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Abstract. Deep learning models have achieved excellent recognition results on
large-scale video benchmarks. However, they perform poorly when applied to
videos with rare scenes or objects, primarily due to the bias of existing video
datasets. We tackle this problem from two different angles: algorithm and dataset.
From the perspective of algorithms, we propose Spatial-aware Multi-Aspect De-
biasing (SMAD), which incorporates both explicit debiasing with multi-aspect
adversarial training and implicit debiasing with the spatial actionness reweight-
ing module, to learn a more generic representation invariant to non-action aspects.
To neutralize the intrinsic dataset bias, we propose OmniDebias to leverage web
data for joint training selectively, which can achieve higher performance with far
fewer web data. To verify the effectiveness, we establish evaluation protocols and
perform extensive experiments on both re-distributed splits of existing datasets
and a new evaluation dataset focusing on the action with rare scenes. We also
show that the debiased representation can generalize better when transferred to
other datasets and tasks.

1 Introduction

Human beings have cognitive bias, and so do the machine learning systems [37]. Hu-
man cognitive bias comes from the uniqueness of individual experiences (learning ma-
terials) and the tendency of brains to simplify information processing [25]. Machine
learning systems are biased for similar reasons. First, the datasets used for training can
be intrinsically biased: e.g., sampled from a shifted distribution [45] or collected with a
pre-defined ontology [39]. Even if the dataset faithfully represents the real world, there
is human bias in the real world which we do not want the machine learning system to
exploit, e.g., gender bias [5,6]. Mitigating the bias in machine learning systems has long
been a challenging yet valuable research area [3, 17, 19].

In computer vision, the efforts for building datasets that faithfully represent the real
visual world never end. Better data collection and labeling strategies [14, 39, 44, 58]
are designed for building less biased datasets from scratch. Besides, various tools can
be applied to a built dataset (visual [48] or tabular [4] data) to detect and mitigate
unwanted bias. In action recognition, [34] introduces the concept of representation bias
and attempts to reduce it throughout dataset construction. However, the dataset they
propose is on a small scale and in a narrow domain. We investigate existing large-scale
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datasets instead and quantify the representation bias by designing different train-test
splits and analyzing the performance gaps.

Besides, we propose OmniDebias, which uses external web media as auxiliary data
to mitigate the dataset bias. On the one hand, the diversity of web data provide us with
rich examples that are uncommon in existing datasets, which makes it a suitable data
source for debiasing. On the other hand, web data are also severely biased to some
factors, e.g., scene. OmniDebias adopts a simple yet effective data selection strategy to
sample a less biased subset from the entire dataset. Co-training with the selected subset
outperforms the vanilla co-training both in performance and data efficiency.

Though effective in debiasing, constructing ‘unbiased’ datasets can be difficult and
may cost lots of human labor, while designing debiasing algorithms is a much cheaper
alternative. A series of works [36,54] aim at devising algorithms to mitigate the bias in
the learned representation, preventing the algorithms from amplifying the bias in train-
ing data. In particular, SDN [11] proposes to mitigate scene bias in action recognition
with adversarial training and human mask confusion loss. Previous works usually re-
strict the debiasing algorithm to a specific factor. In the real world, the bias in the dataset
can be complex and non-trivial to understand. To deal with more complicated dataset
bias, we extend the single-factor adversarial training to a multi-aspect fashion, which
shows better generalization capability.

To mitigate the generic representation bias in action recognition, we propose a
spatial-aware multi-aspect debiasing framework (SMAD). A video can have multiple
facets besides the action label, such as the background scene or the object that people
interact with. Video datasets collected for different purposes may emphasize differ-
ent facets. Considering this characteristic, we propose multi-aspect adversarial training
(MAAT) to enforce the model invariant to these non-action facets. We also introduce
Spatial-Aware Actionness Reweighting (SAAR) to ensure that the model learns where
to focus to recognize action without being affected by features related to other facets.
The framework SMAD proves to be generic for videos with various kinds of bias and
does not depend on extra knowledge of specific datasets.

To fairly exhibit the effectiveness of the proposed debiasing algorithm, we devise a
series of evaluation protocols. First, for the existing large-scale dataset Kinetics-400 [7],
we re-distribute the original train splits by either scene or object such that the hid-
den facet does not overlap between the re-distributed train and test sets (facet-based
re-distribution). Second, we collect an additional Action with RAre Scene (ARAS)
dataset5 for evaluation to simulate the out-of-distribution setting. Third, we follow the
routine of measuring the debiasing effect by transferring the learned model to down-
stream tasks (downstream-task transferring), such as feature classification, few-shot
learning, and finetuning on other datasets (as is proposed by [11]).

Our contributions are three-fold: 1. We propose SMAD, which considers multiple
aspects in adversarial training and achieves better performance when complex bias ex-
ists in the training set. 2. We propose OmniDebias, which exploits the richness and
diversity of web data effectively and efficiently. 3. We evaluate our method on both
conventional evaluation protocols (downstream-task transferring) as well as the new

5 Dataset released at https://github.com/kennymckormick/ARAS-Dataset.

https://github.com/kennymckormick/ARAS-Dataset


Mitigating Representation Bias in Action Recognition: Algorithms and Benchmarks 3

ones (facet-based re-distribution, out-of-distribution testing). The improvements of our
methods on all three benchmarks are consistent and remarkable.

2 Related Work

Action Recognition. Action recognition aims at recognizing human activities in videos.
Following the success of deep learning in the image domain, two series of deep Con-
vNets become the mainstream architectures for action recognition, named 2D-CNN and
3D-CNN methods. 2D-CNN methods like Two-Stream [42] and TSN [50] are light-
weight while lacking temporal modeling capability to some extent. 3D-CNN meth-
ods [7, 18, 46, 47] use 3D convolutions for temporal modeling and achieve the state-of-
the-art on large-scale benchmarks like Kinetics-400 [7]. In this paper, we show that both
architectures are vulnerable to biases. Our proposed framework can help to mitigate this
problem.

