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Abstract. In intelligent building management, knowing the number of
people and their location in a room are important for better control
of its illumination, ventilation, and heating with reduced costs and im-
proved comfort. This is typically achieved by detecting people using com-
pact embedded devices that are installed on the room’s ceiling, and that
integrate low-resolution infrared camera, which conceals each person’s
identity. However, for accurate detection, state-of-the-art deep learning
models still require supervised training using a large annotated dataset
of images. In this paper, we investigate cost-effective methods that are
suitable for person detection based on low-resolution infrared images.
Results indicate that for such images, we can reduce the amount of su-
pervision and computation, while still achieving a high level of detection
accuracy. Going from single-shot detectors that require bounding box
annotations of each person in an image, to auto-encoders that only rely
on unlabelled images that do not contain people, allows for considerable
savings in terms of annotation costs, and for models with lower computa-
tional costs. We validate these experimental findings on two challenging
top-view datasets with low-resolution infrared images.

Keywords: Deep Learning, Privacy-Preserving Person Detection, Low-
Resolution Infrared Images, Weak Supervision, Embedded Systems.

1 Introduction

Intelligent building management solutions seek to maximize the comfort of occu-
pants, while minimizing energy consumption. These types of solutions are crucial
for reducing the use of fossil fuels with a direct impact on the environment. Such
energy-saving is usually performed by adaptively controlling lighting, heating,
ventilation, and air-conditioning (HVAC) systems based on building occupancy,
and in particular the number of people present in a given room. For this, low-
cost methods are needed to assess the level of room occupancy, and efficiently
control the different systems within the building.
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Among the different levels of occupancy information that can be extracted in
an intelligent building [25], Sun et al. define the location of occupants as the most
important and fine-grained for smart building control. Given the recent advances
in machine learning and computer vision, most solutions usually rely on deep
convolutional neural networks (CNNs) to detect people [8,7]. Despite the high
level of accuracy that can be achieved with CNNs for visual object detection
based on RGB images, their implementation for real-world video surveillance
applications incurs in a high computational complexity, privacy issues, and gen-
der and race biases [4,22]. Finally, building occupancy management solutions
are typically implemented on compact embedded devices, rigidly installed on
the ceiling or portals of rooms, and integrating inexpensive cameras that can
capture low-resolution IR images.

To mitigate these issues, He et al. [9] have proposed a privacy-preserving ob-
ject detector that blurs people’s faces before performing detection. To strengthen
the detector against gender/race biases, the same authors proposed a face-
swapping variation that also preserves privacy at the cost of increased com-
putational complexity. Regardless of the good performance, their approach does
not ensure confidentiality at the acquisition level, relying on RGB sensors to
build the solution. Furthermore, their detector was designed for fully annotated
settings using COCO [16] as the base dataset. This makes it difficult to gener-
alize to people detection under different capture conditions (like when cameras
are located on the ceiling on compact embedded systems), and extreme changes
in the environment. In addition, it is difficult to collect and annotate image
data to train or fine-tune CNN-based object detectors for a given application,
so weakly-supervised or unsupervised training is a promising approach.

In contrast, our work tackles the occupants location problem by detecting
people in infrared (IR) images at low resolution, which avoids most of the above-
mentioned issues on privacy. Low resolution not only reduces computational
complexity but also improves privacy, i.e., a detection on high-resolution in-
frared images would not be enough as it is possible to re-identify people [32].
More specifically, we analyse people detection with different levels of supervision.
In this work, we compare unsupervised, weakly-supervised and fully supervised
solutions. This is an essential aspect of the detection pipeline since producing
bounding box annotations is very expensive, and there is a lack of good open-
source object detection datasets for low-resolution infrared scenarios. In fact,
reducing the level of supervision can lead to improved scalability for real appli-
cations and reduced computation, which is important considering the use of the
proposed algorithms on embedded devices.

The contributions of this work are the following. (i) We propose cost-effective
methods for estimating room occupancy under a low-supervision regime based
on low-resolution IR images, while preserving users privacy. (ii) We provide an
extensive empirical comparison of several cost-effective methods that are suit-
able for person detection using low-resolution IR cameras. Results indicate that,
using top-view low-resolution images, methods that rely on weakly-labeled im-
age data can provide good detection results, and thus save annotation efforts
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and reduce the required complexity of the detection model. (iii) To investi-
gate the performance of person detecting methods on low-resolution IR images,
our results are shown in two challenging datasets – the FIR-Image-Action and
Distech-IR datasets. Finally, we provide bounding box annotations for the FIR-
Image-Action [31] dataset1.

2 Related Work

Privacy-preserving methods are of great interest to the scientific community.
As a result, multiple approaches have been proposed in the past to circumvent
the challenge. Ryoo et al. [21] proposed a method for learning a transformation
that obtained multiple low-resolution images from a high-resolution RGB source.
The method proved effective for action recognition even when inputs’ resolution
were down-sampled to 16 × 12. These findings were validated by others [29,6]
using similar downsampling-based techniques to anonymize the people displayed
in the images. On the other hand, recent approaches [20,9] have focused on
producing blurred or artificial versions of people’s faces while preserving the
rest of the image intact. These methods usually rely on Generative Adversarial
Networks (GANs) to preserve image utility, while producing unidentifiable faces.
Specifically, the method of He et al. [9] is one of the first approaches to apply
such anonymization in an object detection task. Despite recent advances in the
area, these proposals are specialized for RGB images, which are anonymized
after the undisclosed acquisition. As an alternative to RGB cameras, others
authors [26,15,27,28] have proposed using low-resolution IR cameras to preserve
anonymity at the phase of image acquisition. While most of these works target
action recognition task, we focus on people detection as in [24,5].

Complementary to privacy preservation, this work also focuses on studying
detection methods with different levels of supervision. Such a study aims to
find techniques that reduce annotation costs without a significant performance
reduction when compared with fully supervised approaches. In this work, we fol-
lowed the auto-encoders (AE)-based anomaly-detection method similar to the
one proposed by Baur et al. [2]. The technique is used to learn the distribution
of typical cases, and applied later to identify abnormal regions within the im-
age. However, different from their proposal, we focus on object detection instead
of image segmentation. We also evaluate weakly-supervised detection methods
based on Class Activation Maps (CAMs) [33,23] following the authors algorithm.
Nonetheless, we use a customized CNN to be consistent with our low-resolution
inputs. Finally, we consider also the fully supervised techniques Single Shot De-
tector [17] and Yolo v5 [11] as upper-bound references, sharing the same back-
bone as the previously described approaches. The aim of this work is not to use
the latest developments for each type of technique. Instead, we aim to achieve a
good trade-off between performance and computational complexity with simple
and commonly used techniques. In particular, we favor simple occupants’ de-

1 https://github.com/ThomasDubail/FIR-Image-Action-Localisation-Dataset

https://github.com/ThomasDubail/FIR-Image-Action-Localisation-Dataset
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tection approaches that can run in embedded devices and with capabilities for
handling low-resolution infrared images.

3 Person Detection with Different Levels of Supervision

Several cost-effective methods may be suitable for person detection using low-
resolution IR cameras installed on ceilings. The goal of object detection is to find
a mapping fθ such that fθ(x) = z, where z are the probabilities that a bounding
box belongs to each class. Note that such a mapping can be obtained using any
level of supervision. In this paper, we seek to compare the detection accuracy
of methods that rely on different levels of image annotation, and thereby assess
the complexity needed to design embedded person detection systems.

In this work we consider a “fully annotated” dataset of IR images at low
resolution F = {(x0, b0), (x1, b1), ..., (xN , bN )}, with x an IR image and b =
{(c0, d0, w0, h0), ..., (cB , dB , wB , hB)} rectangular regions enclosing the objects
of interest, also known as bounding boxes. Without loss of generality, we use a
center pixel representation (center x, center y, width, height) [17] for defining
the bounding boxes. In the given formulation, all bounding boxes belong to the
persons’ category. Consequently, a “weakly annotated” IR dataset is defined as
W = {(x0, y0), ..., (xN , yN )} in which yi ∈ {0, 1} corresponds to an image-level
annotation indicating whether a person is present (yi = 1) or not (yi = 0) in
the image xi. Finally, at the lowest level of supervision, an ”unlabeled” dataset
containing only IR images without annotations is expressed as U = {xi}. Please
note that for this study, the datasets F , W, and U are drawn from the same
pool of IR images but with different levels of annotations.

