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Abstract. In this work, we study different approaches to self-supervised
pretraining of object detection models. We first design a general frame-
work to learn a spatially consistent dense representation from an image,
by randomly sampling and projecting boxes to each augmented view and
maximizing the similarity between corresponding box features. We study
existing design choices in the literature, such as box generation, feature
extraction strategies, and using multiple views inspired by its success on
instance-level image representation learning techniques [6,7]. Our results
suggest that the method is robust to different choices of hyperparame-
ters, and using multiple views is not as effective as shown for instance-
level image representation learning. We also design two auxiliary tasks
to predict boxes in one view from their features in the other view, by (1)
predicting boxes from the sampled set by using a contrastive loss, and
(2) predicting box coordinates using a transformer, which potentially
benefits downstream object detection tasks. We found that these tasks
do not lead to better object detection performance when finetuning the
pretrained model on labeled data.

Keywords: self-supervised, object detection

1 Introduction

Pretraining a model on a large amount of labeled images and finetuning on a
downstream task, such as object detection or instance segmentation, has long
been known to improve both performance and convergence speed on the down-
stream task. Recently, self-supervised pretraining has gained popularity since it
significantly reduces the cost of annotating large-scale datasets, while providing
superior performance compared to supervised pretraining. Although a number
of prior works obtain semantic representations from unlabeled images via the
use of proxy tasks [25,23,14], recent works focus on instance-level contrastive
learning [8,9,17,10] or self-distillation [15,7] methods. These methods learn an
instance-level representation for each image that performs competitively with
using only a linear [8] or K-nearest neighbor [7] classifier, closing the gap to the
performance of supervised baselines.

ar
X

iv
:2

20
7.

04
18

6v
2 

 [
cs

.C
V

] 
 1

0 
A

ug
 2

02
2



2 Dang et al.

However, most of these contrastive and self-distillation methods focus on
learning an instance-level representation. They are likely to entangle information
about different image pixels, and are thus sub-optimal for transfer learning to
dense prediction tasks. A recent line of work aims to improve self-supervised pre-
training for object detection by incorporating modules in the detection pipeline
[31], and taking into account spatial consistency [26,28,31,30,34,35]. Rather than
comparing representation at instance-level, these methods propose to leverage
view correspondence, by comparing feature vectors [30,26] or RoIAlign features
of sampled boxes [28,31] at the same location from two augmented view of the
same image. These pretraining strategies have been shown to benefit downstream
dense prediction tasks. However, there may still be a discrepancy between the
pretraining and the downstream task, since they are optimized towards different
objectives.

Following prior works that pretrain SSL models for object detection models
by sampling object bounding boxes and leveraging view correspondence [28,31],
we study how different design choices affect performance. Specifically, we inves-
tigate strategies for box sampling, extracting box features, the effect of multiple
views (inspired by multi-crop [6]), and the effect of box localization auxiliary
tasks. We evaluate these proposals by pretraining on ImageNet dataset and fine-
tuning on COCO dataset. Our results suggest that (1) the approach is robust to
different hyperparameters and design choices, (2) the application of multi-crop
and box localization pretext tasks in our framework, as inspired by their suc-
cess in the literature, does not lead to better object detection performance when
finetuning the pretrained model on labeled data.

2 Related Work

2.1 Self-Supervised Learning from Images

A large number of recent work on self-supervised learning focuses on constrastive
learning, which learns the general feature of an image by using data augmen-
tations and train the model to discriminate views coming from the same image
(positive pairs) and other images (negative pairs), usually by using the InfoNCE
loss [16,32,29]. In practice, contrastive learning requires simultaneous comparison
among a large number of sampled images, and benefits from large batches [8,9],
memory banks [17,10], false negative cancellation [22], or clustering [5,1,21]. Re-
cently, non-contrastive methods such as BYOL [15] and its variants [7,11] obtain
competitive results without using negative pairs, by training a student network
to predict the representations obtained from a teacher network.

While instance-level representation learning methods show promising results
on transfer learning for image classification benchmarks, they are sub-optimal
for dense prediction tasks. A recent line of works focus on pre-training a back-
bone for object detection. Similar to instance-level representation learning, these
pre-training methods can be based on contrastive learning (e.g. VADeR [26],
DenseCL [30], and PixPro [34]), or self-distillation, (e.g. SoCo [31] and SCRL
[28]). These methods share a general idea of leveraging view correspondence,
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which is available from the spatial relation between augmented views and the
original image. Beyond pre-training the backbone, UP-DETR [12] and DETReg
[3] propose a way to pre-train a whole object detection pipeline, using a frozen
backbone trained with SSL on object-centric images to extract object features.
Xie et al. [33] leverage image-level self-supervised pre-training to discover ob-
ject correspondence and perform object-level representation learning from scene
images.

Many of these object detection pre-training techniques rely on heuristic box
proposals [31,3] or frozen backbone trained on ImageNet [12,3]. Our work, how-
ever, aims to study the potential of end-to-end object detection pre-training
without them. The framework we study is closest to SCRL [28], which adopts
the approach from BYOL [15].

2.2 Object Detection

Faster R-CNN [27] is a popular object detector, which operates in two stages.
In the first stage, a single or multi-scale features extracted by the backbone are
fed into the Region Proposal Network to get object proposals. In the second
stage, the pooled feature maps inside each bounding box are used to predict
objects. Low-quality object proposals and predictions are filtered out with Non-
Maximum Suppression (NMS), which is heuristic and non-differentiable.

Detection Transformer (DETR) [4] is a simpler architecture than Faster R-CNN
and operates in a single stage. The features retrieved by the backbone are en-
coded by a transformer encoder. The transformer decoder attends to the encoded
features and uses a fixed number of query embeddings to output a set of box
locations and object categories. DETR can learn to remove redundant detections
without relying on NMS; however, the set-based loss and the transformer archi-
tecture are notoriously difficult to train. Deformable DETR [36] with multi-scale
deformable attention modules has been shown to improve over DETR in both
performance and training time.

3 Approach

In this section, we describe the general framework and the notations we use
in our study. We first generate multiple views of an image via a sequence of
image augmentations. Our framework aims to learn a spatially consistent repre-
sentation by matching features of boxes covering the same region across views.
To avoid mode collapse, we train a student network to predict the output of a
teacher network, following BYOL [15]. At the end of this section, we compare
the proposed framework with a number of existing pretraining techniques for
object detection.
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Fig. 1. Example of view and random box generation with number of views V = 3 and
number of boxes K = 3.

3.1 View Construction and Box Sampling

We first randomly crop the original image to obtain a base view, with minimum
scale of sbase. Next, V augmented views v1, · · · vV are constructed from the base
view using V different image augmentations t1, · · · , tV ∼ T , each of which is
a sequence of random cropping with minimum scale of sview, color jittering,
and Gaussian blurring. Here, T is the distribution of image augmentations. The
minimum scale of these V views with regards to the original image is sbase×sview.
We separate sbase and sview and choose sview > 0.5 to make sure that views are
pairwise overlapped. The views are also resized to a fixed size to be processed in
batches.

Next, we sample K boxes b1, · · · , bK ∼ B relative to the base view, where
bk ∈ R4 is the box coordinate of the top left and the bottom right corner, B
is the box distribution. We transform these boxes from the base view to each
augmented view vi, based on the transformation ti used to obtain vi. We keep
only valid boxes that are completely fitted inside the view. Let τti be the box
transformation, Bi be the set of valid box indices by this transformation, the
set of boxes sampled for view i is denoted as {bki = τti(b

k)|k ∈ Bi}. During this
sampling process, we make sure that each box in the base view is completely
inside at least two augmented views by over-sampling and removing boxes that
do not satisfy this requirement.

