about reading. We minimize the reading uncertainty Dessurt has
when performing distillation by selecting a subset of “easy” fonts and reducing
the variability with which the documents are rendered. More details on this are
in the Supplementary Materials.

4.6 Training

We employ a simple curriculum to to prioritize certain aspects during early
training. This is due to the need for recognition to be learned (to a certain
degree) before the understanding tasks can be solved and the difficulty of learning
recognition on dense multi-line documents in a semi-supervised fashion.

We first train Dessurt on small images (96 × 384) of synthetic Wikipedia
text with simple reading tasks for 150,000 iterations. Not only is the visual space
small, but the output sequence length is short. We then use full-sized synthetic
Wikipedia text documents for 200,000 iterations with primarily reading tasks.
Finally, the model enters normal pre-training.

The iterations we outline here are what were used for the ablation models.
For our primary evaluation we use a model that was pre-trained in total for over
10 million iterations (110k weight update steps) during development (meaning
datasets and tasks were added throughout the training), but followed roughly the
same curriculum. The ablation models were pre-trained for 1 million iterations
with all datasets and tasks being introduced at once.

We used data parallelism over 6 Nvidia Tesla P100s, which can each only
hold a batch size of 1. We use gradient accumulation of 128 iterations, leading
to an effective batch size of 768, with approximately 7,800 weight update steps
for the ablation models. The last 4 million iterations of the final modal used
gradient accumulation of 64 iterations, meaning the effective batch size was 384.
We use the AdamW optimizer [20] and a learning rate of 10−4 and weight decay
of 0.01.

5 Experiments

To demonstrate the flexibility of Dessurt, we evaluate it on the six document
datasets and six diverse taskslisted in Table 2. The RVL-CDIP dataset [10] is
a page classification dataset, which requires understanding overall layout and
text topics. The DocVQA dataset [23] requires both reading and layout compre-
hension. HW-SQuAD [22] is more focused on reading comprehension, but has
difficult text (synthetic handwriting) to recognize. Both the FUNSD [14] and
NAF [5] datasets require form understanding, with a focus on label-value pairs

10 B. Davis et al.

Table 2. A summary of the end tasks we use to evaluate Dessurt and their attributes.
The term ”special output” refers to whether the tasks requires more than standard
token prediction employed by most in the LayoutLM family

Dataset Task Domain
Requires
handwriting
recognition

Requires
special
output

Train
set
size

RVL-CDIP [10] Classification Modern printed No No 320K

DocVQA [23] Question answering Modern Occasionally No 39K

HW-SQuAD [22] Question answering
Synthetic
handwriting

Yes (easier) No 68K

FUNSD [14]
Entity / Relationship
detection

Modern printed
forms

No No/Yes 130

FUNSD Form parsing
Modern printed
forms

No Yes 130

NAF [5]
Line / Relationship
detection

Historic forms Yes No/Yes 921

NAF Form parsing Historic forms Yes Yes 921

IAM [21] Full page recognition Handwriting Yes Yes 747

IAM NER [30]
Named entity
recognition

Handwriting Yes No 747

in forms. The FUNSD dataset includes modern business documents, but the
NAF dataset is uniquely challenging because it contains historical records with
a both printed and handwritten text. We take a task from Tüselmann et al. [30],
specifically named entity recognition over the IAM handwriting database (IAM
NER), requiring both handwriting recognition and NLP capabilities. We also
evaluate full-page handwriting recognition on the IAM database [21]. Each of
these, and our experimental protocol for them, are discussed in more detail in
the Supplementary Materials. We also present an ablation study at the end of
this section.

5.1 RVL-CDIP

We compare Dessurt to several other models in Table 3 on document classifi-
cation with the RVL-CDIP dataset. Dessurt performs slightly below the state-
of-the-art, but is comparable to the other models. We note that this problem
requires a holistic view of the document and is likely benefiting from a strong
vision model. We note that while Dessurt uses a Swin architecture, it is shallower
and narrower than the one used by Donut.

5.2 DocVQA and HW-SQuAD

For DocVQA, the model must locate the text that answers a textual question.
The results are presented in Table 3 with ANLS, a text edit-distance metric
that accounts for multiple correct answers. Unlike RVL-CDIP, understanding

End-to-end Document Recognition and Understanding with Dessurt 11

Table 3. Results on RVL-CDIP and DocVQA datasets

use OCR # params
RVL-CDIP
accuracy

DocVQA
ANLS

BERTBASE [8] X 110M +OCR 89.8 63.5
LayoutLMBASE (w/ img) [35] X 160M + OCR 94.4 -
LayoutLMBASE [35] X 113M + OCR - 69.8
LayoutLMv2BASE [34] X 200M + OCR 95.3 78.1
LayoutLMv2BASE w/ Tesseract OCR X 200M + OCR - 48.2
DocFormerBASE [1] X 183M + OCR 96.2 -
TILTBASE [24] X 230M + OCR 93.5 83.9
Donut [15] 156M 94.5 47.1
Donut +10k trainset images [15] 156M - 53.1
Dessurt (ours) 127M 93.6 63.2

the text in DocVQA is critical, likely leading to both Dessurt’s and Donut’s
comparatively limited performance. Other models rely on strong external recog-
nition methods; LayoutLMv2’s performance significantly drops when using a
weaker OCR. Dessurt outperforms Donut, likely due to its language-focused
tasks and real data in pre-training. Dessurt’s weakest areas for DocVQA are
Figures/Diagrams and Image/Photo. This makes sense because the pre-training
datasets are almost exclusively textual.

The HW-SQuAD dataset [22] is the popular question answering benchmark
SQuAD [26] rendered with handwritten fonts and noise. We evaluate on the task
of machine comprehension, where the single document containing the answer is
fed to the model. Unfortunately, the only prior method on this ([29]) was doing
text snippet retrieval, not question answering, and so is incomparable. We use
ANLS as our metric as it seems well suited to the task and achieve 55.5%.

5.3 FUNSD and NAF

Form parsing is the most difficult task we tackle, particularly with the NAF
dataset, which is comprised of historical forms containing a good deal of hand-
writing. In our full form parsing task the model must reproduce the entire con-
tents of the form in a structured manner, including recognition of text. We have
the model predict JSON using the same format used in pre-training (Fig. 3 (d)).
Normalized tree edit-distance (nTED) has been introduced by Hwang et al. [13]
as a metric for comparing document parses. However, nTED is not permutation
invariant, which is undesirable due to the lack of a canonical read order for forms.
We introduce a modified metric, Greedily-Aligned nTED or GAnTED, which is
more robust to permutation. GAnTED is discussed in detail in the Supplemen-
tary Materials. We compute GAnTED for FUDGE [6] by running Tesseract4 on
the bounding boxes it predicts and using the class and relationship predictions
to build the JSON output.

