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Abstract. Taking into account information across the temporal domain
helps to improve environment perception in autonomous driving. How-
ever, it has not been studied so far whether temporally fused neural
networks are vulnerable to deliberately generated perturbations, i.e. ad-
versarial attacks, or whether temporal history is an inherent defense
against them. In this work, we study whether temporal feature networks
for object detection are vulnerable to universal adversarial attacks. We
evaluate attacks of two types: imperceptible noise for the whole image
and locally-bound adversarial patch. In both cases, perturbations are
generated in a white-box manner using PGD. Our experiments confirm,
that attacking even a portion of a temporal input suffices to fool the net-
work. We visually assess generated perturbations to gain insights into the
functioning of attacks. To enhance the robustness, we apply adversarial
training using 5-PGD. Our experiments on KITTI and nuScenes datasets
demonstrate, that a model robustified via K-PGD is able to withstand
the studied attacks while keeping the mAP-based performance compa-
rable to that of an unattacked model.
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1 Introduction

Deep neural networks (DNNs) have become an indispensable component of envi-
ronment perception in autonomous driving systems. The inherent vulnerability
of DNNs to adversarial attacks [25] makes adversarial robustness one of the cru-
cial requirements before their wide adoption in autonomous vehicles is possible.
Recent studies [3,6,11] demonstrate that adversarial attacks can be performed
in the real world and thus present a significant threat to self-driving cars.

Previous works have already investigated adversarial vulnerability of DNNs
for specific tasks like object detection [11] or semantic segmentation [14,17], and
also of DNNs with specific architectures like sensor fusion [29] or multi-task
learning [13]. In this work, we focus on temporal feature networks as a model
under attack. Although the emphasis of recent studies was mostly on LiDAR
data used in conjunction with camera images, the temporal fusion is a further
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Fig. 1: We evaluate universal attacks on temporal feature networks for object
detection (here – with a universal patch). Adversarial patch suppresses all de-
tections of an undefended baseline and creates fake detections instead (top).
Detection of ground truth objects by a robust model is no longer restrained by
an adversarial patch (bottom). Note, that the patch against robust models has
a more complex structure

approach to increase the object detection accuracy, which deserves attention.
There has been very little research into fusing multiple images in the temporal
dimension for object detection. Object detectors with temporal fusion, however,
receive more context data from previous images and outperform single-image
object detectors [30]. In particular, the prediction of obstructed objects that are
visible in previous images might be a possible advantage.

To the best of our knowledge, we are the first to explore attacks and defenses
for this type of DNNs. As an exemplary model under attack, we consider the late
slow fusion architecture for object detection proposed by Weber et al. [30], which
is in turn inspired by DSOD [23] and expanded to incorporate several input
images. The model proposed by Weber et al. outperformed its non-temporal
counterpart, thus demonstrating the importance of the temporal history for the
object detection accuracy. The main goal of our work is to study, whether CNNs
with temporal fusion are prone to adversarial attacks and what is the impact of
the temporal history on the adversarial vulnerability of these models.

For this, we evaluate two variants of universal white-box attacks against this
model: with an adversarial patch (see Figure 1) and with adversarial noise. In
our setting, a single instance of malicious input is generated to attack all possible
data. This way, if printed out, the generated patch can be used for an attack in
the real world. The latter was already demonstrated for state-of-the-art object
detectors in previous works [3,24,26]. To increase the adversarial robustness of
the model under attack, we consider adversarial training using K-PGD [12].
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2 Related Work

2.1 Adversarial Attacks

Since the discovery of adversarial attacks by Szegedy et al. [25], a number of
algorithms to attack DNNs have been proposed, the most prominent being the
Fast Gradient Sign Method (FGSM) [9] and the Projected Gradient Descent
(PGD) [12].

While the mentioned attacks are traditionally performed in a per-instance
manner, i.e. an adversarial perturbation is applied to a single image in order to
fool a model, universal perturbations, that are able to attack multiple instances,
are also possible [15]. Universal adversarial inputs pose a special threat, because
they are also able to attack images beyond the training data.