Mitigating Dataset Bias. All datasets, more or less, have dataset bias. In computer
vision, [45] studies 12 widely used image datasets and finds their data are of different
domains and distant from the real visual world. In natural language processing, gender
bias occurs in corpus collected from social media and news [22, 29]. There are two
main approaches to mitigate dataset bias: The first is to design better data collection and
labeling strategies [39] or to calibrate the existing dataset with bias detection tools [27,
48]. The second is to compensate dataset bias with domain adaptation techniques [20,
30, 38]. In this paper, following the first approach, we propose to use diversified web
media to neutralize the dataset bias.

Mitigating Algorithm Bias. Even if the dataset faithfully represents the real world,
bias still exists. Due to human bias, real-world data may bias towards specific factors,
while discriminative models even amplify such unwanted bias [55]. In machine learn-
ing, it is intuitive to add constraints or regularizations for the pursued fairness metric
to the existing optimization objective [1, 51, 53]. However, most of these approaches
are intractable in deep learning. Meanwhile, adversarial training has broader applica-
tions both in machine learning and deep learning. [54] use adversarial debiasing for bias
mitigation, but the bias factor is required to be known beforehand. [33] propose to use
adversarial example reweighting and achieves good performance on debiasing action
recognition.

Domain adaptation. Domain adaptation (DA) aims at learning well-performing
models on the target domain with training data from the source domain. To that end,
many works try to find a common feature space for the source and target domains via
adversarial training, both for image tasks [10, 21, 40] and action recognition [9, 12, 13].
The setting of debiasing is similar to, but not the same as DA. The main difference is that
we have no access to testing videos during training. Besides, the debiasing setting does
not assume the amount of testing data, while DA algorithms require a certain number
of testing videos to determine the data distribution.
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Pseudo-Scene Label Distribution of 
Abseiling Videos (989 videos)

K200db-train K200db-val
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sorted by frequency
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Fig. 1: The long-tailed scene distribution of abseiling videos. Most videos belong to several
scene categories. In the distribution tail, there are many scene categories that rarely occur in
training videos. We sample videos from the distribution head to form K200db-train, from the
tail to form K200db-val.

3 Formulation

Following [54], the problem can be formulated as follows. For a video recognition
dataset D, we can view each data sample as a tuple (x, y, z) drawn from the joint
distribution (X,Y, Z), where x denotes the video, y denotes the action label, z denotes
one or multiple non-action labels, such as scene, object or other attributes. We consider
the supervised learning task, which builds a predictor Ŷ = f(X) for Y given X .

Due to the dependence of Y and Z in the training set, the predictors learned via
standard supervised learning also yield predictions Ŷ dependent on Z given the action
label Y . Such behavior will lead to poor generalization capability, severely undermine
the testing performance if P (Z|Y ) differs a lot between the train and test split.

Our goal is to learn non-discriminatory action recognition models w.r.t. Z, which
generalize well to testing videos with factors (scene, object, e.g.) that rarely appear in
the training set. Non-dicrimination criterias have been of three types in fairness litera-
ture [2], independence (Y ′ ⊥ Z), seperation (Y ′ ⊥ Z|Y ) and sufficiency (Y ⊥ Z|Y ′). In
the context of video recognition, we pursue EQUALIZED ODDS, similar to separation,
which is to minimizing the variance of P (Ŷ = y|Y = y, Z = z) for different z given y.
Besides improving the z-unbiasedness, we also need to maximize P (Ŷ = y|Y = y) to
secure a good recognition model.

4 Evaluation Benchmark

4.1 Crafting Evaluation Datasets

Most existing datasets assume the joint distribution P (Y,Z) identical between train
and validation splits. To find out if an action recognition model is biased towards the
non-action labels, we design two evaluation protocols based on Kinetics-400 [7]: re-
distributing the existing train-val split and constructing a new validation set.
Re-distributing Train-Val Split. We start with the original Kinetics-400 train split
(with ∼240k videos). We apply a ResNet-50 trained on Places-365 [58] to obtain the
pseudo scene labels. As shown in Figure 1, the pseudo scene labels have a long-tailed
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Reading Newspapers

Playing Cello

Paragliding

Riding Camel

Eating Watermelon

Playing Piano

Fig. 2: Samples of ARAS dataset.6

Performance Drop

Distribution Overlap to P

Fig. 3: The Top1-Acc severely drops along with
the scene distribution shift.

TSN Top1 Acc

K200-val 76.2
K200-unbias 53.7 ↓ 22.5

ARAS-64 55.8 ↓ 20.4

SlowOnly Top1 Acc

K200-val 75.1
K200-unbias 51.9 ↓ 23.2

ARAS-64 51.0 ↓ 24.1

Table 1: Top1-Acc of TSN and SlowOnly
on 3 test sets.

distribution. We take the tail as the validation set and sample a subset from the head
to be the training set. To maintain the inter-class sample balance, we select 200 classes
with the most training samples and construct a subset that contains 80k videos for train-
ing and 10k for validation, (denoted as K200db-train and K200db-val, db for
debiasing). We examine the action-scene correlation of the two splits by calculating the
normalized mutual information (NMI) of action and scene: for K200db-train, the
NMI is 0.466 (0.397 if sampled randomly); for K200db-val, the NMI is 0.374 (0.488
if sampled randomly). Based on the splitting method, we can also tune the overlap of
common scene labels in K200db-train and K200db-val for varying distribution
shift.
Constructing New Validation Set. Beyond being restricted to the original dataset, we
can further construct a new dataset for evaluation. This resembles the real-world sce-
nario: the trained model is fixed while the environment changes at deployment. We
begin with action labels in Kinetics and consider some rare scenes. The combinations
of actions and rare scenes are used as queries to obtain web videos from YouTube.
We manually examine the web videos and obtain around ten videos for each class in
104 Kinetics classes, denoted as Action with RAre Scenes (ARAS-104). For K200db,
there are 64 overlapped classes (ARAS-64). Figure 2 shows several examples. We use
ARAS to simulate the out-of-distribution testing for scene-debiasing evaluation.

6 ARAS video samples in: https://youtu.be/j1LA3y-UuEA.

https://youtu.be/j1LA3y-UuEA
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Fig. 4: SMAD & OmniDebias. Left: SMAD framework. Multiple adversarial heads are used
in SMAD for Multi-Aspect debiasing. The SAAR module (Figure 5) is inserted in the back-
bone to improve the spatial modeling capability. Right: OmniDebias. OmniDebias only uses the
unbias part of web media for joint training, achieving better performance and efficiency.

4.2 Evaluation of Existing Methods

We first evaluate existing methods on the new benchmarks, including a 2D-CNN method
(TSN-3seg-R50) [50] and a 3D-CNN one (SlowOnly-8x8-R18) [18]. From Table 1,
we observe that the Top-1 accuracies on both K200db-val and ARAS-64 are sig-
nificantly lower than the original validation split K200-val. This reflects models
learned with vanilla training cannot handle the large discrepancy of the action-scene
joint distribution between train/val splits. K200db-[train/val] is an extreme case
that has disjoint scene labels. We can also vary the overlap of scene labels between
K200db-val and K200db-train. Figure 3 demonstrates that the drop of accuracy
is positively correlated to the distribution shift. That performance drop can be largely
mitigated by SMAD and OmniDebias, which will be detailed in the following section.

5 Method

We devise Spatial-aware Multi-Aspect Debiasing (SMAD) which seeks to learn a repre-
sentation invariant to multiple aspects of videos, e.g., scene, object, and other attributes,
with adversarial training. Besides, we propose OmniDebias to harness the richness and
diversity of web data efficiently, to improve the expressive power of the learned rep-
resentation. We integrate the two complementary aspects into a unified framework, as
illustrated in Figure 4.

5.1 Spatial-aware Multi-Aspect Debiasing

SMAD incorporates both explicit debiasing using Multiple Aspects as Adversarial
Training objectives (MAAT) and implicit debiasing with Spatial-Aware Actionness
Reweighting (SAAR).

Multi-Aspect Adversarial Training. We denote each input as a tuple (x, y, z1, · · · ,
zM ) ∈ X × Y × Z1 × · · · × ZM , where we pre-define M aspects in addition to the
set of action labels Y . We use a ConvNet fΘ parameterized by Θ for feature extraction.
On top of fΘ are (M + 1) classification heads: one head hY (parameterized by θY ) to
predict the action y and M adversarial heads hZi

(parameterized by θZi
) to recognize
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Fig. 5: SAAR module. The Spatial-Aware Actionness Reweighting module learns an actionness
mask A to reweight features at different locations. The learned mask has low values on irrelated
scenes or objects to suppress these features.

tags belong to the aspect Zi. We use the standard cross-entropy loss Lce,Y to train hY ,
use adversarial losses Ladv,Zi

for the rest non-action heads hZi
.

The optimization can be divided into two parts: classification heads and the back-
bone. For classification heads, the objective is to minimize Lce,Y and Ladv,Zi

:

θY , θZ1 , · · · θZM = argmin
θY ,θZ1

...θZM

(Lce,Y +

i=M∑
i=1

λiLadv,Zi). (1)

λi is the weight of the adversarial loss. For the backbone, since we aim for feature that
is both discriminative for Y and invariant for Zi, the objective is to minimize Lce,Y and
maximize Ladv,Zi

:

Θ = argmin
Θ

(Lce,Y −
i=M∑
i=1

λiLadv,Zi). (2)

By inserting a gradient reversal layer [21] before hZ1
, · · · , hZM

, we can simulta-
neously optimize the backbone fΘ along with all heads efficiently using the standard
stochastic gradient descent.

Choice of Adversarial Losses. The type of the adversarial loss depends on the label
format of Zi. For soft-label Zi, we can use soft cross-entropy loss (SoftCE, Eq. 3) or
KL-divergence loss (KLDiv, Eq. 4). For multi-label Zi, we use binary cross-entropy
loss (BCE).

Ladv,Zi = −
k=|Zi|∑
k=1

zik log[hZi(f(x;Θ))]k. (3)

Ladv,Zi =

k=|Zi|∑
k=1

zik log
zik

[hZi(f(x;Θ))]k
. (4)

Source of Non-Action Labels. The labels for Z1, · · · ,ZM are needed in adversar-
ial training. However, these annotations are usually unavailable for most action recog-
nition datasets. To handle this, we use off-the-shelf ConvNets trained on the specific do-
main to obtain the pseudo labels. For example, we use ResNet trained on ImageNet [14]
and Places365 [58] to assign the pseudo labels for object and scene, respectively.
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Spatial-Aware Actionness Reweighting. The idea of adversarial training is simple
but turns out to be fragile, especially when considering multiple aspects. It would be
hard for the vanilla algorithm to converge if the adversarial loss weight λi is set as a
relatively large number. One possible conjecture is that the underlying network pools
feature uniformly across all positions. Since we can only mitigate the model bias instead
of eliminating the dataset bias, the inherent bias from the data would contradict the
adversarial objective unless the model selectively attends to the action-related region.
To this end, inspired by the idea of actionness estimation [49,56], we propose a Spatial-
Aware Actionness Reweighting module (SAAR), illustrated in Figure 5.