4 https://github.com/tesseract-ocr/tesseract

12 B. Davis et al.

Table 4. Results on FUNSD dataset

GT OCR used # params Entity Fm Rel Fm GAnTED

LayoutLMBASE [35] boxes + text - 78.7 42.8 [12] -
BROSBASE [12] boxes + text 138M + OCR 83.1 71.5 -
LayoutLMv2BASE [34] boxes + text 200M + OCR 82.8 - -
DocFormerBASE [1] boxes + text 183M + OCR 83.3 - -
Word-FUDGE [6] boxes 17M + OCR 72.2 62.6 -
FUDGE [6] (+Tesseract) none 17M (+OCR) 66.5 56.6 34.8
Dessurt (ours) none 127M 65.0 42.3 23.4

Table 5. Results on NAF dataset

params Line Fm Rel Fm GAnTED

Davis et al. [5] 1.8M 73.8 49.6 -
FUDGE [6] 17M 73.7 57.3 -
Dessurt (ours) 127M 49.3 29.4 42.5
Dessurt w/ census pretraining 127M 50.2 30.3 38.8

We also compare using standard F-measure for entity detection and rela-
tionship detection. We do this by aligning Dessurt’s predicted strings to the GT
strings. This means our results are dependant on the text recognition of Dessurt.
This is in contrast to other models that use the GT word boxes for tokens and
need only identify the correct box(es) rather than produce the correct text. Thus
we end up below what prior methods achieve. Our results on both the FUNSD
and NAF datasets are presented in Tables 4 and 5 respectively. On the NAF
dataset, no models rely on external recognition models.

The visual domain of NAF is very different from modern documents, mean-
ing two-stage methods require a specialized recognition model. We compare
Dessurt’s recognition ability to a CNN-LSTM [32] trained on the NAF dataset
in the Supplementary Materials. We also report results pre-training Dessurt on
images taken from the U.S.A. 1940 Census (visually similar to NAF data) in
Table 5. Details for this pre-training are in the Supplementary Materials.

5.4 IAM Database

There have been several specialized approaches for doing full-page handwriting
recognition, where line segmentation is done implicitly or explicitly. Dessurt is
trained to do full-page recognition during its pre-training. We compare it to other
full-page recognition models in Table 6. The metrics used are character error rate
(CER) and word error rate (WER) across an entire page (or paragraph; the IAM
dataset has one paragraph per page). Dessurt performs quite favorably compared
to these specialized approaches and even achieves the lowest WER. We note that
our pre-training includes synthetic handwriting derived from the IAM training
set, so Dessurt is uniquely suited to solve this task on the IAM dataset. The fact
that Dessurt’s WER is relatively better than its CER is unusual and is likely a
result of the word-part token prediction (other models use character prediction)

End-to-end Document Recognition and Understanding with Dessurt 13

Table 6. Results on IAM page/paragraph recognition

params CER WER

Bluche [2] - 7.9 24.6
Chung and Delteil [3] - 8.5 -
Start, Follow, Read [33] - 6.4 23.2
OrigamiNet [36] 16.4M 4.7 -
Vertical Attention Network [4] 2.7M 4.5 14.6
Dessurt (ours) 127M 4.8 10.2

Table 7. Results on IAM NER. Reported in macro F-measure

Split
Task

RWTH
6 classes

Custom
6 classes

RWTH
18 classes

Custom
18 classes

Toledo et al. [28] 34.0 37.4 14.9 18.0
Rowtula et al. [27] 47.4 54.6 32.3 30.3
Tüselmann et al. [30] 70.7 76.4 52.0 53.6
Dessurt (ours) 62.0 71.5 40.4 48.5
Dessurt w/ IAM pretraining 59.5 71.1 39.5 45.3

and the language modeling capabilities learned in pre-training. We note that the
number of parameters in Dessurt is one or two orders of magnitude higher than
the other models.

We also evaluate using the IAM NER task introduced by Tüselmann et
al. [30] as part of a set of named entity recognition problems for handwriting
datasets. Tüselmann et al. use a two-stage approach constructed specifically for
this problem. They use a word level handwriting recognition model, with its
outputs fed to a RoBERTa-based NER model (which sees the whole document).
We fine-tune Dessurt on both line level NER and document level NER. In both
cases Dessurt sees the entire handwriting image but has the lines it is supposed
process highlighted. It performs transcription along with the classification with
two tasks: (1) first reading a word, and then predicting its class, and (2) the
reverse with class predicted first. This ensures we know which word Dessurt is
predicting a class for. We randomly replace words in the teacher-forcing with
close edit-distance words to decrease reliance on the recognition output. Addi-
tionally, we apply warp grid augmentation [32] on the lines of the document. We
also experimented with adding recognition on IAM words to the pre-training
(more details in Supplementary Materials).

Our results for IAM NER are presented in Table 7. While Dessurt is moder-
ately successful, it falls short of the customized two-stage approach presented by
Tüselmann et al. They report that the CER of the HWR model they use is 6.8,
which is the same CER as Dessurt. We assume this indicates that (unsurpris-
ingly) RoBERTa is a stronger language model than Dessurt and is responsible
for this superior performance.

14 B. Davis et al.

Table 8. Ablation results. The top four rows show the pre-training ablation with
I=IIT-CDIP dataset, W=synthetic Wikipedia dataset, H=synthetic handwriting
dataset, F=synthetic form dataset, D=distillation from BART. The lower three rows
show ablations to the model: removing supervision with output mask, removigin super-
vision with output mask and reducing Swin window size to 7, removing cross attention
from image to question tokens. Results for DocVQA are evalutated using the validation
set. “PT IAM” indicates IAM data added to last 200k iters of pre-training

DocVQA
(valid)
ANLS

IAM NER FUNSD NAF RVL
CDIP
acc.

Macro Fm Entity Rel Entity Rel
IAM PT Fm Fm Fm Fm

Max iterations 500k 200k 200k 34k 300k 500k

I 44.0 42.3 43.4 19.7 10.2 28.7 12.6 89.0
W+I 43.2 45.2 49.0 29.5 16.0 31.0 13.7 89.1

H+W+I 44.4 50.1 49.7 29.3 16.5 31.6 14.9 88.9
F+H+W+I 46.5 47.6 50.0 44.8 28.2 36.5 17.6 89.5

D+F+H+W 43.1 52.7 53.3 39.4 22.0 31.5 14.3 88.5
All=D+F+H+W+I 45.5 50.4 52.5 47.8 29.5 34.6 15.3 89.0

All, no mask loss 44.9 45.7 49.7 47.3 26.2 33.2 15.1 88.3
All, no mask loss w=7 44.4 44.8 51.3 45.9 28.6 31.8 15.3 88.6
All, 1-way cross attn. 44.9 42.9 46.9 41.0 25.2 33.7 15.9 88.8

5.5 Ablation

We performed an ablation study of the different sources used in our model’s
pretraining as well as some of the architectural choices (Table 8). We begin the
data ablation with only the IIT-CDIP [17] dataset (I). We then incrementally
add the synthetic Wikipedia (W), synthetic handwriting (H), synthetic forms
(F), and distillation from BART (D). We ablate out the the predicted spatial
mask used in pretraining, and change the Swin window size from 12 to 7. We also
ablate the 2-way cross attention by instead only having the query and response
tokens attend to the visual tokens without the visual tokens attending to the
query tokens. This is very similar to Donut, which lacks 2-way cross attention.

As can be seen each pre-training data source adds something to the model.
The synthetic handwriting and synthetic forms are aimed at particular down-
stream tasks (IAM NER and form understanding respectively), but we note that
their inclusion generally helps other tasks as well. Only the distillation appears
selectively helpful and may not contribute significantly. In general, the ablated
model components are helpful to the full model, but not necessary. The results
with the RVL-CDIP dataset shows that the data a model is pre-trained with
appears to be relatively irrelevant to its performance.

6 Conclusion

We have introduced Dessurt, an end-to-end architecture for solving a wide vari-
ety of document problems. Dessurt performs recognition within its single pass,

End-to-end Document Recognition and Understanding with Dessurt 15

removing reliance on an external recognition model, which most document un-
derstanding approaches require, making it a much simpler method. Because
Dessurt uses arbitrary text as its output, it is also more flexible in the range
of problems it can solve. We evaluate Dessurt on a wider range of tasks than
any previous single method has done and show results ranging from promising
to state-of-the-art.

16 B. Davis et al.

References

1. Appalaraju, S., Jasani, B., Kota, B.U., Xie, Y., Manmatha, R.: Docformer: End-
to-end transformer for document understanding. In: International Conference on
Computer Vision (ICCV) (2021)

2. Bluche, T.: Joint line segmentation and transcription for end-to-end handwritten
paragraph recognition. Advances in Neural Information Processing Systems (NIPS)
(2016)

3. Chung, J., Delteil, T.: A computationally efficient pipeline approach to full page
offline handwritten text recognition. In: International Conference on Document
Analysis and Recognition Workshops (ICDARW). IEEE (2019)

4. Coquenet, D., Chatelain, C., Paquet, T.: End-to-end handwritten paragraph text
recognition using a vertical attention network. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (2022)

5. Davis, B., Morse, B., Cohen, S., Price, B., Tensmeyer, C.: Deep visual template-free
form parsing. In: International Conference on Document Analysis and Recognition
(ICDAR). IEEE (2019)

6. Davis, B., Morse, B., Price, B., Tensmeyer, C., Wiginton, C.: Visual fudge: Form
understanding via dynamic graph editing. In: International Conference on Docu-
ment Analysis and Recognition (ICDAR). Springer (2021)

7. Davis, B., Tensmeyer, C., Price, B., Wigington, C., Morse, B., Jain, R.: Text and
style conditioned gan for generation of offline handwriting lines (2020)

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT) (2019)

9. Foundation, W.: Wikimedia downloads, https://dumps.wikimedia.org
10. Harley, A.W., Ufkes, A., Derpanis, K.G.: Evaluation of deep convolutional nets

for document image classification and retrieval. In: International Conference on
Document Analysis and Recognition (ICDAR)

11. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network
(2015). arXiv preprint arXiv:1503.02531 2 (2015)

12. Hong, T., Kim, D., Ji, M., Hwang, W., Nam, D., Park, S.: Bros: A pre-trained
language model focusing on text and layout for better key information extraction
from documents. arXiv preprint arXiv:2108.04539 (2021)

13. Hwang, W., Lee, H., Yim, J., Kim, G., Seo, M.: Cost-effective end-to-end informa-
tion extraction for semi-structured document images. In: Conference on Empirical
Methods in Natural Language Processing (EMNLP) (2021)

14. Jaume, G., Ekenel, H.K., Thiran, J.P.: Funsd: A dataset for form understanding
in noisy scanned documents. In: International Conference on Document Analysis
and Recognition Workshops (ICDARW). IEEE (2019)

15. Kim, G., Hong, T., Yim, M., Park, J., Yim, J., Hwang, W., Yun, S., Han, D.,
Park, S.: Donut: Document understanding transformer without ocr. arXiv preprint
arXiv:2111.15664 (2021)

16. Klaiman, S., Lehne, M.: Docreader: Bounding-box free training of a document
information extraction model. In: International Conference on Document Analysis
and Recognition (ICDAR) (2021)

17. Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D., Heard, J.: Building
a test collection for complex document information processing. In: ACM SIGIR
Conference on Research and Development in Information Retrieval (2006)

End-to-end Document Recognition and Understanding with Dessurt 17

18. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoy-
anov, V., Zettlemoyer, L.: Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In: 58th Annual
Meeting of the Association for Computational Linguistics (ACL) (2020)

19. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: International
Conference on Computer Vision (ICCV) (2021)

20. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International
Conference on Learning Representations (ICLR) (2019)

21. Marti, U.V., Bunke, H.: The iam-database: an english sentence database for of-
fline handwriting recognition. International Journal on Document Analysis and
Recognition 5(1) (2002)

22. Mathew, M., Gomez, L., Karatzas, D., Jawahar, C.: Asking questions on hand-
written document collections. International Journal on Document Analysis and
Recognition (IJDAR) 24(3) (2021)

23. Mathew, M., Karatzas, D., Jawahar, C.: Docvqa: A dataset for vqa on document
images. In: Winter Conference on Applications of Computer Vision (WACV) (2021)

24. Powalski, R., Borchmann, L., Jurkiewicz, D., Dwojak, T., Pietruszka, M., Pa lka,
G.: Going full-tilt boogie on document understanding with text-image-layout trans-
former. In: International Conference on Document Analysis and Recognition (IC-
DAR). pp. 732–747 (2021)

25. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
models are unsupervised multitask learners. OpenAI blog (2019)

26. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for
machine comprehension of text. In: Conference on Empirical Methods in Natural
Language Processing (EMNLP) (2016)

27. Rowtula, V., Krishnan, P., Jawahar, C., CVIT, I.: Pos tagging and named entity
recognition on handwritten documents. In: International Conference on Natural
Language Processing (ICNLP) (2018)

28. Toledo, J.I., Carbonell, M., Fornés, A., Lladós, J.: Information extraction from his-
torical handwritten document images with a context-aware neural model. Pattern
Recognition 86 (2019)

29. Tüselmann, O., Müller, F., Wolf, F., Fink, G.A.: Recognition-free question answer-
ing on handwritten document collections. arXiv preprint arXiv:2202.06080 (2022)

30. Tüselmann, O., Wolf, F., Fink, G.A.: Are end-to-end systems really necessary for
ner on handwritten document images? In: Lladós, J., Lopresti, D., Uchida, S. (eds.)
International Conference on Document Analysis and Recognition (ICDAR) (2021)

31. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Neural Information Processing
Systems (NIPS) (2017)

32. Wigington, C., Stewart, S., Davis, B., Barrett, B., Price, B., Cohen, S.: Data aug-
mentation for recognition of handwritten words and lines using a cnn-lstm network.
In: International Conference on Document Analysis and Recognition (ICDAR)
(2017)

33. Wigington, C., Tensmeyer, C., Davis, B., Barrett, W., Price, B., Cohen, S.: Start,
follow, read: End-to-end full-page handwriting recognition. In: European Confer-
ence on Computer Vision (ECCV) (2018)