The result of this view construction and box sampling process is V augmented
views of the original image with a set of at most K boxes for each view. Figure
1 describes the view and random box generation with V = 3 and K = 3.

3.2 SSL Backbone

Our strategy for training the backbone follows BYOL [15]. We train an online
network fθ, whose output can be used to predict the output of a target network
fξ, where θ and ξ are weights of the online and target network, respectively. The
target network is built by taking an exponential moving average of the weights
of the online network, which is analogous to model ensembling and has been
previously shown to improve performance [15,7].
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Specifically, let yi = fθ(vi), y
′
i = fξ(vi) be the output of the backbone for

each view i. Different from instance-level representation learning [15,7] where
global representations are compared, we compare local regions of interest refined
by sampled boxes. Let φ be a function that takes a feature map y, and box
coordinates b to output a box representation φ(y, b) (e.g., RoIAlign). Following
[15], we add projection layers gθ, gξ for both networks and a prediction layer qθ
for the online network. We obtain box representations uki = gθ(φ(yi, b

k
i )) from

the online network, and u′
k
i = gξ(φ(y′i, b

k
i )) from the target network. The SSL

loss is computed as:

LBYOL(yi, y
′
i, bi; θ) =

V∑
i=1,j=1
j 6=i

1

|Bi ∩Bj |
∑

k∈Bi∩Bj

‖qθ(uki )− u′kj ‖2 (1)

3.3 Comparison with Prior Work

Our framework reduces to BYOL when V = 2, K = 1, and τti returns the
whole view boundary regardless of the transformation ti. In this case, only global
representation of two augmented views are compared.

The framework is similar to SCRL when V = 2, B is a uniformly random
box distribution, and φ(y, b) outputs the 1 × 1 RoIAlign of the feature map y
with regards to box b. We do not remove overlapping boxes as in SCRL, since
object bounding boxes are not necessarily separated.

In SoCo [31], boxes are sampled from box proposals via the selective search
algorithm. A third view (and fourth view), which is a resizing of one of the two
views is also included to encourage learning object scale variance. We generalize
it to V views in our framework. SoCo offers pretraining FPN layers in Faster R-
CNN for better transfer learning efficiency. We however only focus on pretraining
the ResNet backbone, which is included in both Faster R-CNN and DETR.

4 Experiments

4.1 Experimental Setup

Dataset We pretrain the ResNet50 backbone on ImageNet [13] (∼ 1.28m images),
and finetune the object detection model on MS-COCO [24] (∼ 118k images).

Image Augmentation After we crop a view from the image as described in Section
3, we resize it to 256×256, and follow previous work [8,15,28] in applying random
horizontal flipping, color jittering, and Gaussian blurring.

Network Architecture We use ResNet-50 [19] as the backbone, which outputs a
feature map of shape (7, 7, 2048).
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Fig. 2. General framework: we train an online network to predict the output of a
target network under a different augmented view and update the target network with
a moving average of the online network. The representations are compared at regional
level via random box sampling.

Pretraining Setup For the baseline, we follow [15] to train a BYOL model for
300 epochs (top-1: 73.0) and 1,000 epochs (top-1: 74.3). For our framework, if
not explicitly stated otherwise, we use V = 2,K = 8, sbase = 0.9, sview = 0.6.
We use LARS optimizer with a base initial learning rate 0.3× batch size/256 for
300 epochs and 0.2×batch size/256 for 1,000 epochs, with a cosine learning rate
decay, and a warm up period of 10 epochs.

Evaluation We evaluate pretrained models on the COCO object detection task.
We fine-tune a Mask R-CNN detector with an FPN backbone on the COCO
train2017 split with the standard 1× schedule, following [18]. For DETR fine-
tuning, we use the initial learning rate 1 × 10−4 for transformers and 5 × 10−5

for the CNN backbone, following UP-DETR [12]. The model is trained with 150
and 300 epoch schedules, with the learning rate multiplied by 0.1 at 100 and 200
epochs, respectively.