For a feature map F ∈ RC×T×H×W , we first estimate an actionness mask A ∈
RT×H×W , where the scalar for each location represents how much the feature is re-
lated to the human action. In experiments, we use a 2D ResNet-Layer with a small
bottleneck width for actionness feature extraction, and use another 2D 3×3 convolution
as the actionness head, which outputs a 1-channel actionness score map A. On top of
the score map, we apply 2D-softmax across the spatial dimensions for normalization:
A′(t, h, w) = eA(t,h,w)∑

h′,w′ eA(t,h′,w′) . The final modulated feature map is the element-wise

multiplication between F and A′:

F′(c, t, h, w) = (H ×W ) · F(c, t, h, w)⊙A′(t, h, w) (5)

where the coefficient H×W is used to preserve the magnitude of feature maps after re-
weighting. We insert SAAR before the last ResNet-Layer in the backbone. Operating on
a small feature map (14×14), the SAAR module adds up to 2% additional computation.

Experiments show that spatial-aware actionness reweighting can not only benefit
convergence of training but also lead to better performance. It is worth noting that the
benefit of SAAR is much larger when combined with MAAT than used alone, indicating
that the adversarial training objective incurs weak supervision implicitly.

5.2 Exploiting Web Media with OmniDebias

Instead of restricting to labeled datasets, we also propose to leverage webly-supervised
datasets for bias mitigation via co-training, considering their richness and diversity.

We use GoogleImg (GG) and InsVideo (IG) from the OmniSource dataset [16]
as the web data source. Following the same pipeline as the original work, to construct
the auxiliary dataset for joint training, we train a teacher network to filter web data and
keep high-confidence examples. Joint training with the built auxiliary dataset can lead
to much larger improvements on our evaluation benchmarks (K200db-val, ARAS),
compared to the improvement on standard validation sets (K200/400-val), mostly
because web media contain novel z ∈ Z that does not exist in the training set.

However, there is a drawback to the naı̈ve approach. For web data, the distribu-
tion over z can be even more imbalanced than the distribution for Kinetics videos. For
example, the average entropy of pseudo scene distributions of 400 actions is 3.02 for
Kinetics, and 2.79 for GoogleImg (larger → more diversified). Figure 6 demonstrates
pseudo scene distributions of 3 action classes. Co-training with such an unbalanced
dataset is sub-optimal.
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Fig. 6: Pseudo-scene distributions. Visualization of pseudo scene distributions of 3 action cat-
egories in Kinetics-400 and GoogleImg. GoogleImg has more imbalanced distributions.

Component SMAD OmniDebias Combination

Model Train / Test ARAS-64 K200db-val K200-val ARAS-64 K200db-val K200-val ARAS-64 K200db-val K200-val

2D K200db-train 60.3 ↑ 4.5 55.7 ↑ 2.0 75.5 ↓ 0.7 68.3 ↑ 12.5 60.0 ↑ 6.3 77.4 ↑ 1.2 70.9 ↑ 15.1 62.0 ↑ 8.3 78.1 ↑ 1.9

3D K200db-train 58.4 ↑ 7.4 55.0 ↑ 3.1 74.6 ↓ 0.5 69.2 ↑ 18.2 60.7 ↑ 8.8 78.7 ↑ 3.6 71.6 ↑ 20.6 62.7 ↑ 10.8 78.4 ↑ 3.3

Model Train / Test ARAS-104 - K400-val ARAS-104 - K400-val ARAS-104 - K400-val

2D K400-train 56.2 ↑ 2.1 - 70.0 ↓ 0.6 60.2 ↑ 6.1 - 71.3 ↑ 0.7 61.8 ↑ 7.7 - 71.4 ↑ 0.8

3D K400-train 55.0 ↑ 3.5 - 68.2 ↓ 0.1 60.2 ↑ 8.7 - 71.0 ↑ 2.7 61.2 ↑ 9.7 - 70.8 ↑ 2.5

Table 2: The individual and joint effects of SMAD and OmniDebias. We report the Top-1
accuracies on three test sets: ARAS, K200db-val and K200/400-val. ↑ and ↓ denote the
improvement or decline to the baseline w/o. debiasing.

Thus we propose OmniDebias to utilize web media more efficiently. In OmniDe-
bias, we use a simple data selection strategy to select a subset of the entire web dataset
for joint training. Specifically, based on the same approach introduced in Benchmark,
we sort the samples in a same action class by the descending order of z-frequency 7.
Based on the z-frequency, we divide the auxiliary dataset into 3 equal-sized parts, i.e.
[web]-bias, [web]-mid and [web]-unbias ([web] can be GG, IG, etc.), and
use [web]-unbias only for joint training. OmniDebias consistently outperforms not
only using other parts but also the union, indicating its efficacy and efficiency.

6 Experiments

6.1 Experiment Setting

Acquisition of non-action labels. For debiasing, non-action labels can be either pseudo
labels inferred by a pretrained model or ground-truth labels from a multi-label dataset.
To acquire pseudo labels for debiasing, we use ResNet50 [26] pretrained on Ima-
geNet and Places365 as the pseudo label extractor for scene and object. We also tried
ResNet18 and DenseNet161 [28] as the extractor for scene labels but observe a sub-
tle difference (≤ 0.3%). For ground-truth labels, we use the HVU dataset [15], which
annotates Kinetics videos with three additional tag categories: context, attribute, event.

