Skip to main content

Learning Rich Information for Quad Bayer Remosaicing and Denoising

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

In this paper, we propose a DNNs-based solution to jointly remosaic and denoise the camera raw data in Quad Bayer pattern. The traditional remosaic problem can be viewed as an interpolation process that converts the Quad Bayer pattern to a normal CFA pattern, such as the RGGB one. However, this process becomes more challenging when the input Quad Bayer data is noisy. In addition, the limited amount of data available for this task is not sufficient to train neural networks. To address these issues, we view the remosaic problem as a bayer reconstruction problem and use an image restoration model to remove noises while remosaicing the Quad Bayer data implicitly. To make full use of the color information, we propose a two-stage training strategy. The first stage uses the ground-truth RGGB Bayer map to supervise the reconstruction process, and the second stage leverages the provided Image Signal Processor (ISP) to generate the RGB images from our reconstructed bayers. With the use of color information in the second stage, the quality of reconstructed bayers is further improved. Moreover, we propose a data pre-processing method including data augmentation and bayer rearrangement. The experimental results show it can significantly benefit the network training. Our solution achieves the best KLD score with one order of magnitude lead, and overall ranks the second in Quad Joint Remosaic and Denoise @ MIPI-challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.sony-semicon.com/en/technology/mobile/quad-bayer-coding.html.

References

  1. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: IEEE/CVF Conference on Computer Vision & Pattern Recognition (2018)

    Google Scholar 

  2. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006). https://doi.org/10.1109/TSP.2006.881199

    Article  MATH  Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning (2017)

    Google Scholar 

  4. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005 (2005)

    Google Scholar 

  5. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  6. Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: Proceedings of 1st International Conference on Image Processing, vol. 2, pp. 168–172 (1994). https://doi.org/10.1109/ICIP.1994.413553

  7. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018)

    Google Scholar 

  8. Chen, J., Chen, J., Chao, H., Ming, Y.: Image blind denoising with generative adversarial network based noise modeling. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  9. Cheng, S., Wang, Y., Huang, H., Liu, D., Fan, H., Liu, S.: NBNet: noise basis learning for image denoising with subspace projection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4896–4906 (2021)

    Google Scholar 

  10. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  11. Dai, L., Liu, X., Li, C., Chen, J.: AWNet: attentive wavelet network for image ISP. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 185–201. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_11

    Chapter  Google Scholar 

  12. Alleysson, D., Süsstrunk, S., Hérault, J.: Linear demosaicing inspired by the human visual system. IEEE Trans. Image Process. 14(4), 439–449 (2005)

    Article  Google Scholar 

  13. Dong, W., Xin, L., Lei, Z., Shi, G.: Sparsity-based image denoising via dictionary learning and structural clustering. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)

    Google Scholar 

  14. Ehret, T., Davy, A., Arias, P., Facciolo, G.: Joint demosaicking and denoising by fine-tuning of bursts of raw images. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  15. Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Process. 16, 1395–1411 (2007)

    Article  MathSciNet  Google Scholar 

  16. Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 17(10), 1737–1754 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gharbi, M., Chaurasia, G., Paris, S., Durand, F.: Deep joint demosaicking and denoising. ACM Trans. Graph. 35(6), 191 (2016)

    Article  Google Scholar 

  18. Gu, S., Lei, Z., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  19. Heide, F., et al.: FlexISP: a flexible camera image processing framework. In: International Conference on Computer Graphics and Interactive Techniques (2014)

    Google Scholar 

  20. Hirakawa, K., Parks, T.W.: Adaptive homogeneity-directed demosaicing algorithm. IEEE Trans. Image Process. 14(3), 360 (2005)

    Article  Google Scholar 

  21. Ignatov, A., Gool, L.V., Timofte, R.: Replacing mobile camera ISP with a single deep learning model. In: Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  22. Kai, Z., Zuo, W., Chen, Y., Meng, D., Lei, Z.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Kim, I., Song, S., Chang, S., Lim, S., Guo, K.: Deep image demosaicing for submicron image sensors. J. Imaging Sci. Technol. 63(6), 060410-1–060410-12 (2019)

    Google Scholar 

  24. Kim, Y., Soh, J.W., Gu, Y.P., Cho, N.I.: Transfer learning from synthetic to real-noise denoising with adaptive instance normalization. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  25. Klatzer, T., Hammernik, K., Knobelreiter, P., Pock, T.: Learning joint demosaicing and denoising based on sequential energy minimization. In: 2016 IEEE International Conference on Computational Photography (ICCP) (2016)