Table 1 compares our framework with both instance-level and dense pretrain-
ing methods. Our proposed framework shows a clear performance improvement
over methods that only consider instance-level contrasting. Among methods that
leverage view correspondence to learn dense representation, our results are com-
parable with SCRL. Note that some methods, for example DetCon and SoCo,
use unsupervised heuristic in obtaining object bounding boxes or segmentation
masks, thus are not directly comparable.

In the following sections, we explore different settings and techniques built
on top of this framework to study if they improve the performance.

4.2 Effect of Box Sampling Strategies

We focus on a general random box sampling strategies, as in [28,12]. While some
box proposal algorithms (e.g., selective search) have been shown to produce
sufficiently good object boundaries to improve SSL performance [31,12], we want
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Table 1. Results of object detection and instance segmentation fine-tuned on COCO
with Faster R-CNN + FPN.

Method Epoch APb APb
50 APb

75

random init. - 32.8 50.9 35.3
supervised - 39.7 59.5 43.3

MoCo 200 38.5 58.3 41.6
SimCLR [8] - 38.5 58.0 42.0
BYOL∗ [15] 300 39.1 59.9 42.4
BYOL∗ [15] 1k 40.1 61.3 43.9
MoCo-v2 - 39.8 59.8 43.6

DetConS [20] 300 41.8 - -
DetConB [20] 300 42.0 - -
SCRL [28] 1k 40.9 62.5 44.5
SoCo [31] 100 42.3 62.5 46.5
SoCo [31] 400 43.0 63.3 47.4
DenseCL [30] 200 40.3 59.9 44.3
PLRC [2] 200 40.7 60.4 44.7

Ours 300 39.9 60.7 43.8
Ours 1k 40.8 62.1 44.7

to avoid incorporating additional inductive bias in the form of rules to generate
boxes, since the efficacy of such rules could depend on the dataset.

We study the effect of four hyperparameters of the random box sampling
strategy: (1) number of boxes per image (K), (2) box coordinate jittering rate
(relative to each coordinate value) (%n), (3) minimum box size (Smin), and (4)
minimum scale for each view (sview). For each attribute, we report results on
several chosen values as in Table 2.

The results are shown in 2. For the number of boxes per image K, it can
be seen that increasing the number of boxes does not have a large effect on the
finetuning performance. The results slightly drop when introducing box jittering,
which was proposed in [31]. The approach is pretty robust against changing the
minimum box size Smin. For the minimum scale for each view sview, it can be
observed that having a larger scale (i.e. larger overlapping area between views,
which boxes are sampled from) does not help to increase the pretraining efficacy.

4.3 Effect of Methods to Extract Box Features

We explore three different ways to extract features for each box (choices of
φ(y, b)): (1) RoIAlign 1× 1 (denoted as ra1), (2) RoIAlign c× c with crop size
c > 1 (denoted as ra3, ra7, etc.), and (3) averaging cells in the feature map
that overlap with the box, similar to 1× 1 RoIPooling (denoted as avg). While
SCRL and SOCO use ra1 [28,31], ra7 offers more precise features and is used in
Faster R-CNN [27] to extract object features. avg shifts box coordinates slightly,
introducing variance in the scale and location.
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Table 2. Effect of Box Sampling by number of boxes K, box jittering rate %n, min-
imum box size Smin, and minimum scale for each view sview. Underlined numbers are
results of the default setting (Section 4.1).

K APb APb
50 APb

75 %n APb APb
50 APb

75 Smin APb APb
50 APb

75 sview APb APb
50 APb

75

4 40.0 60.8 43.7 0 39.9 60.7 43.8 0 39.9 60.7 43.8 0.5 40.1 60.9 43.5
8 39.9 60.7 43.8 0.05 39.7 60.5 43.5 0.05 40.0 60.7 43.8 0.6 39.9 60.7 43.8
16 40.2 61.0 44.1 0.10 39.7 60.6 43.1 0.10 39.9 60.6 43.3 0.7 39.6 60.1 43.2
32 39.9 60.7 43.5 0.20 39.8 60.7 43.4 0.20 39.8 60.4 43.5 0.8 39.7 60.2 43.6

Additionally, with the use of RoIAlign c×c, we want to examine the necessity
of random box sampling. Specifically, we compare the dense features of the shared
area of two views, which is similar to comparing c× c identical boxes forming a
grid in the shared area.