7 For z = scene, if 20 out of 100 samples have the scene label ‘cliff’, the z-frequency of each
of the 20 samples is 0.2 (20 / 100).
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Method Access K200db-val ARAS-64

Baseline ✗ 51.9 51.0

AdaBN [32] ✗ 52.0 52.3

FrameShuffle [8] ✗ 52.4 51.3

SDN [11] ✗ 54.0 55.3

DANN [21] ✓ 52.4 53.3

MMD [23] ✓ 52.7 53.1

SAVA [13] ✓ 53.4 54.0

SMAD ✗ 55.0 58.4

Table 3: SMAD v.s. other debiasing and
domain-adaptation algorithms. Access indi-
cates if the algorithm needs to access validation
data in training.

Metric
Independence

I(Y ′, S)

Separation

I(Y ′, S|Y )

Sufficiency

I(Y, S|Y ′)

Baseline 0.498 ↑ 0.011 0.376 0.356

SMAD 0.490 ↑ 0.003 0.373 0.366

OmniDebias 0.496 ↑ 0.009 0.334 0.321

Combination 0.491 ↑ 0.004 0.321 0.327

Table 4: Fairness metrics on K200-
val. We train the SlowOnly-R18-8x8
on K200db-train, I denotes normal-
ized mutual information (lower → more
non-discriminative). Red marks denote the
scene-bias amplified to the oracle independence
I(Y, S) = 0.487.

Training and Evaluation. We use TSN-3seg-R50 with ImageNet pretraining as the
2D-CNN baseline, SlowOnly-8x8-R18 as the 3D-CNN one. In the choice of adversar-
ial losses, we use a weighted combination of SoftCE and KLDiv for soft-label (better
than each individual), use BCE for multi-label. The loss weight is 0.5 for SoftCE and
KLDiv losses, 5 for BCE loss. For testing, we uniformly sample 25 frames for TSN
or ten clips for SlowOnly with center crop and average the final predictions. In exper-
iments, we report the Top-1 accuracy. Since ARAS is a small evaluation set, we first
examine the statistical significance: we train the TSN on K200db-train for 10 times
with different random seeds and test it on ARAS-64. We find the standard deviation
of accuracy is around 0.3%, which means a difference larger than 0.8% is statistically
significant.

6.2 Main Results

Re-distributed Train-Val Splits. When the training and validation subsets have differ-
ent scene distributions, our method consistently bridges the performance gap between
validation sets with scene distribution shift and the validation set without scene distri-
bution shift, as shown in Figure 3. The narrower accuracy gaps reflect the improvement
made under the fairness metrics EQUALIZED ODDS. When the testing and training
scene distributions are completely different, i.e. disjoint label sets, the effect is most
significant: our methods reduce the accuracy drop by nearly 1

3 : from 22.5% to 15.6%.
Besides EQUALIZED ODDS, we also evaluate three commonly used fairness met-

rics, namely independence, separation, and sufficiency in Table 4. SMAD largely mit-
igates the bias amplified by the algorithm: without SMAD, I(Y ′, S) increases 0.011
(the scene-bias amplified by algorithm) compared to I(Y, S) = 0.487, while SMAD
reduces it to 0.003. Since Y , S are not statistically independent, the sufficiency and
independence cannot both hold. Thus we observe that I(Y, S|Y ′) increases when we
apply SMAD for debiasing. For OmniDebias, since additional web media are used for
joint training, all three fairness metrics are improved (lower → better).

We further study the individual and combined effects of SMAD and OmniDebias.
Extensive experiments are conducted with both 2D and 3D baselines: models are trained
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Setting GYM-1shot GYM-5shot HMDB51 UCF101 Diving48

w/o. Debiasing 42.2 52.9 49.9 84.3 17.3

+ SMAD 45.5 56.4 50.9 84.9 18.9
+ IG-all 46.6 58.4 54.3 88.4 19.8

+ IG-unbias 47.1 59.5 55.9 88.8 20.9

+ SMAD, IG-unbias 51.7 62.1 57.2 89.9 22.3

Table 5: Few-shot Learning & Feature Classification. The learned representation achieves
good performance on downstream tasks. We report the 3-split average for HMDB51 and UCF101.

on K200db-train or K400-train and tested on 3 test sets: ARAS-64/104,
K200db-val (z-unbiased) and K200/400-val (normal). The results are demon-
strated in Table 2. SMAD can improve the performance on z-unbiased test sets by a
large margin at the cost of a little accuracy drop on the normal test set. The improve-
ment of OmniDebias is across all 3 test sets since additional web media are used for
joint training. while for K200db-val and ARAS the gain is much more noticeable.
Combining SMAD and OmniDebias yields the highest accuracy on all z-unbiased test
sets, indicates that the two techniques are orthogonal to each other.
A new Debiasing Benchmark. In Table 3, we evaluate multiple debiasing and domain-
adaptation algorithms on our new facet-based re-distribution and out-of distribution
benchmarks. The models (backbone: SlowOnly-R18) are trained on K200db-train,
tested on K200db-val and ARAS-64. SMAD is a better solution for the debiasing
problem compared to the alternatives, considering its superior performance and simple
deployment.
Transferring Abilities. The debiased representation is also more useful when trans-
ferred to other tasks. We study two cases: few-shot learning and video classification.
SlowOnly-8x8-R18 trained on K200db-train is used as the feature extractor. For
each video, we uniformly sample 10 clips, extract a 512-d feature for each clip, and
concatenate them into a 5120-d video-level feature.

We evaluate the few-shot learning performance on FineGYM-99 [41], a fine-grained
gymnastic action recognition dataset with less scene bias. We construct 10,000 5-way
episodes (1-shot or 5-shot). In each episode, the cosine similarities between the query
sample and support samples are used for classification. Table 5 shows that both SMAD
and OmniDebias contribute to the few-shot performance on FineGYM-99.