The rest of this section details the methods compared in this paper, each one
trained according to a different level of supervision. Here, the backbone of all
deep learning based methods remained the same. We focus on low-cost methods
that can potentially be implemented on compact embedded devices.

3.1 Detection through thresholding

Let x be an IR thermal image from U . The people within the images appear as
high-temperature blobs easily distinguishable from the low-temperature back-
ground, Figure 1a. Such a property allows us to directly apply a threshold-based
mapping gτ (x) = Φ(Jx ≥ τK) to obtain the persons’ location. In this formulation,
we use J·K to refer to the Iverson bracket notation, which denotes the binariza-
tion of the image x according to the threshold τ , Figure 1b. Here, the value of τ
is manually determined according to a validation set, or automatically following
Otsu’s method [19], hereafter referred as Threshold and Otsu’s Threshold re-
spectively. Finally, a mapping Φ converts the segmentation map into a bounding
box by taking the minimum and maximum pixels from each binary blob (see
Figure 1c). This method is more seen as a post-processing step for the following
methods, although we have evaluated it to have a lower bound for detection.
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(a) (b) (c)

Fig. 1: Example of an IR image (a) that is binarized using the threshold τ = 29
(b), and represented as a bounding box (c).

3.2 Unsupervised anomaly-based detection using auto-encoders

For this next approach, people are considered anomalies for the distribution of
empty rooms. In this work, we follow the method proposed by Baur et al. [2] to
model the background distribution using an auto-encoder (AE) fθ trained using
only empty rooms, W0 = {xi | yi = 0}. Such an approach acts as a background
reconstruction technique whenever an anomaly is present, i.e., the AE will not
be able to reconstruct it. Then, we can highlight the anomaly by taking the dif-
ference between the input image and the obtained reconstruction, x− fθ(x) (see
Figure 2). Finally, the anomaly detection method for person detection is defined
as Λθ,τ (x) = gτ (x − fθ(x)) where gτ is the thresholding technique explained
in the previous section. Thus, the detection is performed in a two-step process:
anomaly boosting and anomaly segmentation-localization, which can be done by
setting a threshold τ .

The encoder architecture comprises six convolutional layers with kernels of
size 3 × 3. Max-pooling operations are used every two convolutional layers to
increase the field of view. The decoder follows a symmetrical architecture of the
encoder using transposed convolution with a stride of 2 as upsampling technique.
The bottleneck uses a linear layer with 256 neurons which encode input infor-

Encoder Decoder

Input Reconstruction Residual

Fig. 2: Unsupervised anomaly-based method for person detection from low-
resolution IR images.



6 T. Dubail et al.

mation as a vector projected onto the latent space. Finally, a reconstruction loss
is used to guide the training process and find a feasible minimizer θ for solving
our background reconstruction task. In this work the Mean Square Error (MSE)

loss is used, LMSE(x, θ) =
1

|W 0|
∑

xi∈W 0

(xi − fθ(xi))
2. In later sections we refer

to this approach as deep auto-encoder or simply dAE.
Besides the classical AE, several types of hourglass architectures have been

used for anomaly detection [2]. One of the most popular versions are the vari-
ational auto-encoders (dVAE ) [13] where the latent vector is considered to be
drawn from a given probabilistic distribution. Here we use the same architec-
ture for both AE-based methods with a distinction for the loss function where
the KL-divergence regularization is added to the MSE loss to enforce a normal
distribution to the latent space.