Another line of research aims at developing physical adversarial attacks. For
this, visible adversarial perturbations are generated within a certain image area.
The resulting adversarial patch can then be printed out to perform an attack
in the real world. After their introduction by Brown et al. in [3], adversarial
patches have been shown to successfully fool various deep learning models, in-
cluding object detectors [11,18], semantic segmentation networks [17] and end-
to-end driving models [19]. A combination of adversarial patches with universal
attacks is especially interesting. Taking into consideration the transferability of
adversarial examples across DNNs, such attacks might also be performed in a
black-box manner in the real world [26,32].

Although no previous work on adversarial vulnerability of temporal fusion
networks is known, a certain effort was already made in the community to de-
velop adversarial attacks against sensor fusion models [33,29]. In particular, the
work by Yu et al. has revealed, that late fusion is more robust against attacks
than early fusion [33]. The evaluated dataset, however, is relatively small with
only 306 training and 132 validation samples from the KITTI dataset.

2.2 Adversarial Training

Adversarial training (AT) is currently one of the few defenses that are able
to combat even strong attacks [2]. It consists in training a DNN while adding
adversarial inputs to each minibatch of training data. It has recently been shown,
that adversarial training not only increases the robustness of neural networks to
adversarial attacks but also leads to better interpretability [28].

While the idea originates from [9], the first strong defense was demonstrated
with a multi-step PGD algorithm (the K-PGD adversarial training) [12]. For
each minibatch, a forward/backward step is first executed k times to generate
an adversarial input and then a single forward/backward step follows, which aims
to update the model parameters. The PGD loop thus drastically increases the
overall training time. For this reason, K-PGD adversarial training is intractable
for large datasets.

One of the recently proposed strategies to speed up adversarial training is
the so-called AT for free [21], which reuses gradient information during train-
ing. Instead of performing separate gradient calculations to generate adversarial
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examples during training, adversarial perturbations and model parameters are
updated simultaneously in a single backward pass. This way, multiple FGSM
steps are performed on a single minibatch to simulate the PGD algorithm while
concurrently training the model. The authors were the first to apply adversarial
training to the large-scale ImageNet classification task. The robustified models
demonstrate resistance to attacks, comparable to that of K-PGD, while being
7 to 30 times faster. The approach, however, is still more time-consuming than
standard training.

A similar method to accelerate adversarial training named YOPO (You Only
Propagate Once) is proposed by Zhang et al. [34]. In YOPO, the gradients of
the early network layers are frozen and reused to generate an adversarial input.
YOPO is four to five times faster than K-PGD, although the results are only
provided for relatively small datasets. YOPO reaches a performance similar to
the free adversarial training but is less computationally expensive.

Most recently, a further approach to accelerate adversarial training was pro-
posed by Wong et al. [31]. Starting with the assumption, that iterative attacks
like K-PGD do not necessarily lead to more robust defenses, the authors propose
to use R-FGSM AT instead. R-FGSM applies FGSM after a random initializa-
tion. This adversarial training method is claimed to be as effective as K-PGD.

Enhancing adversarial training to increase robustness against universal at-
tacks was first addressed by Shafahi et al. [22]. Each training step uses FGSM to
update a universal adversarial perturbation, which is then simultaneously used
to update the model parameters. The proposed extension to adversarial training
introduces almost no additional computational cost, which makes adversarial
training on large datasets possible.

A further approach to harden DNNs against universal attacks is the shared
adversarial training, proposed in [16]. To generate a shared perturbation, each
batch is split into heaps, which are then attacked with single perturbations.
These perturbations are aggregated and shared across heaps and further used
for standard adversarial training.

3 Adversarial Attacks

3.1 Threat Model

We consider two types of white-box attacks in this work: adversarial patch and
adversarial noise. All attacks are performed in a universal manner, i.e. a single
perturbation is used to to attack all images [15]. We use a slightly modified
version of the PGD algorithm [12] for the attack. In order to apply PGD in a
universal manner, an empty mask is introduced, which is added to each input
image. We then only update this mask in contrast to the original PGD, which
updates the input images directly.