The results are shown in Table 3. We observe that ra1 achieves the best
performance, although the differences are marginal. Moreover, when not using
random box sampling, AP scores drop significantly, hinting that comparing ran-
dom boxes with diversified locations and scales is necessary for a good pretrained
model.

Table 3. Effect of extracting box features.

box sampling shared area

feature extraction APb APb
50 APb

75 APb APb
50 APb

75

ra1 39.9 60.7 43.8 - - -
ra3 39.7 60.4 43.4 39.3 59.9 42.8
ra7 39.6 60.4 43.4 39.4 60.0 42.8
avg 39.8 60.7 43.3 - - -

4.4 Effect of Multiple Views

multi-crop has been shown to be an effective strategy in instance-level repre-
sentation learning [6,7,22], with both contrastive and non-contrastive methods.
In the context of dense representation learning, the only similar adoption of
multi-crop we found is in SoCo [31]; however, their third view is only a resize
of one of two main views. We are interested in examining if an adaptation of
multi-crop that more closely resembles the original proposal of [6] provides
meaningful improvements for our task. We consider two settings for our experi-
ments:

Using multiple views In the 2-view (V = 2) setting, since only features corre-
sponding to the shared area of two views are considered for training, the compu-
tation related to the non-overlapping area may be useless. For better efficiency,
we consider using more than two views (V > 2). The similarity between each
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pair of views is included in the loss as in equation 1. We expect increasing the
number of views improves the pretrained model since the the model is trained
using more augmented views within the same number of epochs.

Using local-to-global correspondences Instead of obtaining RoIAlign from the
view’s dense representation for each box, we crop the image specified by each box
and obtain the features with a forward pass through the backbone. For example,
if the number of boxes K = 8, we will perform 8 forward passes through the
network on the 8 crops to obtain box features. These features will be compared
against box features obtained with RoIAlign from the global view. This is similar
to the adoption of local views in DINO [7], except the local views are compared
only against the corresponding regions in the feature map obtained from the
global view, rather than a representation of the entire image. Figure 3 shows
how local views can be leveraged in SSL pretraining.

Fig. 3. Leveraging local views in SSL pretraining. Each sampled box in a global view
is compared with the representation of the image cropped from the box.

Table 4. Results with multiple views.

#views APb APb
50 APb

75

2 39.9 60.5 43.6
3 39.8 60.8 43.4
4 39.8 60.7 43.5

Table 4 shows the results of using multiple views for V = 3 or V = 4, where
we do not observe a significant performance gain despite more computation at
each step. This suggests that constructing more augmented views at the same
scale does not necessarily lead to an increase in the performance. Note that in
this first design, we did not downscale views or use local views as in [6,7]. For the
second design, table 5 shows the results of using global and local views, with each
local view covering an smaller area inside the global view and resized to 96×96.
We observe that the performance drops significantly. These results suggest that
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Table 5. Results with global and local views.

ra1 avg

#views APb APb
50 APb

75 APb APb
50 APb

75

2 global 39.9 60.7 43.8 39.8 60.7 43.3
1 global + 8 local 38.1 58.7 41.5 38.3 58.8 41.9
2 global + 8 local 38.3 58.8 41.7 39.0 59.7 42.7

although the multi-crop strategy, either with or without considering local-to-
global correspondences, is effective for learning global image features [6,7], it is
not effective for learning dense features.