34. Xu, Y., Xu, Y., Lv, T., Cui, L., Wei, F., Wang, G., Lu, Y., Florencio, D., Zhang,
C., Che, W., Zhang, M., Zhou, L.: LayoutLMv2: Multi-modal pre-training for
visually-rich document understanding. In: 59th Annual Meeting of the Association
for Computational Linguistics (ACL) (2021)

18 B. Davis et al.

35. Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M.: LayoutLM: Pre-training of
text and layout for document image understanding. In: International Conference
on Knowledge Discovery & Data Mining (KDD) (2020)

36. Yousef, M., Bishop, T.E.: Origaminet: weakly-supervised, segmentation-free, one-
step, full page text recognition by learning to unfold. In: Computer Vision and
Pattern Recognition (CVPR) (2020)

Supplementary Materials for
End-to-end Document Recognition and

Understanding with Dessurt

Brian Davis1, Bryan Morse1, Bryan Price2, Chris Tensmeyer2, Curtis
Wigington2, and Vlad Morariu2

1 Brigham Young University, Provo UT, USA {briandavis,morse}@byu.edu
2 Adobe Research, USA {bprice,tensmeye,wigingto,morariu}@adobe.com

In these Supplementary Materials we provide details on the model, training,
and evaluation of Dessurt. There also additional examples of the synthetic data.
The contents are as follows:

1. Model Details: Specific details on the Dessurt architecture
2. Pre-training Procedure

2.1. IIT-CDIP Dataset: Details on our OCR process and all tasks used in
pre-training

2.2. Synthetic Wikipedia: Details on the paragraph generation and the font
database

2.3. Synthetic Handwriting: Details on handwiting generation
2.4. Synthetic Forms: Details on GPT-2 generation, form generation (layout),

JSON parse format, amd pre-training tasks
2.5. Selection of “Easy” Fonts for Distillation
2.6. Pre-training Curriculum Details

3. Data Augmentation
4. GAnTED: A full description of the modified nTED metric we introduce
5. Experiment Details: Additional details for each evaluated task

1 Model Details

The down-sampling/tokenization CNN used by Dessurt was inspired by the CNN
component of a CNN-LSTM [?]. We originally pre-trained the CNN as part of
a line recognition OCR model, but found that this did not improve training (it
could learn just as well from scratch with small images). The CNN down-samples
the input image by a factor of 8, meaning the input visual tokens of Dessurt are
144×96 = 13,824 total. This CNN has 7 convolution layers detailed in Figure 1.
We found having an aggressive down-sampling on the computationally light CNN
(as opposed to Swin layers) was vital for being able to fit our model in memory
when running on large images.

Dessurt has 8 full cross attention layers layers and 2 more which only update
the textual tokens (using the last visual tokens). We down-sample the visual
tokens (as Swin [?] does) after the first 4 layers. The initial width of the visual
tokens is 128 and the becomes 256 after the down-sampling. We note this is quite

ar
X

iv
:2

20
3.

16
61

8v
3

 [
cs

.C
V

]
 1

5
Ju

n
20

22

2 B. Davis et al. (Supplementary Materials)

Fig. 1. Architecture of the visual encoder. Each convolution layer (orange, yellow, red)
except the last is followed by Group Norm [?], dropout, and ReLU. The last convolution
is followed by Layer Norm. All yellow convolution layers have 3x3 kernels

small and was necessary due to the large image size we process. The width of
the textual tokens is 768. The reverse-bottleneck of the fully connected layers for
the textual tokens goes up to 3072. The model processes a maximum of 20 query
tokens and 800 response tokens. The response must be long for form parsing,
where the entire document is predicted.

Swin [?] doesn’t use 2D position embedding, but instead relies on relative
position attention bias. We include 2D spatial embedding because the textual
tokens are attending to the visual tokens and may need location information.

2 Pre-training Procedure

2.1 IIT-CDIP Dataset

There isn’t a standard OCR for the IIT-CDIP [?] used by researchers and it
hasn’t been investigated what impact this might make in pre-training.. We pro-
cessed the dataset using Tesseract3, an open source OCR engine. Tesseract makes
many errors and doesn’t capture the layout of the documents very well. We per-
form some post processing including rotating the image upright and attempting
to extract the block or paragraph structure by doing layout analysis using Pub-
laynet [?] and PrimaNet [?] models available on LayoutParser [?]. We will make
try to make our OCR results available for other researcher as the dataset is quite
large and this is a very long process.

To check rotation, we examine the average confidence score Cmean returned
by Tesseract as well as the average width-to-height ratio for the returned word
boxes widthi

heighti
= Ri. If Cmean > 80 and Rmean > 1 we assume the rotation

is correct. If not we then run Tesseract on 90◦, 270◦, and 180◦ rotations of
the image. If any passes the before-mentioned threshold, we accept it as the
correct rotation. If none do, we compare the product score CmeanRmean of the

3 https://github.com/tesseract-ocr/tesseract

Supplementary Materials for Dessurt 3

four rotations and accept the one with the largest product score above 55. If
none have a product score above 55, the image is removed from the dataset.
This removes images without words and images Tesseract particularly struggled
with. When we accept a rotation, we not only use that OCR result, but also use
that rotated image in the dataset.

We discard Tesseracts block and paragraph groupings. We then run both the
Publaynet and PrimaNet models on the image and append the returned bound-
ing boxes. We remove “super” layout boxes that are superfilous by removing any
bounding box covering more than 90% of the text boxes when most text lines
overlap with multiple layout bounding boxes. We then go though each text line
and assign it to a layout bounding box based on how many lines also overlap with
that bounding box and how full the layout bounding box is with text lines. We
then collapse the layout bounding boxes to the text lines assigned to them. We
then find highly overlapping layout bounding boxes and merge them together.
These remaining layout bounding boxes, and any text lines which were not as-
signed a layout bounding box, are the final blocks used as our layout annotations
for the IIT-CDIP data.

Because some tasks are reliant on the block or paragraph structure of a
document, and sometimes the extracted block structure is poor, we look at
the area of each block covered by its words to heuristically decide if the block
structure was accurately extracted or not. For each block we compute height to
width ratio (tall is good as it probably has multiple lines) and how much of the
block is covered by its text lines (more is better as its dense text). These get
averaged, with each block getting weight equal to the number of text lines in it.
If this above a threshold, we accept the block structure as good for layout based
tasks.

If not stated otherwise, the model is supervised to predict a pixel mask for
whatever text it reads (outputs). Wherever text is removed from the document
image, has a -1 on the input mask (also called highlight mask).

We now list all the tasks for pre-training with the IIT-CDIP dataset, and
their frequency. One can note in the provided Figures many errors resulting
from our OCR and layout analysis steps. Tasks with “*” require good block
annotation.

– 66.1% Text Infilling (Fig. 2): This is a MLM task inspired by the text infilling
used to train BART [?]; however instead of replacing the removed text with
a blank token, we delete them from the image, replacing them with white.
The area is marked so the model knows something was removed and the
entire text block is highlighted. The model then must predict the text of the
entire block, filling in the blanked regions. This is easier than the infilling
task used by BART for two reasons: (1) the length of what should be filled
in can be approximated by the physical blank-space, and (2) we do not allow
a blank area of 0 tokens (inserted blank token).