    Google Scholar 

  26. Kokkinos, F., Lefkimmiatis, S.: Deep image demosaicking using a cascade of convolutional residual denoising networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 317–333. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_19

    Chapter  Google Scholar 

  27. Liang, Z., Cai, J., Cao, Z., Zhang, L.: CameraNet: a two-stage framework for effective camera ISP learning. IEEE Trans. Image Process. 30, 2248–2262 (2019)

    Article  Google Scholar 

  28. Liu, J., et al.: Learning raw image denoising with bayer pattern unification and bayer preserving augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  29. Liu, L., Jia, X., Liu, J., Tian, Q.: Joint demosaicing and denoising with self guidance. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  30. Liu, X., Shi, K., Wang, Z., Chen, J.: Exploit camera raw data for video super-resolution via hidden Markov model inference. IEEE Trans. Image Process. 30, 2127–2140 (2021)

    Article  MathSciNet  Google Scholar 

  31. Liu, Y., et al.: Invertible denoising network: a light solution for real noise removal (2021)

    Google Scholar 

  32. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440 (2015)

    Google Scholar 

  33. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: 2009 IEEE 12th International Conference on Computer Vision (ICCV) (2010)

    Google Scholar 

  34. Malvar, H.S., He, L.W., Cutler, R.: High-quality linear interpolation for demosaicing of bayer-patterned color images. In: 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (2004)

    Google Scholar 

  35. Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. 30(4), 1–14 (2011)

    Article  Google Scholar 

  36. Mao, X.J., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections (2016)

    Google Scholar 

  37. Menon, D., Calvagno, G.: Color image demosaicking. Sig. Process. Image Commun. 26(8–9), 518–533 (2011)

    Article  Google Scholar 

  38. Monno, Y., Kiku, D., Tanaka, M., Okutomi, M.: Adaptive residual interpolation for color image demosaicking. In: IEEE International Conference on Image Processing (2015)

    Google Scholar 

  39. Pekkucuksen, I., Altunbasak, Y.: Gradient based threshold free color filter array interpolation. In: 2010 17th IEEE International Conference on Image Processing (ICIP) (2010)

    Google Scholar 

  40. Plotz, T., Roth, S.: Benchmarking denoising algorithms with real photographs, pp. 2750–2759 (2017)

    Google Scholar 

  41. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  43. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Schwartz, E., Giryes, R., Bronstein, A.M.: DeepISP: towards learning an end-to-end image processing pipeline. IEEE Trans. Image Process. 28(2), 912–923 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sharif, S., Naqvi, R.A., Biswas, M.: Beyond joint demosaicking and denoising: an image processing pipeline for a pixel-bin image sensor (2021)

    Google Scholar 

  46. Shi, G., Yan, Z., Kai, Z., Zuo, W., Lei, Z.: Toward convolutional blind denoising of real photographs (2018)

    Google Scholar 

  47. Xin, L., Gunturk, B., Lei, Z.: Image demosaicing: a systematic survey. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 6822 (2008)

    Google Scholar 

  48. Yue, Z., Yong, H., Zhao, Q., Zhang, L., Meng, D.: Variational denoising network: toward blind noise modeling and removal (2019)

    Google Scholar 

  49. Yue, Z., Yong, H., Zhao, Q., Meng, D., Zhang, L.: Variational denoising network: toward blind noise modeling and removal. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  50. Yue, Z., Zhao, Q., Zhang, L., Meng, D.: Dual adversarial network: toward real-world noise removal and noise generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 41–58. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_3

    Chapter  Google Scholar 

  51. Zamir, S.W., et al.: Learning enriched features for real image restoration and enhancement. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 492–511. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_30

    Chapter  Google Scholar 

  52. Zamir, S.W., et al.: Learning enriched features for fast image restoration and enhancement (2022)

    Google Scholar 

  53. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2017)

    Article  MathSciNet  Google Scholar 

  54. Zhu, F., Chen, G., Heng, P.A.: From noise modeling to blind image denoising. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R &D Program of China 2021YFE0206700, NSFC 61831015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Liu or Guangtao Zhai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, J., Sun, H., Liu, X., Xiao, L., Xu, Q., Zhai, G. (2023). Learning Rich Information for Quad Bayer Remosaicing and Denoising. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25072-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25071-2

  • Online ISBN: 978-3-031-25072-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics