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Abstract. Anomaly detection seeks to identify unusual phenomena, a
central task in science and industry. The task is inherently unsuper-
vised as anomalies are unexpected and unknown during training. Recent
advances in self-supervised representation learning have directly driven
improvements in anomaly detection. In this position paper, we first ex-
plain how self-supervised representations can be easily used to achieve
state-of-the-art performance in commonly reported anomaly detection
benchmarks. We then argue that tackling the next generation of anomaly
detection tasks requires new technical and conceptual improvements in
representation learning.
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1 Introduction

Discovery commences with the awareness of anomaly, i.e., with the recog-
nition that nature has somehow wviolated the paradigm-induced expecta-
tions that govern mormal science.

Kuhn, The Structure of Scientific Revolutions (1970)

I do not know what I may appear to the world, but to myself I seem to
have been only like a boy playing on the seashore, and diverting myself in
now and then finding a smoother pebble or a prettier shell than ordinary,
whilst the great ocean of truth lay all undiscovered before me.

Isaac Newton

Anomaly detection, discovering unusual patterns in data, is a core task for
human and machine intelligence. The importance of the task stems from the
centrality of discovering unique or unusual phenomena in science and industry.
For example, the fields of particle physics and cosmology have, to large extent,
been driven by the discovery of new fundamental particles and stellar objects.
Similarly, the discovery of new, unknown, biological organisms and systems is
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a driving force behind biology. The task is also of significant economic poten-
tial. Anomaly detection methods are used to detect credit card fraud, faults on
production lines, and unusual patterns in network communications.

Detecting anomalies is essentially unsupervised as only "normal” data, but no
anomalies, are seen during training. While the field has been intensely researched
for decades, the most successful recent approaches use a very simple two-stage
paradigm: (i) each data point is transformed to a representation, often learned
in a self-supervised manner. (ii) a density estimation model, often as simple as a
k nearest neighbor estimator, is fitted to the normal data provided in a training
set. To classify a new sample as normal or anomalous, its estimated probability
density is computed - low likelihood samples are denoted as anomalies.

In this position paper, we first explain that advances in representation learn-
ing are the main explanatory factor for the performance of recent anomaly de-
tection (AD) algorithms. We show that this paradigm essentially ”solves” the
most commonly reported image anomaly detection benchmark (Sec. 4). While
this is encouraging, we argue that existing self-supervised representations are
unable to solve the next generation of AD tasks (Sec. 5). In particular, we high-
light the following issues: (i) masked-autoencoders are much worse for AD than
earlier self-supervised representation learning (SSRL) methods (ii) current ap-
proaches perform poorly in datasets with multiple objects per-image, complex
background, fine-grained anomalies. (iii) in some cases SSRL performs worse
than handcrafted representations (iv) for "tabular” datasets, no representation
performed better than the original representation of the data (i.e. that data it-
self) (v) in the presence of nuisance factors of variation, it is unclear whether
SSRL can in-principle identify the optimal representation for effective AD.

Anomaly detection presents both rich rewards as well as significant chal-
lenges for representation learning. Overcoming these issues will require signifi-
cant progress, both technical and conceptual. We expect that increasing the in-
volvement of the self-supervised representation learning community in anomaly
detection will mutually benefit both fields.

2 Related Work

Classical AD approaches were typically based on either density estimation [9,20]
or reconstruction [15]. With the advent of deep learning, classical methods were
augmented by deep representations [23,38,19,24]. A prevalent way to learn these
representations was to use self-supervised methods, e.g. autoencoder [30], rota-
tion classification [10,13], and contrastive methods [36,35]. An alternative ap-
proach is to combine pretrained representations with anomaly scoring functions
[25,32,27,28]. The best performing methods [27,28] combine pretraining on aux-
iliary datasets and a second finetuning stage on the provided normal samples
in the training set. It was recently established [27] that given sufficiently pow-
erful representations (e.g. ImageNet classification), a simple criterion based on
the kNN distance to the normal training data achieves strong performance. We
therefore limit the discussion of AD in this paper to this simple technique.
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Fig. 1. Normal and Anomalous Representations: The self-supervised representa-
tions transform the raw data into a space in which normal and anomalous data can be
easily separated using density estimation methods

3 Anomaly Detection as a Downstream Task for
Representation Learning

In this section we describe the computational task, method, and evaluation set-
ting for anomaly detection.

Task definition. We assume access to N random samples, denoted by
Xirain = {x1,T2...xN}, from the distribution of the normal data pporm(z). At
test time, the algorithm observes a sample Z from the real-world distribution
Dreal(z), which consists of a combination of the normal and anomalous data
distributions: pperm () and panem(x). The task is to classify the sample & as
normal or anomalous.

Representations for anomaly detection. In AD, it is typically assumed
that anomalies a ~ pgnom have a low likelihood under the normal data distri-
bution, i.e. that pporm(a) is small. Under this assumption, the PDF of normal
data pnorm acts as an effective anomaly classifier. In practice, however, train-
ing an estimator ¢ for scoring anomalies using pporm is a challenging statistical
task. The challenge is greater when: (i) the data are high-dimensional (e.g. im-
ages) (il) pnorm is sparse or irregular (iii) normal and anomalous data are not
separable using simple functions. Representation learning may overcome these
issues by transforming the sample x into a representation ¢(z), which is of lower
dimension, where p,orm is relatively smooth and where normal and anomalous
data are more separable. As no anomaly labels are provided, self-supervised
representation learning is needed.

A two-stage anomaly detection paradigm. Given a self-supervised rep-
resentation ¢, we follow a simple two stage anomaly detection paradigm: (i) Rep-
resentation encoder: each sample during training or test is mapped to a feature
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descriptor using the mapping function ¢. (ii) Density estimation: a probability
estimator gnorm(2) is fitted to the distribution of the normal sample features
Xirain = {&(21), ¢(x2)...0(xn)}. A sample is scored at test time by first map-
ping it to the representation space ¢(Z) and scoring it according to the density
estimator. Given an estimator ¢o, of the normal probability density pnorm,
the anomaly score s is given by $(Z) = —@norm(¢(Z)). Normal data will typically
obtain lower scores than anomalous samples. A user can then set a threshold for
the prediction of anomalies based on an appropriate false positive rate.

4 Successful Representation Learning Enables Anomaly
Detection

Detecting anomalies in images is probably the most researched task by the deep
learning anomaly detection community. In this section, we show that the simple
paradigm presented in Sec. 3 achieves state-of-the-art results. As most density
estimators achieve very similar results, the anomaly detection performance is
mostly determined by the quality of learned representation. This makes anomaly
detection an excellent testing ground for representations. Furthermore, we dis-
cuss different approaches to finetune a representation on the normal train data
and show significant gains.

Learning representations from the normal data. Perhaps the most
common approach taken by recent AD methods is to learn the representations
in a self-supervised manner using solely the normal samples (i.e. the training
dataset). Examples of such methods are RotNet [13], CSI [36] and others. The
main disadvantage of such methods is that most of the datasets are of small size
and hence do not suffice for learning powerful representations.

Extracting representations from a pretrained model. A very simple
alternative is to use an off-the-shelf pretrained model and extract features for
the normal (i.e. training) data from it. The pretraining may be either supervised
(e.g. using ImageNet labels [3,12]) or self-supervised (e.g. DINO), in both cases
pretraining may be performed on ImageNet. These representations tend to per-
form much better than those extracted from models trained only on the normal
data.

A hybrid approach. A natural extension to the above approaches is to
combine the two. This is done by using the pretrained model as an initialization
for a self-supervised finetuning phase (on the normal data). In this way, the
powerful representation of the pretrained model can be used and refined within
the context of the anomaly detection dataset and task. Multiple approaches
[27,28] have been used for the self-supervised finetuning stage. However, in this
paper we present what is possibly the simplest approach, using DINO’s objective
for the finetuning stage. In this approach, a pretrained DINO model is used as
an initialization. During the finetuning phase, the model is trained on the target
anomaly detection training dataset (i.e. only normal data) in a self-supervised
manner by simply using the original DINO objective.
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Image Nearest Neighbors

MAE ~ DINO MAE

DINO

Fig.2. MAE vs. DINO nearest neighbors: For each image, the top 5 nearest neigh-
bors are shown according to their order. Note how MAE neighbors are chosen mostly
based on the colors and not their semantic contents, in contrast, DINO neighbors are
semantically accurate.

In Fig. 1 the above process is demonstrated with a toy example. Tab. 1
presents anomaly detection results on the CIFAR-10 [18] dataset, which is the
most commonly used dataset for evaluation. As can be seen, using representa-
tions extracted from a recent self-supervised method (i.e. DINO) following the
hybrid approach and coupled with a trivial kNN estimator for the density es-
timation phase nearly solves this dataset. Although a possible conclusion could
have been that the anomaly detection task has been solved, in the next section
we show this is not the case.

5 Gaps in Anomaly Detection Point to Bottlenecks in
Representations Learning

While Sec. 4 presented a very optimistic view of the ability of representation
learning to solve anomaly detection, in this section we paint a more complex
picture. We use this to highlight several limitations of current self-supervised
representations.
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Table 1. Image anomaly detection results: Mean ROC-AUC %. Bold denotes the
best results, FT stands for finetuned

Approach  Self-supervised Pretrained Hybrid
Method ~ RotNet [13] CSI [36] ResNet DINO PANDA [27] MSAD [25] DINO-FT
CIFAR-10 90.1 94.3 92.5 97.1 96.2 97.2 98.4

5.1 Masked-Autoencoder: Advances in self-supervised learning do
not always imply better anomaly detection

Recently, masked-autoencoder (MAE) based methods achieved significant im-
provements on several self-supervised representation learning benchmarks [11].
Yet, the representations learnt by MAE underperform contrastive self-supervised
methods on unsupervised tasks such as anomaly detection. A comparison be-
tween MAE to contrastive self-supervised method (DINO) is presented in Tab. 2
demonstrating the much better performance of DINO for AD. Finetuning on the
normal training data improves both methods, however a large gap still remains.
Implementation details for the experiments can be found in the App. A. In many
papers, self-supervised methods are evaluated using supervised benchmarks, such
as classification accuracy with finetuning. The key difference between anomaly
detection and ordinary benchmarks where MAE excel is that anomaly detection
is an unsupervised task. This is also suggested by MAFE’s worse performance
with linear probing (as reported by the original paper), where the supervised
labels cannot be used to improve the backbone representations.

MAE’s optimization objective may explain why its strong representation does
not translate into better anomaly detection capabilities. As MAFE’s objective is
to reconstruct patches, it may learn a representation that encodes local infor-
mation needed for reconstructing the image, overlooking semantic object prop-
erties. Consequently, the nearest neighbors may pay more attention to local
similarity than to global semantic properties (See Fig. 2). In contrast, the goal
of contrastive-based objectives is to map semantically similar images to nearby
representations, disregarding some of the local properties.

Conclusion. Better performance on supervised downstream tasks does not
necessarily imply better representations across the board. In some cases, while
the representation may excel in a supervised downstream task, it may under-
perform in an unsupervised counterpart. Looking forward, we suggest that new
self-supervised representation learning methods present evaluations on unsuper-
vised anomaly detection tasks alongside the common supervised benchmarks.

5.2 Complex datasets: Current representations struggle on scenes,
finegrained classes, multiple objects

Current representations are very effective for anomaly detection on datasets
with a single object occupying a large portion of the image. Furthermore, these
methods typically perform well when the number of object categories in the
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Table 2. Anomaly detection comparison of MAFE and DINO: Mean ROC-AUC
%. Bold denotes the best results

Method CIFAR-10 CUB-200 INet-S

MAE 78.1 73.1 83.2
DINO 97.1 93.9 99.3

normal train set is small and have coarse differences (e.g. "cat” and ”ship”).
A prime example is CIFAR-10, which is virtually solved. On the other hand,
anomaly detection accuracy is much lower on more complex datasets containing
multiple small objects, complex backgrounds; and when anomalies consist of
related object categories (e.g. "sofa” and ”armchair”). We modified the MS-
COCO [21] dataset by using all images from a single super-category (’vehicles’) as
normal data, apart from a single category ('bicycle’) which are used as anomalies.
We experiment both with cropping just the object bounding boxes or using
the entire image (including the background and other objects). Similarly, we
report results for a multi-modal CUB-200 [37] anomaly detection benchmark.
The results are presented in Tab. 3 (implementation details can be found in the
Appendix). It is clear that these datasets are far from solved and that better
representations are needed to achieve acceptable performance.

Conclusion. While current representations are effective for relatively easy
datasets, more realistic cases with small objects, backgrounds and many object
categories call for the development of new SSRL methods.

Table 3. Multi-modal datasets: Mean ROC-AUC %. ”MS-COCO-I” / "MS-COCO-
O” indicates MS-COCO image / object level benchmarks (respectively).