– 16.5% Word Infilling (Fig. 3): This is a potentially more difficult MLM task.
A single word in the document is removed and the model must predict that
word. In the above task the model is forced to place the text in context by

4 B. Davis et al. (Supplementary Materials)

generating the entire block. For this task it predicts the word in isolation,
and thus must capture language context in its hidden states somewhere.

– 4.1% Place Word (Fig. 4): A different flavor of MLM. Several words, of
roughly the same length, are removed from the document image. The query
contains one of the removed words. The model must predict a pixel mask at
the location(s) the given word occurs.

– 4.1% Highlight Block* (Figs. 5 and 6): The query contains a small snippet of
text (and randomly the text is highlighted in the input) and the model must
predict a pixel mask covering all the words in the block the text belongs to.
This is intended to teach document layout.

– 3.7% Read On* (Figs. 7 and 8): The query contains a short text snippet
(and randomly the text is highlighted in the input) and the model is to read
starting after that text, following newlines, until the end of the block. This
teaches text recognition from both a finding and reading standpoint.

– 2.1% Get Blanked (Fig. 9): The query has a snippet of text, but one word
is replaced by a blank token. The model must read the word that fits in the
blank token. It randomly has the text snippet highlighted or not.

– 2.1% Re-read Replaced (Fig. 10): The model is given a snippet of text, but
one word is replaced by a random word of the same length. The model then
must read the text using the correct word. It randomly has the text snippet
highlighted or not.

– 0.4% Highlight Text (Fig. 11): The query has a snippet of text and the model
predicts a mask for it.

– 0.4% Read Highlight (Fig. 12): A text line is highlighted for the model to
read.

– 0.2% Read Line Above: The query has a snippet of text and the model must
read the text line above it.

– 0.2% Read Line Below: The query has a snippet of text and the model must
read the text line below it.

Fig. 2. Example Text Infilling task: Magenta is highlight, turquoise is deleted text.

Supplementary Materials for Dessurt 5

Fig. 3. Example Word Infilling task: Turquoise is deleted word.

Fig. 4. Example Place Word task: Turquoise is deleted words, green is GT output
mask.

Fig. 5. Example Highlight Block task: Yellow is GT output mask.

6 B. Davis et al. (Supplementary Materials)

Fig. 6. Example Highlight Block task (with input highlight): Red is highlight input,
Yellow is GT output mask. Notice this has a block segmentation error.

Fig. 7. Example Read On task: Yellow is GT output mask.

Fig. 8. Example Read On task (with input highlight): Magenta is highlight input,
Yellow is GT output mask.

Fig. 9. Example Get Blanked task: “∅” is blank character. Magenta and red are high-
light input. Red is GT output mask.

Supplementary Materials for Dessurt 7

Fig. 10. Example Re-read Replaced task: Yellow is GT output mask.

Fig. 11. Example Highlight task: Yellow is GT output mask.

Fig. 12. Example Read Highlight Text task: Magenta and red are highlight input. Red
is GT output mask.

8 B. Davis et al. (Supplementary Materials)

Fig. 13. Examples of synthetic Wikipedia documents

Supplementary Materials for Dessurt 9

2.2 Synthetic Wikipedia

We first detail the paragraph generation method used in creating the synthetic
documents. We then discuss the collected font database in more detail. We also
include additional synthetic document examples in Fig. 13.

Details on paragraph generation The document begins as a blank image
the same size as our model input.

The column width is sampled in the range of the whole image width to
1/5 of the image. The text height is from the range of 8 to 32 pixels. We note
that at 8 pixels, many fonts are illegible. When rendering text, we estimate the
maximum height of that font by generating a placeholder string with ascenders
and descenders, and the scale to resize this placeholder string to the selected
text height is the scale used to resize the actually rendered text. We predict
spacing based on an approximated Em at 1.6 times the text height4, and then
the minimum and maximum (horizontal) space as 0.2 to 0.5 times the Em5. The
newline spacing is sampled between 1 pixel and the text height.

Each word is generated individually and then they are arranged in paragraph
form, placing words in a line until the column width is reached and then wrap-
ping onto a new line. There three different paragraph formats selected with the
following probabilities: indented 80%, no indent 18%, inverse indent 2%. On an
intended paragraph format we select and indent length from 0.3 to 6.0 times the
Em and each first line of a paragraph is indented accordingly. For no indent, ex-
tra space is added at a newline, randomly from 0 to the selected newline height,
whenever a new paragraph is starting. For inverse indent, all lines except the
first are indented. When starting a newline, we randomly add a perturbation
indent, from 0 to the horizontal space width, to add noise to the process.

If the height of the rendered article exceeds the image height, we increase the
column width (and resample the horizontal, newline, and indent spacing) and
replace the words.

Articles are repeatedly added to the image until one cannot be placed.

Font database The 10,566 fonts we scrape from 1001fonts.com are not curated
and so some fonts are not actual text fonts (Wingdings-like). Many don’t include
numbers and/or punctuation and some have only upper case letters (the BART
tokenization [?] we use is case sensitive). We test fonts to automatically deter-
mine some these features and take them into account when rendering. When we
randomly select a font, if the selected font does not have numbers another font
with numbers is select and is used whenever a word has a number. If the selected
font has only uppercase, all GT text is converted to be uppercase.

There are a wide variety of fonts, including handwritten and stylized fonts,
but we did not track metadata when scraping, so we don’t metrics on the

4 https://en.wikipedia.org/wiki/Em (typography)
5 https://docs.microsoft.com/en-us/typography/develop/
character-design-standards/whitespace

10 B. Davis et al. (Supplementary Materials)

database’s distribution. However, we do render 949 fonts in Fig. 14 as a quali-
tative sample. Some of the fonts are variants of others (bold or italicized).

All the code for scraping and pre-processing the fonts will be included in our
released code.

2.3 Synthetic Handwriting

The full line handwriting synthesis method we use [?] to generate handwriting
does not use a random style vector as input, but rather a distribution from the
ones extracted from the data. We interpolate styles extracted from the IAM
training set, the “Random” option in the generation script provided by the
authors of [?].

We note there are more realistic handwriting generation works more recently
developed, but [?] is the only one to generate full lines and has a convenient
script in its released code for generating a dataset like this.

For the full page recognition task, in training half of the instances have the
handwriting lines highlighted.

Additional examples of documents with synthetic handwriting can be seen
in Figure 15.

2.4 Synthetic Forms

Here we include the details of the generation of label-value sets with GPT-2, and
how they are rendered into documents. We also include additional examples of
generated images and their parse JSON in Figs. 16 and 17.