We use Adam [10] for faster PGD convergence as suggested in [5]. We also
do not take a sign of the gradients but use actual gradient values instead. In an
unsigned case, pixels, that strongly affect the prediction, can be modified to a
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much larger extent than less important pixels. Noise initialization strategy is a
further setting, influencing training speed. For the FGSM attack, the advantage
of initialization with random values has already been shown [27]. We perform
patch-based attacks with randomly initialized patch values and noise-based at-
tacks initialized with Xavier [8].

3.2 Adversarial Training

Adversarial training expands the training dataset with adversarial examples,
created on the fly during training. Training on this dataset should enable the
model to predict the correct label even in the presence of an attack.

We consider the established K-PGD AT with patch/noise generated for each
input sequence. We create a single adversarial example (with either patch or
noise) for all images in an input sequence. Thus, the generated adversarial per-
turbation is not universal and is only intended to fool the data from the current
batch. The usage of this approach is motivated by a recent observation, that de-
fending against non-universal attacks also protects against universal attacks [16].

Although Free [21] and YOPO [34] approaches offer a considerable speed
up in training, they are not applicable in our case. Both algorithms require the
same loss function to train a model and create adversarial examples. This is
only possible for untargeted attacks, where the goal is to maximize the loss for
the correct class. Instead, we want to perform object vanishing attacks, which
require different loss functions than training the model. This way, reusing the
gradients, already computed for the parameter update step, as foreseen in these
AT algorithms, cannot be performed in our case.

4 Experimental Setup

4.1 Dataset

For the evaluation, we consider the late slow fusion architecture for object de-
tection, proposed by Weber et al. [30]. While the original work by Weber et al.
has focused on the KITTI Object Detection dataset [7], we additionally run our
experiments on the nuScenes data [4]. We focus on the models with four input
frames with equal temporal distance.

KITTI Images from the object detection benchmark are resized to 1224×370.
We only select images, that have the corresponding three temporally preceding
frames, delivered in the dataset, resulting in 3689 sequences of length four for
training and 3754 sequences of length four for validation.

nuScenes The dataset contains 850 annotated scenes, whereas each scene con-
tains about 40 keyframes per camera, taken at a frequency of 2Hz. We generate
input sequences with a length of four from the keyframes as follows: if keyframes
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Fig. 2: Architecture of the temporal feature network used for baselines. bs denotes
the bottleneck size. Inception block uses k×1×1 convolutions for depth reduction

{a, b, c, d, e} belong to the same scene, the two sequences {a, b, c, d} and {b,
c, d, e} are created. For the training dataset, we use front-facing and backward-
facing images. For the latter, we have inverted the order of the sequence. Ad-
ditionally, we augment the training dataset by horizontal mirroring of images.
Since the nuScenes dataset contains images from a left-driving country, the in-
troduced images remain within the domain. We use the 700/150 scene split for
training and validation, as recommended by nuScenes, so that the training sub-
set contains 52060 and the validation subset – 5569 sequences of length four.
Images are resized from an initial 1600×900 to 1024×576 pixels and normalized
to a range of [0,1]. For attack, we do not apply horizontally mirrored images, so
that the training dataset contains 26030 images.

Since we focus on the detection of cars and pedestrians, the nuScenes classes
adult, child, construction worker, police officer, stroller and wheelchair are con-
solidated into one new class pedestrian. As a second class we define car, which
corresponds to the nuScenes class vehicle.car. We do not include other vehicles
available in the nuScenes labels (e.g. busses, motorcycles, trucks, and trailers)
to minimize intra-class variance.

4.2 Baselines

The baselines follow the late slow fusion architecture (see Figure 2) proposed
by Weber et al. [30]. The input is a sequence of images with temporal distance
∆t = 500ms, whereas prediction is learned for the last input frame. Each input
image is processed by a separate 2D convolutional stem, being identical to the
2D DSOD detector [23]. Stems are followed by a series of 3D dense blocks,
intervened with transition blocks. The subsequent Inception redux blocks aim
at reducing the temporal depth by half. Finally, a detector subnet similar to that
of YOLOv2 [20] follows.

For each dataset, we deliberately defined new anchor boxes to have high IoU
scores with the bounding boxes in the training data. For this, we analyzed all
objects in the training dataset and clustered them using k-means with IoU as
a distance metric. As a result, we obtained eight anchor boxes, which comprise
various box forms to detect both pedestrians (upright vertical rectangles) and
cars (horizontal rectangles).

We train the baselines on an NVIDIA RTX 2080 Ti GPU. KITTI models
are trained for 50 epochs, whereas nuScenes models are trained for 100 epochs.
For validation, the PASCAL VOC implementation of mAP is used. The mAP is
always calculated for a confidence threshold of 0.01 and nms threshold of 0.5.
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Model / Attack No attack Universal Universal Universal
patch noise noise,

ϵ = 5/255 ϵ = 10/255

Baseline 74.82 13.62 34.73 2.08
5-PGD AT with patch 66.47 52.18 24.46 23.07

5-PGD AT with noise, ϵ = 5/255 62.77 42.82 61.52 61.75
5-PGD AT with noise, ϵ = 10/255 53.24 32.15 53.24 53.07

Table 1: APcar in % of the 1-class KITTI baseline and AT models

Model / Attack No attack Universal Universal Universal
patch noise noise,

ϵ = 5/255 ϵ = 10/255

Baseline 50.93 4.36 34.49 4.43
5-PGD AT with patch 50.86 44.18 23.88 14.83

5-PGD AT with noise, ϵ = 5/255 41.95 27.90 41.95 41.35
5-PGD AT with noise, ϵ = 10/255 38.50 25.76 38.49 38.49

Table 2: mAP in % of the 2-class KITTI baseline and AT models

We train models to detect either only objects of the class car (1-class models)
or objects of the classes car and pedestrian (2-class model). Tables 1 and 2
show performance of the 1-class and 2-class KITTI baselines. Whereas average
precision for the class car is comparable for both models (APcar reaches 74.82%
for the 1-class model vs. 73.21% for the 2-class), the worse performance for the
underrepresented class pedestrian (28.65%) explains the overall worse mAP of
the 2-class model.

Tables 3 and 4 summarize results on the nuScenes baselines. Due to class im-
balance (108K annotated cars vs. 48K annotated pedestrians), the results for the
2-class baseline for the underrepresented class pedestrian are again significantly
worse.

The results achieved on the KITTI and nuScenes baselines, described below,
are comparable if the opposite is not stated.

4.3 Adversarial Noise Attack

For a universal noise attack, we have initially applied the proposed universal
PGD with the changes motivated above. However, it turned out, that this at-
tack leads to the detection of nonexistent new objects (see Figure 3a). The loss
maximization goal apparently favors creating new features that resemble ob-
jects rather than preventing the detection of existing objects. We have therefore
adapted the attack algorithm by replacing the gradient ascent with the gradient
descent on an empty label. Figure 3b shows, that adversarial noise generated
using targeted PGD on an empty label can successfully suppress all objects
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Model / Attack No attack Universal Universal Universal
patch noise noise,

ϵ = 5/255 ϵ = 10/255

Baseline 73.20 6.20 9.03 0.15
5-PGD AT with patch 74.04 61.89 27.71 27.65

5-PGD AT with noise, ϵ = 5/255 72.24 3.51 71.85 68.19

Table 3: APcar in % of the 1-class nuScenes baseline and AT models

Model / Attack No attack Universal Universal Universal
patch noise noise,

ϵ = 5/255 ϵ = 10/255

Baseline 27.55 0.98 0.74 0.16
5-PGD AT with patch 28.69 17.95 7.02 0.53

5-PGD AT with noise, ϵ = 5/255 27.10 12.83 25.78 20.69

AT with reused patches 27.24 9.13 6.01 0.48
R-FGSM AT with noise, ϵ = 5/255 27.51 2.72 0.24 0.02

Table 4: mAP in % of the 2-class nuScenes baseline and AT models. For this
model, AT with reused patches and R-FGSM AT were additionally evaluated

present in the input. All perturbations are trained using the Adam optimizer for
100 epochs.

4.4 Adversarial Patch Attack

To generate a universal patch, we apply PGD with unsigned gradients using the
Adam optimizer for 100 epochs. We evaluated patches of size 71 × 71, 51 × 51
and 31 × 31. As expected, the largest patch led to a stronger attack and was
used in the following experiments. Note, that a 71 × 71 patch still takes only
about 1% of the image area both in the case of KITTI and nuScenes images.

To evaluate the impact of patch position, we evaluated a total of 33 patch
positions. Average precision for different positions fluctuated only within few
percentage points, so patch position apparently has only a minor impact on its
attack strength.

4.5 Adversarial Training

We apply adversarial training as a method to improve the robustness of the
studied models. We consider K-PGD AT and two additional AT strategies: (1)
reusing the patches, already generated for the baseline, during the training and
(2) R-FGSM.

In the case of K-PGD AT, creating an adversarial example iteratively with k
steps increases the number of forward and backward propagations by a factor of
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(a) Untargeted attack with gradient as-
cent

(b) Targeted attack for an empty label
with gradient descent

Fig. 3: Predictions of the 2-class nuScenes baseline on images attacked with uni-
versal noise, ϵ = 5/255

(a) Untargeted attack with gradient as-
cent on the 2-class model

(b) Untargeted attack with gradient as-
cent on the 1-class model

Fig. 4: Predictions of the nuScenes baselines on images attacked with universal
patch

k. We have therefore used a small k = 5 per adversarial attack during training
and drastically increased the learning rate of the Adam optimizer to make the
attacks possible. Training 5-PGD AT both on nuScenes and KITTI thus took
five times longer than the corresponding baseline, both for the adversarial noise
and the adversarial patch.

In the case of the pre-generated patches for adversarial training, we first
generated a pool of patches against the baseline as described above. We then
trained a model, while adding a randomly chosen patch at each training step
with a 50% probability. The AT with reused patches involved no generation of
new patches, therefore its duration is comparable to regular model training.

Finally, R-FGSM AT was trained with adversarial noise with ϵ = 5/255.
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5 Evaluation

5.1 Attacks on 1-class vs. on 2-class Baselines

Visual assessment of the adversarial noise patterns helps to understand, how
the attack functions. We observed different behavior of attacks on 1-class and 2-
class models. In particular, universal noise, generated to attack 1-class baselines
evidently contains structures resembling cars, whereas noise attacking 2-class
models exhibits no such patterns (see Figure 5). Apparently, the attack aims at
mimicking existing objects, if they all belong to one class.

Adversarial patches, generated for both types of models, however, look sim-
ilar. Patch-based attacks on nuScenes baselines tend to detect non-existing cars
in a patch (see Figure 4), whereas attacks against the KITTI 2-class baseline
rather find pedestrians in a patch. This might be explained by a different portion
of pedestrians in the corresponding datasets. Patches against nuScenes 2-class
model never mimicked pedestrians, because they are highly underrepresented in
the training data.

5.2 Impact of Temporal Horizon

Temporal fusion models have better performance due to the incorporation of
the temporal history. To assess which portion of the history is enough to attack
the model, we perform the evaluation exemplary with the ϵ = 10/255 adversarial
noise attack on the 1-class KITTI baseline. We have attacked single frames using
adversarial noise, which was initially generated for the whole input sequence of
length four and with adversarial noise, generated for the corresponding portion
of the input (see Table 5). We observed, that perturbations, deliberately gener-
ated for specific frames, work better when attacking them, than those generated
for the whole input sequence. For both cases, the attack works the best, when
frames, immediately preceding the current frame, are attacked. On contrary, at-
tacking only the oldest frame leads to the worst results. Also, perturbing only the
frame for which the prediction is done and not attacking the temporal history at
all leads to a significantly weaker attack. Finally, the more preceding temporal
history frames are attacked, the better the results.