We evalute the performance of video classification on UCF101 [43], HMDB51 [31]
and Diving48 [34] with two settings: feature classification and finetuning. For feature
classification, we train a linear SVM based on the 5120-d descriptors. Table 5 shows
that both SMAD and OmniDebias improve the feature classification performance. Two
baselines are used in the finetuning setting. We first use ResNet3D-18 [24] trained on
MiniKinetics [52] with input size 112 as the baseline, for a straightforward comparison
with SDN [11] (Table 6 upper). With pseudo labels for recognition only (much cheaper
than pseudo labels for human detection), SMAD can outperform SDN on three down-
stream tasks. By introducing web data with OmniDebias, the model can obtain much
better performance. We further test the finetuning performance on SlowOnly-8x8-R18
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Method Pretrain HMDB51 UCF101 Diving48* Diving48

ResNet3D-16x1 MiniKinetics 53.6 83.5 18.0 -
+ SDN [11] MiniKinetics 56.7 84.5 20.5 -

+ SMAD MiniKinetics 57.2 84.7 20.9 -
+ SMAD, IG-unbias MiniKinetics 61.2 88.2 22.6 -

SlowOnly-8x8 K200db-train 62.6 89.6 25.5 53.9
+ SMAD K200db-train 64.0 90.4 26.7 55.7

+ SMAD, IG-unbias K200db-train 67.3 93.3 28.2 59.7

Table 6: Finetuning performance. Our work improves the finetuning performance on 3 datasets
significantly under different settings. We report the 3-split average for HMDB51 and UCF101. *
denotes using the old version of Diving48 annotations.

Test Set Baseline MAAT SAAR MAAT + SAAR

ARAS-64 51.0 55.8 51.6 58.4

K200db-val 51.9 54.3 52.7 55.0

Table 7: Performance of MAAT & SAAR. The baseline is SlowOnly-8x8-R18 trained on
K200db-train.

trained with K200db-train, which is the setting used across this paper (Table 6 lower).
The improvement of SMAD and OmniDebias is also steady and distinct upon this much
stronger baseline.

6.3 Spatial-aware Multi-Aspect Debiasing

Ablation of SMAD. We first evaluate the efficacy of two components in SMAD, namely
Multi-Aspect Adversarial Training (MAAT) and Spatial-Aware Actionness Reweight-
ing (SAAR). Table 7 demonstrates that MAAT itself can largely improve the perfor-
mance on test videos with novel scenes (ARAS-64, K200db-val). Upon this decent
baseline, SAAR further boost the performance by 0.7% on K200db-val and 2.6% on
ARAS-64. The improvement is non-trivial since SAAR only introduces 2% additional
FLOPs and requires no additional explicit supervision. It is also worth noting that with-
out the guidance from MAAT, the gain of SAAR is much reduced. The combination of
MAAT and SAAR achieves large improvement on videos with novel scenes.
Advantages of Multi-Aspect Debiasing. Multi-aspect debiasing is more generic than
the scene-debiasing algorithm [11]. To prove that, we design a complex dataset split
(K200-both-split, split by both scene and object) to mimic the real-world debias-
ing scenario. Specifically, we first create K200-scene-split and K200-obj-split
using the introduced re-distributing method, with the factor scene and object respec-
tively. Then we sample the validation videos from the union of two validation sets and
sample the training videos from the remaining videos to form K200-both-split.
On that split, we evaluate different debiasing factors. For multi-aspect debiasing with
N factors, the weight of each adversarial loss is divided by N . Table 8 shows that multi-
aspect debiasing consistently outperforms the single-aspect one under this setting: using
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Debias Factor K200db-val

None 51.7

scene 53.2 ↑ 1.5

object 52.9 ↑ 1.2

scene, object 53.5 ↑ 1.8

scene, object, event, attribute, context 53.8 ↑ 2.1

Table 8: Multi-factor v.s. single-factor debiasing.

RGB Image Baseline CAM Actionness SMAD CAM

SMAD Pred
Barbequing

Baseline Pred
Laying Bricks

SMAD Pred
Drinking Shots

Baseline Pred
Playing Chess

SMAD Pred
Ice Skating

Baseline Pred
Feeding Fish

SMAD Pred
Jetskiing

Baseline Pred
Surfing Water













Fig. 7: The visualization of Actionness mask and CAM.8

both scene and object as debiasing factors outperforms each individual. Moreover, the
best result is achieved when using all five factors for debiasing (event, attribute, context
are not used to create K200-both-split).

Qualitative Results. To qualitatively show how SAAR guides feature learning, we vi-
sualize the spatial-aware actionness mask predicted by SAAR and the class activation
maps (CAM) [57] of models trained with or without SMAD in Figure 7. Without de-
biasing, the rare scenes in action videos, e.g., brick grill, many chessman-like shots,
transparent ice surface, and huge waves may mislead the model to give out wrong pre-
dictions. With SMAD, models can learn to focus on human actions rather than scenes.

8 Visualization videos in https://youtu.be/j1LA3y-UuEA.

https://youtu.be/j1LA3y-UuEA
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Model Aux-Data ARAS-64 K200db-val K200-val

2D

None 55.8 53.7 76.2
GG-bias 60.0 ↑ 4.2 53.9 ↑ 0.2 76.0 ↓ 0.2

GG-mid 60.5 ↑ 4.7 55.1 ↑ 1.4 76.3 ↑ 0.1

GG-rand 64.1 ↑ 8.3 57.5 ↑ 3.8 77.2 ↑ 1.0

GG-all 65.5 ↑ 9.7 58.4 ↑ 4.7 77.8 ↑ 1.6

GG-unbias 68.3 ↑ 12.5 60.0 ↑ 6.3 77.4 ↑ 1.2

3D

None 51.0 51.9 75.1
IG-rand 62.3 ↑ 11.3 56.8 ↑ 4.9 77.4 ↑ 2.3

IG-all 63.4 ↑ 12.4 58.5 ↑ 6.6 78.3 ↑ 3.2

IG-unbias 64.7 ↑ 13.7 59.8 ↑ 7.9 78.1 ↑ 3.0

Table 9: OmniDebias. We jointly train K200db-train with different web dataset splits.
The improvement for z-unbiased test sets (K200db-val, ARAS-64) is much larger than
K200-val.