GPT-2 generation details The typical process for generating text with an
autoregressive model is to intialize the text generation with a prompt. In our
case we use both a text prompt and a “structure” prompt, which is an example
of what format the label-value pairs should be in. The text prompts used are:
– “This form is to be filled out.”
– “This form has been filled out.”
– “Form X” where X is replaced half of the time with a random letter and

the other half with a letter followed by a random integer less than 10,000
– “This form is to be filled out regarding Y .” where Y is replaced with a

random Wikipedia article title
– “This form contains information about Y .” where Y is replaced with a ran-

dom Wikipedia article title
We draw from the pool of generated labels and label-value pairs for the struc-

ture part of the initialization for a generation run. These pools to not contain
duplicate entries. Because labels with numbers can have several thousand “near
duplicates” we limit the number of labels with numbers to be about 0.002 of the
pools. We initialize the label-value pool with 60 instances of “Date: X”, where
X is a random date with one of 6 formats. We initialize the label pool with:
“Name:”, “Location:”, and “Details:”

Supplementary Materials for Dessurt 11

Fig. 14. Rendering of the word “Dessurt” in 949 fonts from our database at a text
height of 16

12 B. Davis et al. (Supplementary Materials)

Fig. 15. Four rendered pages with synthetic handwriting

Supplementary Materials for Dessurt 13

Fig. 16. Examples of synthetic form documents and their JSON parse

14 B. Davis et al. (Supplementary Materials)

Fig. 17. Examples of synthetic form documents and their JSON parse. On the lower
image we see GPT-2’s degenerate repeated text.

Supplementary Materials for Dessurt 15

To generate a label-value set, we first sample a text prompt, a label-value
pair, and a label and compose them as the input for GPT-2 using Huggingface’s
interface6. We use a temperature of 0.85 and generate three outputs. For each
output, we parse it into label-value pairs until the parsing fails (it will frequently
degenerate/stop generating a form). The parsing attempts to prevent repeated
values from being added (a frequent degeneration of autoregressive models) and
will also parse a comma separated list of values. List values are generated in
vertical/newline separated format when creating a synthetic form.

We generate 813,793 label-value sets, with over 7 million total label-value
pairs.

We note that we accidentally split URLs into label value pairs (with the label
of “http”). We filter these out in the document creation process.

Form generation details A synthetic form is generated by repeatedly adding
a label-value set or table in an empty region of the image. After each empty
region has had a failed generation, the document is complete. One empty region
is the area of the document right of the rightmost content. Whenever a table or
label-value set is added, a new empty region is created underneath it spanning
the same horizontal space. Each label-value set is generated to fit the region it
is being generated in, so this process attempts to pack the form densely.

Label-value set: There are three possible fonts selections, for the header,
labels, and values, however 30% of the time the label font will be forced to be
the same as the header font, and 50% of the time the value font will be forced
to be the same as the label. This is to make the parsing more difficult, and does
reflect a frequent scenario in the FUNSD dataset [?]. All labels and all values in
a set will be rendered with the same respective font.

In 0.5% of rendered label-value pairs, we replace all values with binary check-
boxes. The are rendered with boxes, parentheses, or brackets (depending on what
the font has) and an ‘X’ or blank value.

A block width is randomly selected, but will be increased if the generation
fails to place any label-value pairs. If the placement fails at the maximum width
for the empty region, the region has a failed generation.

A uniformly random selection is made between 9 different relationship indi-
cators which determine how the label-value pairs will be rendered in relation to
one another. These are the possible relationships:
– Colon: A colon is added to the end of the label. See Fig. 18 (a)
– Line: An underline is added beneath the value (or a blank area). Line thick-

ness randomly selected per pair. See Fig. 18 (c)
– Colon+Line: Both of the above
– Dotted line: A dashed or dotted underline. Frequency of dotting randomly

selected.
– Colon+Dotted line: See Fig. 18 (b)
– Box: The value is put in a box. Thickness of box lines is randomly selected

per pair. See Fig. 18 (d)

6 https://huggingface.co/gpt2

16 B. Davis et al. (Supplementary Materials)

– Colon+Box
– To Right: The values will be to the right of the label with the values and

labels aligned horizontally and no other cues. See Fig. 18 (e)
– To Left: The value will be to the left of the label (instead of right), there

will be a line or box, and the values and labels will be aligned horizontally.
See Fig. 18 (f)

– Below: The label will be below the value (instead of above), with an single
line separating the value and label. See Fig. 18 (g)

The value will be randomly to the right of or below the label for a set (except
for To Right, To Left, and Below). If the values are to the right, it is randomly
choosen whether they will align horizontally (they start at the same x-position),
or not (except in To Right and To Left when it is always aligned).

When placing label-value pairs, there is a probability (which increases with
the number of pairs in the column) to start a new column (if there is room
horizontally to due so). If the column reaches the bottom of the image a new
column is started, unless there isn’t horizontal room, in which case the generation
of the label-value set ends.

If the label-value set has a header is is either placed at the top-left corner or
the top-middle of the label-value set, having a 50%/50% chance. If the header is
going to be placed at the top-left corner, it has a 50% of having the label-value
pairs begin after it’s horizontal position (instead of it being above them).

The placing of the text is done in largely the same manner as the synthetic
Wikipedia text.

Table: There is a 33% chance a header is added for the table. This is 1 to
6 random, non-stop words7 from Wikipedia. A random font and text height are
selected for the header, the row and column headers, and the cell text. A random
number of rows (range [2, 15]) and columns (range [2, 10]) are selected. For each
header, a length is selected: 81.4% one word, 18.6% two words, 6.9% three words,
2% four words. That number of non-stop words are randomly sampled from
Wikipedia and appended together to form the header. For each cell, 50% of the
time it will be a single non-stop word sampled from Wikipedia, the other 50%
will be a number with one of the following ten formats (uniformly sampled)
displayed in Table 1.

The headers and cells are then arranged in a table with some random spacing.
The row headers are always on the right of the cells and the column headers are
always above the cells. We leave 15% of cells blank. If the table exceeds the space
available, the table generation fails (this protects against a bias towards having
tables with few rows/columns).

We then draw the lines of the table. All lines have random thickness. There
is always a line separating the headers from the cells. It is randomly deterimined
to draw lines between cells and on the outside of the table. Each line is randomly
placed (not parallel) in the space availble between the table elements.

7 We use the stop words listed at https://www.ranks.nl/stopwords

Supplementary Materials for Dessurt 17

Fig. 18. Examples of label-value relationships. (a) Colon, (b) Colon+Dotted line, (c)
Line, (d) Box, (e) To Right (with header), (f) To Left, (g) Below (with header)

18 B. Davis et al. (Supplementary Materials)

Table 1. Number formats for table cells

Description Example

Integer in range [0,100] 16
Integer in range [0,9999] 4567
Integer in range [-999,999] -453
Percent 45%
Percent with decimal 23.45%
Decimal in range [0,100) 15.87%
Decimal in range [0,1) 0.834
Negative decimal in range (-1,0] -0.452
Dollar amount in range [0,9999] $2567
Dollar amount in range [0,999] $754

Training tasks We define several tasks for these forms, however the Parse to
JSON tasks is the most important, as this is also an end task we evaluate on
the FUNSD [?] and NAF [?] datasets. We will first detail our JSON format and
then list all the tasks.

The JSON format was specifically designed to be easy for an autogressive
model to predict. The format must capture the FUNSD dataset labeling, includ-
ing classes and relationships, in addition to tables which we predict differently.