These results confirm, that the later images in the input sequence are more
important for the prediction. Furthermore, single attacked images that appear
later in the input sequence, cause larger error than those which appear earlier.

Furthermore, we evaluate the impact of the temporal horizon. In addition to
the already evaluated models with four input images, we also evaluated models
with a smaller sequence length. In particular, for the 1-class nuScenes model, we
observe about 10% for each reduction of the number of input images: 73.20%
mAP for the temporal history of length four, 63.12% for the length three and
52.18% for the length two. The attack strength also decreases correspondingly.
We thus conclude that a larger temporal horizon helps to enhance not only the
performance on the clean data, but also the adversarial robustness.
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(a) KITTI 1-class baseline (b) KITTI 2-class baseline

(c) KITTI 1-class robustified (d) KITTI 2-class robustified

(e) nuScenes 1-class baseline (f) nuScenes 2-class baseline

(g) nuScenes 1-class robustified (h) nuScenes 2-class robustified

Fig. 5: Universal noise with ϵ = 5/255, generated to attack baselines and models,
robustified via 5-PGD AT with noise, ϵ = 5/255. Original pixel value range [-5,5]
mapped to [0,255] for better visibility

5.3 Robustness of the Adversarially Trained Models

To evaluate the robustness of the robustified models, we attack them again with
newly generated universal patches and noises. Tables 1-4 demonstrate the results.

All models robustified via AT demonstrate performance similar to the base-
line on non-attacked data and almost no accuracy drop on the malicious data
for the nuScenes models and a small drop for the KITTI models. For the KITTI
dataset, we have additionally evaluated AT with adversarial noise with ϵ = 5/255
and ϵ = 10/255 (see Tables 1 and 2). The larger epsilon leads to worse perfor-
mance on clean data due to larger perturbation.
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Attacked sequence part Noise generated Noise generated
t−3 t−2 t−1 t for all four inputs for each evaluated case

74.82 74.82

70.68 58.46

67.02 45.43

53.14 36.21

23.91 5.77

50.84 22.14

32.45 10.13

6.19 2.96

3.80 2.74

2.08 2.08

Table 5: Attacking a part of the sequence. The attacked frames are highlighted
red, prediction is performed for the frame t. mAP in % is reported for the 1-class
KITTI baseline, attacked with ϵ = 10/255 adversarial noise, generated either for
all four inputs or for each evaluated case

(a) Baseline (b) AT with
reused patches

(c) 5-PGD AT
with patch

(d) 5-PGD AT
with noise

Fig. 6: Universal patches to attack different nuScenes 2-class models

Moreover, we have evaluated AT with reused patches and R-FGSM AT on
the 2-class nuScenes model (see Table 4). As expected, the defended model with
reused patches is less robust to attacks than the one which was trained with
5-PGD. Surprisingly, the R-FGSM AT method has completely failed to defend
against attacks. We explain this behavior with the catastrophic overfitting phe-
nomenon, mentioned in the original work by Wong et al. [31] and in a more
recent study by Andriushchenko et al. [1], which challenges the original claim
that using randomized initialization prevents this overfitting.

Figure 6 compares patches, generated for the adversarially trained models
with the patch generated against the nuScenes 2-class baseline. In the case of
patch reuse, the patch contains more green and yellow pixels than the original
patch. In the case of K-PGD adversarial training, the patch is brighter and
contains more white pixels. Interestingly, the patch generated for a model, which
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(a) Baseline (b) 5-PGD AT with noise

Fig. 7: Per-instance adversarial noise with ϵ = 5/255 generated to attack
nuScenes 2-class model on a single input sequence. Original pixel value range
[-5,5] mapped to [0,255] for better visibility

(a) Baseline (b) 5-PGD AT
with patch

(c) 5-PGD AT
with noise

Fig. 8: Per-instance adversarial patch generated to attack nuScenes 2-class model
on single input sequence

was adversarially trained with adversarial noise, is the only one that contains
structures, resembling a car.