Method MS-COCO-1I MS-COCO-0 CUB-200

PANDA [27] 615 77.0 78.4
MSAD [25] 61.7 76.9 80.1
DINO 61.5 73.4 74.5

5.3 Unidentifiability: Representations for anomaly detection may
be ambiguous without further guidance

In some settings, we would like our representation to focus on specific attributes
(which we denote as relevant) while ignoring nuisance attributes that might bias
the model. Consider two different companies interested in anomaly detection in
cars. The first company may be interested in detecting novel car models, while
the second is interested in unusual driving behaviors. Although both may wish to
apply density estimation using a state-of-the-art self-supervised representation,
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Table 4. Summary of the findings of from Horwitz and Hoshen [11]: Average
metrics across all MVTec3D-AD classes, ”INet” indicates ImageNet [3] pretrained fea-
tures, PC indicates point cloud. I-ROC indicates image level ROC-AUC % [4], P-ROC
indicates pixel level ROC-AUC %. Higher score indicates better the results

Modality |RGB Depth Depth Depth Depth  Depth PC RGB+PC
Method |INet INet NSA [33] Raw HoG [7] SIFT [22] FPFH [31] RGB4+FPFH
PRO [2] |87.6 58.6 57.2 19.1 61.4 86.6 92.4 96.4
I-ROC 78.5 63.7 69.6 52.8 56.0 71.4 75.3 86.5
P-ROC |96.6 82.1 81.7 54.8 84.5 95.4 98.0 99.3

each will view the ground truth anomalies of the other company as a false-
positive case. As each company is interested in different anomalies, they may
require different representations. One company would require the representation
to contain only the driving patterns and be agnostic to the car model, at the same
time, the other company would strive for the opposite. As these preferences are
not present at the time of pretraining the self-supervised backbone, the correct
solution is often unidentifiable.

One initial effort is RedPANDA [6] that proposed providing labels for nui-
sance attributes. We note that only the attributes to be ignored are labeled, while
the other attributes (the ones in which characterize anomalies) are not provided.
Representation learning is then performed using domain-supervised disentangle-
ment [16], resulting in a representation only describing the unlabelled attributes.
Yet, the field of domain-supervised disentanglement is still in its infancy, and
the assumption of nuisance attribute labels is often not applicable.

Conclusion. Self-supervised representation learning methods are designed
to focus on semantic attributes of images, but choosing the most relevant ones is
unidentifiable without further guidance. Incorporating guidance may be achieved
by a careful choice of inductive bias [16] (e.g. augmentations) or using concept-
based representation techniques [17].

5.4 3D Point Clouds: Self-supervised representations do not always
improve over handcrafted ones

In an empirical investigation [14], we evaluated representative methods designed
for different modalities on the MVTec3D-AD dataset [3]. The paper showed that
currently, handcrafted features for 3D surface matching outperform learning-
based methods designed either for images or for 3D point clouds. A key insight
was that rotation invariance is very beneficial in this modality, and is often
overlooked. A summary of the findings, taken from the original paper, is found
in Tab. 4.

Conclusion. When dealing with 3D point-cloud, self-supervised represen-
tations are yet to outperform handcrafted features for anomaly detection. For
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Table 5. Tabular results: Mean F1 & ROC-AUC % from the ODDS benchmarks
results. Bold denotes the best results

Method GOAD [1] ICL [34] Raw
Scoring Auxiliary kNN Auxiliary kNN kNN
F1 54.4 63.2 68.1 69.8 69.9

ROC-AUC 782 876 839 894 90.2

modalities less mature than images, domain specific priors may still need to be
integrated into the architecture or objective. This stresses the need for better
3D point-cloud representations.

5.5 Tabular Data: When representations do not improve over the
original data

The tabular setting is probably the most general anomaly detection setting,
where each sample in the dataset consists of a set of numerical and categori-
cal variables. This is strictly harder than any other setting as no regularity in
the data can be assumed. Such data are frequently encountered, as unstruc-
tured databases are very common. In recent years, self-supervised methods have
been proposed for tabular anomaly detection [39,1,34,26]. These methods dif-
fer by the auxiliary task that they use for representation learning (and poten-
tially also for anomaly scoring). Two representative deep learning approaches
are GOAD [1] which predicts geometric transformations, and use the prediction
errors to detect anomalies, and ICL [34] which adopts the contrastive learning
task for training and for anomaly scoring by differentiating between in-window
and out-window features. As part of our evaluation, we used both their standard
pipeline (i.e. their auxiliary tasks for anomaly scoring) and our AD density esti-
mation paradigm (see Appendix). These results were then compared with kNN
on the original raw features without any modifications. The results are presented
in Tab. 5. Self-supervised representation learning did not improve performance
in comparison with the original raw features.