In general, an instance is represented as a single JSON object:

{"entity text": "class"}

This allows the model to read the text before deciding the class, and during
training ensures the model is predicting the class for the right entity. If a header
has links to other entities, they are listed as contents, e.g.:

{"Title Text": "header", "contents":[{"Q1": "question"}, {"Q2":
"question"}]}

If an answer has links, these are handled as answers, e.g.:

{"Question text": "question", "answers":["A1", "A2"]}

We list the answers as strings instead of objects as they should have nothing
linked below them in the hierarchy and this is a more compact representation.
Tables are an object with row headers, column headers, and cells, where the
cells are a nested list in row major order, e.g.:

{"row headers":["R1", "R2"], "column headers":["C1", "C2"],
"cells":[["r1 c1", "r1 c2"], ["r2 c1", "r2 c2"]]}

We write out the elements in read order, treating a table, or a header with
all its sub-elements as a single element. The read order is determined by first
ordering the elements by verticle position. We then take the top element and find
all other elements which fall inside a horizontal range slightly above and below
it. This is intended to be elements on roughly the same horizontal line, taking

Supplementary Materials for Dessurt 19

large elements (like tables) into account (lots of things can be parallel to them).
If the current element is the left most, it is the in order, otherwise, the elements
to its left as place before it and they are evaluated with their own horizontally
parallel elements. This process makes the read out be roughly natural for how a
human might read around blocks like tables.

We note, it would be more efficient and probably more accurate to have
defined special tokens for the control characters of the JSON, but we did not do
this.

Here is the list of all tasks used in training on the form images:

– (48.2%) Parse to JSON: The document is reproduced in a special JSON
format which captures structure as well as the class of thee entities. Examples
of the JSON can be seen in Fig. 16 and 17. There are two possible queries,
one to parse the document from the beginning, the other includes some
portion of the JSON in the query and the model must parse starting from
that point of the JSON (similar to the Read On task). This is neccesary
as many forms have a JSON longer than the model’s longest output (800
tokens)

– (4.02%) Link All: The query contains a form entity either by text, highlight,
or both, and the model is to predict the class of the entity and read the text
of all entities it is linked to.

– (4.02%) Link Down: Same as the above task, but only read text of linked
entities down the hierarchy

– (4.02%) Link Above: Same as the above tasks, but only read text of linked
entities up the hierarchy

– (4.42%) Cell: The query contains the texts of a row and a column header
and the model must read the corresponding cell

– (4.42%) Row Header: The query contains a cell’s text and the model must
read the row header

– (4.42%) Column Header: Same as the above task by reading the column
header

– (4.42%) All Row Cells: The query contains text for a row header and the
model must read all the cells in the row.

– (4.42%) All Column Cells: Same as above for column
– (4.42%) All Row Headers: The query contains a number i and the model

must read the row headers for the ith table in the document
– (4.42%) All Column Headers: Same as above for columns
– (3.61%) Count Tables: The model must return the number of tables and

predict a mask covering them.
– (4.42%) Highlight Table: The query contains a number i and the model must

predict a mask for the ith table
– (0.402%) Not Present: One of the above tasks with a specific query is given,

but the entity in the query isn’t on the document. The model must respond
with a not-present token

– (0.402%) Read On: The query as some text and the model must read on
from that text to the end of the entity it belongs to

20 B. Davis et al. (Supplementary Materials)

2.5 Selection of “Easy” Fonts for Distillation

We score each font by rendering the following strings in the font: “abcdefg”, “hi-
jklmn”, “opqrst”, “uvwxyz”, “12345”, “67890”, “ABCDEFG”, “HIJKLMN”,
“OPQRST”, “UVWXYZ” We then run Tesseract over on these images and
compute the edit-distance between the Tesseract output and the image’s source
string. The sum of these edit-distances become the score for that font. All fonts
with a score less than 21 are used as our “easy” fonts. This may seem like a
high threshold, but the word images passed to Tesseract are not padded (text
generally extends to the end of the image) which is a domain that Tesseract
struggles with.

There are 586 fonts in our “easy” set, and they can be seen in Fig. 19.

2.6 Pre-training Curriculum Details

It has been noted by [?] that (billion parameter) autoregressive models have
training stabilized by a sequence length based curriculum. This may be related
to the success of our curriculum.

The small image pre-training uses the following tasks with uniform probabil-
ity:
– Get Blanked
– Re-read Replaced
– Highlight Text
– Read Highlight
– Read On

The reading pre-training on full sized images uses the same tasks as normal
training, but with uniform probability. As there are more reading focused tasks,
this step of the pre-training is focused on teaching reading.

During the main pre-training, the datasets are not sampled uniformly. We
assume that some are more important than others. For the final model they are
sampled with the following frequency:
– IIT-CDIP: 45%
– Synthetic Wikipedia: 29%
– Synthetic Handwriting: 1%
– Synthetic Forms: 5%
– Distillation: 20%

For the ablation experiments, the models using all datasets has the given
frequencies, with all others having the same ratio between the datasets they do
have:
– IIT-CDIP: 53%
– Synthetic Wikipedia: 35%
– Synthetic Handwriting: 2%
– Synthetic Forms: 7%
– Distillation: 2%

The changed frequencies used for the final model reflect the uncertainty the
ablation showed regarding the importance of the distillation.

Supplementary Materials for Dessurt 21

Fig. 19. All “easy” fonts rendering the word “Dessurt” at a text height of 16

22 B. Davis et al. (Supplementary Materials)

3 Data Augmentation

Images of all datasets are scaled to match the size of Dessurt’s input. In all
our pre-training and fine-tuning, we apply some basic image augmentations.
For most datasets, we randomly re-scale the image to 0.9-1.1 its original size,
sampled uniformly. The exception is the census data which is scaled in the range
[1,1.15], and the FUNSD dataset, which has the range [0.8,1.2]. If the image is
larger than Dessurt’s input size (due to a re-scale), we randomly crop a region
form the image of Dessurt’s input size. We apply a random rotation from the
normal distribution with a standard deviation of 1◦.

We apply brightness augmentation which adjusts the brightness and con-
trast between background and foreground for the synthetic handwriting, syn-
thetic forms, and IAM full-page recognition. The method is the same as used by
Tensmeyer et al. [?], but we use σ = 20.

4 GAnTED

Here we describe the greedy-aligned normalized tree edit-distance (GAnTED),
the metric we use to evaluate form parsing.

This is simply a greedy optimization of the nTED [?] metric done by permut-
ing child lists of the predicted tree. This is neccsary as there is not a canonical
ordering for forms. While we create the parse JSONs in a read order, it can often
appear ambiguous which elements should be read first. Additionally, the order
of the elements should be irrelevant to the information extracted.