Figure 5 compares universal noises, generated to attack the KITTI and
nuScenes baselines and the corresponding model defended via 5-PGD AT with
ϵ = 5/255 noise. Both contain a streak of color at the horizon line and wave-
like patterns at the bottom. We again conclude, that perturbation attacking
robustified models exhibit more complex structure.

5.4 Robustness of the AT-trained Models against Per-instance
Attacks

Finally, we examine whether adversarially trained models also become robust
against per-instance attacks. For this, we take an exemplary input sequence and
generate adversarial perturbations against it. Each attack is trained for 1000
steps.

Per-instance noise attack (see Figure 7) manage to completely suppress all
detections of the corresponding model. Analogously to universal attacks, non-
universal noise attacks against the hardened model look much more complex.
Similarly, per-instance patches (see Figure 8) against the robustified model show



14 S. Pavlitskaya et al.

complex structures resembling cars. Interestingly, this patch is also unable to
efficiently attack the model, several cars are still correctly detected after applying
this patch.

Overall, while models hardened with the evaluated adversarial training strate-
gies are very successful in resisting universal attacks while preserving high accu-
racy, they are still unprotected against per-instance attacks. Universal attacks
are, however, much more feasible with regard to real-life settings.

6 Conclusion

In this work, we have studied the adversarial vulnerability of temporal feature
networks for object detection. The architecture proposed by Weber et al. [30]
was used as an exemplary model under attack.

Our experiments on KITTI and nuScenes datasets have demonstrated that
the studied temporal fusion model is susceptible to both universal patch and
noise attacks. Furthermore, we have explored different adversarial training strate-
gies as a defense measure. Out of the three evaluated methods, the 5-PGD ap-
proach with a per-instance adversarial noise has proven to be the most powerful.
The R-FGSM strategy, however, has failed to defend against the studied attacks.
5-PGD adversarial training was able to withstand newly created universal at-
tacks. The robustified networks have also demonstrated only a slight drop in
performance on clean data.

Our experiments with attacking a portion of the temporal history have
demonstrated, that the frames, immediately preceding the current frame, have a
greater impact on the model decision and thus lead to stronger attacks when ma-
nipulated. We have further observed, that reducing the temporal horizon leads
to worse performance and adversarial robustness of the model.

We have compared the universal and per-instance perturbations generated to
attack the baseline and the robustified models. In all cases, we observed that in
order to attack a hardened neural network, the adversarial perturbation has to
exhibit a much more complex structure. In particular, a universal patch against
the most robust 5-PGD with noise contains a pattern resembling a car.

Our adversarially trained models, however, remain vulnerable to non-universal
attacks like per-instance-generated noise or patch. This stresses the need for fur-
ther research in this area.

Since the computation time for adversarial training is still a bottleneck,
adapting gradient re-usage strategies like [21] or [34] for models, which use differ-
ent loss functions to learn an adversarial perturbation and to update the model
weights, might be a promising line of research for future.

Acknowledgement The research leading to these results is funded by the
German Federal Ministry for Economic Affairs and Climate Action within the
project “KI Absicherung“ (grant 19A19005W) and by KASTEL Security Re-
search Labs. The authors would like to thank the consortium for the successful
cooperation.



Adversarial Vulnerability of Temporal Feature Networks 15

References

1. Andriushchenko, M., Flammarion, N.: Understanding and Improving Fast Adver-
sarial Training. Advances in Neural Information Processing Systems (NIPS) (2020)

2. Athalye, A., Carlini, N., Wagner, D.: Obfuscated Gradients Give a False Sense
of Security: Circumventing Defenses to Adversarial Examples. In: International
Conference on Machine Learning (ICML). PMLR (2018)
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