Conclusion. Representation learning for general datasets is an open research
question. Some prior knowledge of the dataset must be used in order to learn
non-trivial data representations, at least in the context of anomaly detection.

6 Final Remarks

In this position paper, we advocated the study of self-supervised representations
for the task of anomaly detection. We explained that advances in representation
learning have been the main driving force behind progress in anomaly detection.
On the other hand, we demonstrated that current self-supervised representation
learning methods often fall short in challenging anomaly detection settings. Our
hope is that interplay between the self-supervised representation learning and
anomaly detection fields will result in mutual benefits for both communities.
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A Appendix

In this paper we report anomaly detection results using the standard uni-modal
protocol, which is widely used in the anomaly detection community. In the uni-
modal protocol, multi-class datasets are converted to anomaly detection by set-
ting a class as normal and all other classes as anomalies. The process is repeated
for all classes, converting a dataset with C' classes into C' datasets. Finally, we
report the mean ROC-AUC % over all C' datasets as the anomaly detection
results.

A.1 Anomaly detection comparison of MAE and DINO

We compare between DINO [5] and MAE [11] as a representation for a kNN
based anomaly detection algorithm. For MAE, we experimented both with kNN
and reconstruction error for anomaly scoring and found that the latter works
badly, therefore we report just the KNN results. We evaluate using a variety
of datasets, in the uni-modal setting described above. We used the following
datasets:

INet-S [29]: The dataset is subset of 10 animal classes taken from Ima-

»

geNet21k (e.g "petrel”, ”tyrannosaur”, "rat snake”, ”duck”, "bee fly”, ”sheep”,
"beer cub”, "red deer”, ”silverback”, ”opossum rat”) that do not appear in Im-
ageNet1K dataset. The dataset is coarse-grained and contains images relatively
close to ImageNet1K dataset. It intended to convey that even for easy tasks the

MAE doesn’t achieve as good results as DINO.

CIFAR-10 [18]: Consists of low-resolution 32 x 32 images from 10 different
classes.
CUB-200 [37]: Bird species image dataset which contains 11,788 images of

200 subcategories. In the experiment we calculated mean ROC-AUC % over the
20 first categories.

A.2 Multi-modal datasets

In these experiment we specify a single class as anomalous, and treat all images
which does not contain it as normal.

MS-COCO-I [21]: We build a multi-modal anomaly detection dataset com-
prised of scenes benchmarks, where each image is evaluated against other images
featuring similar scenes. We choose 10 object categories (”bicycle”,” traffic light”,
"bird” , "backpack”, " frisbee”, "bottle”, ”banana”, ”chair”, "tv”, "microwave”,
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"book”) from different MS-COCO super-categories. To construct a multi-modal
anomaly detection benchmark, we designate an object category from the list as
the anomalous class, and training images of a similar super-category that do not
contain it as our normal train set. Our test set contains all the test images from
that super-category, where images containing the anomalous object are labelled
as anomalies. This process is repeated for the 10 object categories resulting in
10 different evaluations. We report their average ROC-AUC %.

MS-COCO-0: We introduce a similar benchmark to MS-COCO-I, focusing
on single objects rather than scenes. We crop all objects from our 10 super-
categories (described above) according to the MS-COCO supplied bounding
boxes. We repeat a similar process, using a similar object category as normal
and the rest as anomalies.

CUB-200 [37]: We create a multi-modal anomaly detection benchmark based
on the CUB-200 dataset. We focus on the 20 first categories, designating only
one as an anomaly each time.

A.3 Tabular domain

Various datasets used for tabular data anomaly detection were used for the ex-
periments. A total of 31 datasets from Outlier Detection DataSets (ODDS)! are
employed. For the evaluation of GOAD and ICL we used the official reposito-
ries and made an effort to select the best configuration available. For all density
estimation evaluations we used kNN with £ = 5 nearest neighbors. To convert
GOAD and ICL into the standard paradigm of representation learning followed
by density estimation: i) we use the original approaches to train a feature en-
coder (followed by a classifier which we discard) ii) we use the feature encoder to
represent each sample iii) density estimation is performed on the representations
using kNN exactly as in Sec. 3.

! http://odds.cs.stonybrook.edu/
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