The process we use is quite simple, if somewhat slow. We first convert the
JSON into a tree. We discard class information in this process. A header will have
it’s content as children, and a question will have it’s answer(s) as a child/children.
For tables, things are handed a bit differently. We could have the list of cells in
each row be children of its respective row header (the column headers have no
children), or have the columns of cells be children of the column headers (the
row headers having no children). While the model is trained to predict row-
major tables, we note that often errors are made where a table is not recognized
as such, and thus the header-cell relationships are predicted instead. Our table
annotation of the FUNSD dataset is heuristic (see Section 5.4) and sometimes
erroneous leading to such label-value relationships in the GT. Thus we com-
pute the GAnTED for all combinations of table-to-tree conversions and take the
minimum score.

We use the variant of TED where the relabel cost for the nodes is the nor-
malized Levenshtein distance between the predicted string and the GT string.
This means the recognition errors should be balanced in relation to structure
errors.

The alignment is done in a breadth first traversal of the predicted tree. At
each node, we compute the nTED for the entire tree when the node is moved up
to 10 positions forward or backward in its list of children. We then place it in the
position that gave the minimum score. Each node gets re-positioned once in this

Supplementary Materials for Dessurt 23

Table 2. nTED, GAnTED, GAnTED with two aligment passes on the FUNSD and
NAF datasets

FUNSD NAF
nTED GAnTED 2-GAnTED nTED GAnTED 2-GAnTED

FUDGE [?] w/ Tesseract 59.1 34.8 34.5 - - -
Dessurt (scrambled) 81.4 35.8 32.0 - - -
Dessurt 44.1 23.4 23.2 80.4 42.5 42.1
Dessurt w/ census train - - - 73.0 38.8 38.3

process. After each node is re-positioned, the final nTED score is the GAnTED
score.

This is clearly not optimal, but given that the model attempts to predicted in
read order, it is quite stable, only changing the GAnTED slightly if the alignment
is done again.

In Table 2 we show the the nTED score, GAnTED score, and the GAnTED
score when the alignment is done twice. As can be seen, the greedy alignment
dramatically improves the nTED score, likely giving much accurate measures of
a model’s performance at form parsing, not just how well it matches the order
of the GT. We also evaluate computing GAnTED on Dessurt’s results when
each set of children in it’s tree are randomly permuted. This leads to decreased
performance and less stability, indicating that an approximate read order should
be established before computing GAnTED. We feel this should be reasonably
easy to do under most situations.

5 Experiment Details

For each dataset we fine-tune the long-pre-trained model with a learning rate
drop and early stopping based the validation set. We took the parameters with
the best validation set performance as the final model.

5.1 RVL-CDIP

This dataset has significantly more data than the others we evaluate on. We
drop the learning rate at 175K iterations, but are able to continue training to
a total of 1.5 million iterations with continuous improvement on the validation
set.

5.2 DocVQA

For DocVQA, we drop the learning rate at 200K iterations and evaluate the
model at 380K iterations.

5.3 HW-SQuAD

For HW-SQuAD, we drop the learning rage at 200K iterations and evaluate the
model at 970K iterations.

24 B. Davis et al. (Supplementary Materials)

5.4 FUNSD and NAF

The model frequently falls into the common autoregressive degeneration of re-
peating the same output (generally a JSON object). We counter this by post-
processing the output and removing any sequence of at least 8 characters that is
repeated consecutively at least 5 times. If the model fails to produce the end to-
ken, we use the last predicted tokens to form a new query for the model to parse
from. We note that this can allow the model to recover from a repeat degener-
ation, as often it will continue repeating till the maximum token length, these
are removed, and then a new query is made from the end of the non-degenerate
prediction. We re-query a maximum of 5 times.

Despite the highly regular structure of our JSON output, the model often
fails to produce valid JSON output, especially on more difficult forms. We craft a
series of rules to transform various JSON syntax errors into valid JSON, generally
favoring a simple, less structured, output. We assume our correction rules don’t
effect performance significantly as these are generally occurring where the model
is making other prediction errors.

During training on the FUNSD [?] and NAF [?] datasets, we use the same
task distribution as the pre-training on synthetic forms. While it may not seem
intuitive to training on tasks that are not part of the evaluation, the non-JSON
tasks do improve performance, possibly providing a regularizing effect. For the
FUNSD dataset, we drop the learning rate at 10K iterations and evaluate the
model at 51K iterations. For the NAF dataset, we drop the learning rate at 65K
iterations and evaluate the model at 320K and 400K iterations for the normal
and census pre-trained model respectively.

Table annotations for FUNSD The FUNSD dataset doesn’t contain anno-
tations for tables. However, tables generally show up distinctively in the anno-
tation with values having two labels linked to them. We use this along with
various spatial heuristics to determine if a set of links actually comprise a table.
It is generally successful, failing on tables where the label-value linking was left
incomplete in the FUNSD annotations.

Table annotations for NAF The NAF dataset does contain table annota-
tions, however, the transcriptions for the cells is not present in the dataset.
We simply omit the cells of the JSON so only row and column headers are
predicted. This follows in line with [?], which omits tables from it’s predictions.

U.S.A. 1940 Census pre-training The census images we pre-train on are
publicly available on the U.S.A. National Archive at https://www.archives.gov.
The training set we use is 10,000 images. And example image is found in Fig. 20.
The NAF dataset was also derived from the U.S.A. National Archive and thus
the census images represents a very similar domain, although they lack any
variation in layout. We ensure no overlap between these datasets.

Supplementary Materials for Dessurt 25

Fig. 20. Example image from the U.S.A. 1940 census

The proprietary annotations we use contain human transcriptions of select
columns of the main table in the document: line number, household ID, full
name, sex, age, relationship to head of household, race, and birthplace. In our
annotations, ditto marks have been filled in with the respective value, and the
model is trained to do this as well. The there are three tasks we use in the
pre-training:

– List the full contents of the table, being the above mentioned fields for each
row

– List all names: List the names on the document. This is the column with
the most variation and we assume most handwriting recognition is going to
be learned from this column

– List all ages: List the ages on the document. Similar to the above task, but
ensuring the model can read numbers

We crop the images to be only the left-side of the image as the only columns
we use are on the left side. This allows the document to fit the aspect ratio of
our model better and have higher resolution, which is needed given how dense
the handwriting is.

26 B. Davis et al. (Supplementary Materials)

5.5 IAM Database

When scoring our IAM NER [?] predictions, we do an alignment between the
predicted word transcriptions and the GT words, minimizing the total edit-
distance. This allows us to match the class prediction even on words the model
did not transcribe correctly.

For the experiment pre-training Dessurt on the IAM dataset for IAM NER,
for the last 200k iterations of the pre-training, 47% of the training instances are
synthetic documents, each containing two columns of words sampled randomly
from three IAM pages (both pages’ words are jumbled together). The model
must predict the contents of the two columns (full page recognition). By having
Dessurt read the words in random order we hope to prevent overfitting on the
dataset. Each word is randomly rescaled to a height in the range of 18 to 48

We note that the IAM splits used for IAM NER are not the same splits used
to train the handwriting generation method we used in our data creation [?].
This means there is a potential information leak of test set data via what the
generation model has learned and is using to generate our synthetic pre-trianing
data. We feel this would be making a very minor impact on performance espe-
cially given the Dessurt’s performance on IAM recognition [?], which does not
have information leakage, is roughly the same as the recognition on the IAM
NER splits.