6.4 Exploiting Web Media with OmniDebias

Web Data Help in Debiasing. To exploit the richness and diversity of web media, we
propose joint training with both labeled datasets and unlabeled web datasets. We first
try to use the entire web dataset after teacher filtering for joint training, including both
web image dataset GG-all and web video dataset IG-all. Table 9 shows that the
performance improved by web media is considerable for z-unbiased test sets. For both
baselines, the gain on ARAS-64 is around 10%. The improvement on the normal test
set K200-val, is milder (1 ∼ 4%) but also noticeable.
Data Selection Strategy. Although web media contain novel z ∈ Z that seldomly or
never occurs in the original train set, the per action category z distributions are still
highly imbalanced. To study the contribution of each portion of web media, we split
each web dataset into 3 equal-sized parts: bias, mid, unbias. We also randomly
sample a third from the web dataset (rand) for comparison. Using bias and mid leads
to worse performance than rand. Using unbias, however, not only surpasses other
subsets, but also outperforms training with all web data. With OmniDebias, the perfor-
mance gap between z-unbiased test sets and K200-val is largely narrowed: the gap
shrinks by around 10% Top1 for ARAS-64 and around 5% Top1 for K200db-val.
Besides re-distributed datasets, the improvement of OmniDebias can also be observed
when trained on the full Kinetics dataset9.

7 Conclusion

In this work, we seek to mitigate the generic representation bias in action recognition.
We propose SMAD and OmniDebias: SMAD integrates multi-head adversarial training
and spatial-aware feature reweighting for algorithm debiasing, while OmniDebias ex-
ploits the rich diversity of web data efficiently for dataset debiasing. When combined,
two components lead to excellent debiasing performance and perform far better on ei-
ther artificially split test sets or manually collected out-of-distribution ones.

9 We list the detailed results in the supplementary material.
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split factor dataset I(A,S) I(A,O)

scene
K200db-train 0.466 ↑ 0.069 -
K200db-val 0.374 ↓ 0.114 -

object
K200db-train - 0.473 ↑ 0.033

K200db-val - 0.431 ↓ 0.104

scene &
object

K200db-train 0.442 ↑ 0.045 0.480 ↑ 0.040

K200db-val 0.393 ↓ 0.095 0.456 ↓ 0.079

Table 10: The NMI of action and different factors on different dataset splits. A, S, O denote
action, scene and object. Blue and red marks denote the decrease or increase in NMI compared
with random sampling (Larger NMI → more biased).

A Details on the Benchmark

A.1 How we construct K200db-train/val

To build K200db-train and K200db-val, we first choose 200 categories in Kinetics-
400 which have the most training samples. When using scene as the splitting factor10,
we first use a ResNet50 pretrained on Places365 to extract pseudo scene labels for all
videos. Then, for each action class, we sort videos that belong to it by descending order
of pseudo scene label frequencies. For example, if 164 of 989 videos in the category
‘abseiling’ belong to the scene category ‘rope bridge’, the pseudo scene label frequency
for each video will be 164/989 = 0.166. By doing so, videos with regular scenes are
ranked on the top, videos with rare scenes are ranked at the bottom. For each class,
we choose at least11 50 videos with the lowest pseudo scene label frequency as test-
ing videos, randomly sample 400 videos from the remaining videos as training videos.
Finally, we construct K200db-[train/val] with 80000 and 10236 videos respec-
tively. We provide the training and testing sets file lists in supplementary materials
and some sample videos in https://youtu.be/j1LA3y-UuEA. We also list the
normalized mutual information (NMI) of action and different factors in Table 10. The
re-distributed training set is more biased than random sampling (NMI increases), while
the re-distributed testing set is less biased than random sampling (NMI decreases).

A.2 How we construct ARAS

For each action category in Kinetics-400, we try to collect action videos with scenes that
rarely occur in Kinetics-400 from Youtube. However, due to the taxonomy of Kinetics-
400, such videos do not always exist for every category: 1. scenes might be limited by
the category names (‘biking through snow’, etc.); 2. the action itself might restrict the
scene (‘jumping into pool’, ‘snowmobiling’, etc.). For the applicable 104 action cate-
gories, we come up with one or several rare scenes after browsing videos in Kinetics-
400 and then use the combinations of action and rare scenes as queries on Youtube.

10 The pipeline can also be applied to other factors like object.
11 All videos of one scene category should either belong to the training or testing set, so the

number might be larger than 50.

https://youtu.be/j1LA3y-UuEA


16 Haodong Duan, Yue Zhao, Kai Chen, Yuanjun Xiong, Dahua Lin

Dataset Split GoogleImage InstagramVideo

Raw 6M 1.1M

Positive-200 1.1M 341K
Positive-200 1/3 379K 114K

Positive-400 1.9M 481K
Positive-400 1/3 620K 160K

Table 11: The sizes of the web datasets.

I(A,S) GG-200 IG-200 GG-400 IG-400

all 0.476 0.399 0.458 0.388
rand 0.481 0.412 0.464 0.402
bias 0.801 0.746 0.779 0.731
mid 0.687 0.625 0.665 0.604

unbias 0.371 0.302 0.352 0.295

Table 12: The NMI of action and scene in different splits of web media datasets. A, S denote
action and scene. The dataset size of rand, bias, mid, unbias are 1/3 of all.