4.5 Effect of Box Localization Auxiliary Task

In addition to the SSL loss, we consider a box localization loss to match the
objective of SSL pretraining with that of an object detection model. Existing
methods usually improve pretraining for dense prediction tasks by leveraging
spatial consistency; however, a self-supervised pretext task designed specifically
for the object detection tasked has been less studied. UP-DETR [12] has demon-
strated that using box features extracted by a well-trained vision backbone to
predict box location helps DETR pretraining. In this section, we present our
effort to incorporate such object detection pretext tasks into our pretraining
framework. Two types of box localization loss Lbox are considered. Given a box
feature from a view, we can compute either (1) a box prediction loss, i.e. a con-
trastive loss that helps predict the corresponding box among up to K boxes
from another view; or (2) a box regression loss, an L1 distance and general IoU
loss of box coordinates from another view predicted by using a transformer. The
final loss is defined as L = LBYOL + λLbox, where λ is the weight of the box
localization term.

Box Prediction Loss Given a box feature uki from a view i, we want to predict
which box from {u1j , · · ·uKj } in view j corresponds to uki . This can be done by

comparing the similarity between feature from each of these K boxes with uki .
We use a contrastive loss to minimize the distance between positive box pairs,
and maximize the distance between negative box pairs.

Lbox pred
i,j = −

K∑
k=1

log
exp(sim(uki , u

k
j )/τ)∑K

k′=1 exp(sim(uki , u
k′
j )/τ)

Box Regression Loss Inspired by the DETR architecture [4], we employ a
transformer, which takes ukj as the query and looks over the representation of

the i-th view to predict the box location uki . The output of the transformer is a
vector of size 4 for each box, representing the coordinate of the box center, its
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Table 6. Results of object detection fine-tuned on COCO with Faster R-CNN + FPN.

Method λ APb APb
50 APb

75

random init. - 32.8 50.9 35.3
BYOL - 39.1 59.9 42.4

No box loss 0.00 39.9 60.5 43.6

Box prediction 0.01 39.8 60.3 43.6
0.05 39.5 59.9 43.1
0.10 39.5 60.0 43.4

Box regression 0.01 39.6 60.4 43.3
0.05 39.1 59.4 42.9

Table 7. Results of object detection fine-tuned on COCO with DETR.

Method APb APb
50 APb

75

supervised 37.74 59.0 39.2

BYOL [15] 36.05 56.9 37.2
Ours 35.6 56.0 37.0
Ours + regression 35.7 55.8 37.5

height and width. In addition to L1 loss, we also use the generalized IoU loss,
which is invariant to box scales. The bounding box loss is defined as

Lbox(b̃ki , b
k
i ) = λgiouLgiou(b̃ki , b

k
i ) + λbox‖b̃ki − bki ‖1

where λgiou and λbox are weights in the loss, b̃ki = Decoder(yi, u
k
j ) is a predicted

box. The box loss is defined as

Lbox =

V∑
i=1

j=1,j 6=i

1

|Bi ∩Bj |
∑

k∈Bi∩Bj

(
Lbox(b̃ki , b

k
i ) + Lbox(b̃kj , b

k
j )
)

Table 6 shows the results with two proposed losses when fine-tuning the
Faster R-CNN model on the COCO dataset. It can be seen that these auxiliary
losses, despite our expectation, have an adverse effect on the finetuning perfor-
mance. We suggest that although these tasks encourage learning a representation
that is useful for box prediction, the gap between these and a supervised task
on labeled data is still significant that finetuning is not very effective.

Table 7 shows the results when fine-tuning DETR, which shares the decoder
architecture with the decoder used to obtain box regression loss. While our
framework improves the fine-tuning performance (+0.8 APb) as shown in Table
1, it does not improve the results in the case of fine-tuning DETR (-0.4 APb).
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5 Conclusion

We studied a self-supervised pretraining approach for object detection based on
sampling random boxes and maximizing spatial consistency. We investigated the
effect of different box generation and feature extraction strategies. Moreover, we
tried incorporating multi-crop and additional self-supervised object detection
pretext tasks to the proposed framework. We found that the method is robust
against different design choices.
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