For example, we query ‘ice skating’ with the scene ‘clear lake’, query ‘eating water-
melon’ with the scene ‘farm’. After data collection, we conduct de-duplication to make
sure that ARAS does not overlap with the Kinetics-400 training set. We get around ten
videos for each action category and trim one or several12 clips from each video. To con-
struct a balanced test set, we only keep ten clips for each category. ARAS-104 contains
1,038 clips from 920 videos, while ARAS-64 contains 640 clips from 579 videos. We
provide sample clips of ARAS in https://youtu.be/j1LA3y-UuEA.

B OmniDebias Dataset Statistics

We use GoogleImg and InsVideo in the large-scale web media dataset OmniSource [16]13

as auxiliary datasets for debiasing. During pre-processing, we first use teacher net-
works (TSN for GoogleImage, SlowOnly for InstagramVideo) to filter out pos-
itive samples in the web dataset. Then we sort web images/videos that belong to an
action class by descending order of pseudo scene label frequencies (as described in
How we construct K200db-train/val). Based on the pseudo scene frequencies,
we divide all positive examples into three equal-sized parts: [web]-bias (high fre-
quency), [web]-mid (middle frequency), [web]-unbias (low frequency). Only
[web]-unbias is used for co-training by OmniDebias. We list the size of each
web dataset in Table 11. Raw denotes the raw web datasets without teacher filtering
of 400 action classes. Positive-200/400 denotes the positive examples belong to 200
action classes in K200db or 400 action classes in Kinetics-400. 1/3 denotes the size

12 Only if the untrimmed video is a collection of highlights.
13 Dataset available at https://github.com/open-mmlab/mmaction2/tree/
master/tools/data/omnisource

https://youtu.be/j1LA3y-UuEA
https://github.com/open-mmlab/mmaction2/tree/master/tools/data/omnisource
https://github.com/open-mmlab/mmaction2/tree/master/tools/data/omnisource
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Test Set Baseline SoftCE KL SoftCE + KL

ARAS-64 51.0 56.3 56.6 58.4

K200-unbias 51.9 54.7 54.5 55.0

Table 13: Ablation on loss functions for soft labels.

of each divided part, e.g., unbias. Table 11 shows that the web datasets (Positive-
[200/400], 1/3) used for co-training by OmniDebias are of the same magnitude as
K200db-train or K400-train.

In Table 12, we calculate the NMI between action and scene on different splits of
web datasets. The NMI of the [web]-unbias split is much smaller than any other
split or the entire web dataset, which indicates that [web]-unbias is less biased to
the factor scene.

C Experiment Setting

For experiments on Kinetics, we use an ImageNet-pretrained 3-segment TSN [50] with
ResNet50 backbone as the 2D baseline and use a randomly initialized SlowOnly-8x8 [18]
with ResNet18 backbone as the 3D one. Each experiment runs on the server with 8
1080Ti GPUs. RandomResizedCrop is used for data augmentation during the training
of all experiments.

For 2D experiments, the batch-size for each GPU is 32. The training lasts 100
epochs. We use 0.01 as the initial learning rate and drop the learning rate to its 1/10 at
the end of the 40th epoch and the 80th epoch. During testing, we uniformly sample 25
frames with CenterCrop as input.

For 3D experiments, the batch-size for each GPU is 16. Following [18], the training
lasts 196 epochs. We perform linear warmup during the first 34 epochs. A half-period
cosine schedule [35] is adopted for learning rate decay: the learning rate at the n-th
epoch is η · 0.5[cos( n

nmax
π) + 1], where nmax is the maximum training epochs (196

here) and the base learning rate η is set to 0.2. During testing, we uniformly sample 10
clips with CenterCrop as input.

D Experiment Results

D.1 Choice of adversarial losses.

Both SoftCE and KLDiv loss can be used for soft-label. In practice, we find that the
best debiasing result is achieved when we combine them as the loss function, which
achieves 0.3% and 1.8% Top-1 acc gain on K200db-val and ARAS-64 than each
individual loss (Table 13).

D.2 Qualitative Results

We provide the visualization videos of CAM [57] and learned actionness mask cor-
responding to Figure 7 in https://youtu.be/j1LA3y-UuEA. Besides that, we
also provide several additional examples.

https://youtu.be/j1LA3y-UuEA
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Aux-Data ARAS-64 K200db-val K200-val

GG-rand 58.9 54.1 75.0

GG-all 61.7 55.1 75.9

GG-unbias 65.3 56.2 75.2

[GG+IG]-rand 65.6 58.0 78.2

[GG+IG]-all 64.7 58.7 78.3

[GG+IG]-unbias 69.2 60.7 78.7

Table 14: Results for the combinations: K200db-train + GG and K200db-train +
[GG+IG]. Our data selection strategies also work for these two settings.

Model Aux-Data ARAS-104 K400-val

2D
GG-all 58.3 71.7

GG-unbias 60.2 71.3

3D
[GG+IG]-all 58.3 70.7

[GG+IG]-unbias 60.2 71.0

Table 15: On real-world large-scale datasets, auxiliary web dataset and the data selection strategy
still considerably improves the performance of ARAS-104.

D.3 Web Data Help in Debiasing

In main paper Table 2, for the 3D baseline trained on K200db-train, we report the
performance of OmniDebias using [GG+IG] as the auxiliary web dataset. In main pa-
per Table 8, for the 3D baseline trained on K200db-train, we report the performance
of OmniDebias using IG as the auxiliary web dataset to validate our data selection strat-
egy. In Table 14, we demonstrate the conclusion of main paper Table 8 also holds for
the two combinations K200db-train + GG and K200db-train + [GG+IG] over
the 3D baseline. Besides re-distributed datasets, the improvement of OmniDebias can
also be observed when trained on the full Kinetics dataset, as shown in Table 15.
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