3.3 Weakly-supervised detection using class activation mapping

Let (x, y) be a generic tuple from W where x is an image and y ∈ {0, 1} is a
category indicating whether a person is present or not in x. A weakly-supervised
approach for object localization is such that, by exploiting only the image-level
annotation during training, learns a mapping cφ to retrieve the object location
during the evaluation. This kind of approaches based on Class Activation Maps
(CAM) techniques [30,14,1] has been widely explored in the literature. The prin-
ciple is based on the use of the compound function cφ(x) = (c1ψ ◦ c0ϕ)(x) that

relies on a feature extractor c0ϕ followed by a binary classifier c1ψ. Here c0ϕ is

implemented as a CNN and c1ψ as a Multi-layer Perceptron. Then, the following
minimization based on cross-entropy loss is performed in order to find the opti-
mal set of weights: minθ −

∑
(x,y)∈W y · log cφ(x). Once a feasible set of weights

is found, a non-parametric transformation function uses the output from the
feature extractor c0ϕ to produce an activation map for each category in the task,

M(c0ϕ(x)). Note that in this task, the computation of such an activation map is
only performed whenever a positive classification is obtained, i.e., cφ(x) ≥ 0.5.
The architecture used for c0ϕ is the same as in the encoder for the dAE technique,
but without using the Max-pooling layers to avoid losing resolution. In this work,
we use three variants for the Global Average Pooling M . The first is the classic
weighting approach proposed by [33], hereafter referred to as CAM, the second is
the gradient-based CAM proposed by [23], known as GradCAM, and the last one
is the hierarchical approach known as LayerCAM [10]. As in the previous tech-
niques, the final localization is obtained using the thresholding-based mapping
gτ .

3.4 Fully-supervised detection using single shot detectors

At the higher level of supervision, we explore the mapping function with bound-
ing box annotations within the cost function. Let hϑ be a mapping parameterized
over ϑ, which produces bounding box predictions. Among the different types of
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detectors existing in the literature, we used Single Shot Detector (SSD) [17]
and Yolo v5 [11] solutions since they are suitable for low-resolution images and
allows using a custom backbone without serious implications for the training
process. In this study, we enforce the same architecture for feature extraction
as in the AEs and CAMs approaches. However, unlike the previous techniques,
such supervised mappings do not require the composition with the thresholding
function gτ . Let (x, b) ∈ F be an IR image with its corresponding bounding
box annotation. The learning process for both methods solves the optimization
problem ϑ∗ = argminL(x, b, ϑ), by minimizing the cost of the model L. Despite
their differences in terms of representation, in both cases the loss function uses a
supervised approach that measures the difference between the output z = hϑ(x)
and the expected detections b.

4 Experimental Methodology

4.1 Datasets

In this study, two datasets were used to assess the IR person detection using mod-
els trained with different levels of annotation – the public FIR-Image-Action [31]
dataset, and our Distech-IR dataset.
1) FIR-Image-Action with bounding box annotations

The FIR-Image-Action [31] dataset includes 110 annotated videos. We ran-
domly selected 36 videos from this pool for the test and the others 74 for training
and validation. Furthermore, training and validation sets were separated using a
random selection of the frames (70% and 30%, respectively). All the approaches
have been trained using the same data partition to ensure comparability.

To the best of our knowledge, there are no low-resolution IR datasets with
bounding box annotations for person detection. Therefore, we annotated this
dataset at bounding box level. The dataset was created by Haoyu Zhang of Vi-
siongo Inc. for video-based action recognition. Such a dataset offers 126 videos
with a total combined duration of approximately 7 hours. Since this study aims
to evaluate the performance of different techniques for IR-based people localiza-
tion, we only used the IR images provided by the authors for our experiments.
Nevertheless, it is worth mentioning that two modalities are available within the
dataset: RGB with a spatial resolution of 320 × 240 acquired at 24 FPS, and
IR with a resolution of 32× 24 and sampled at 8 FPS. Although the RGB falls
outside the scope of this work, we used them for obtaining bounding box anno-
tations, as described later. As part of this work’s contributions, we have publicly
created and released the localization annotations for 110 videos out of the 126
for both RGB and IR modalities. Since there is redundancy within neighboring
frames and our application does not require video processing, we further sampled
the IR dataset obtaining the equivalent of 2 FPS videos.

We used a semi-automated approach to obtain bounding box annotations for
the challenging low-resolution IR images in FIR-Image-Action. First, we create
bounding box annotations by hand of a randomly selected subset of the RGB
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frames. We carefully curated these bounding boxes to reduce the impact of the
misplacement when decreasing the resolution for the IR modality. Then, an SSD
detector [17], hϑ, was trained over the RGB annotated dataset, being used af-
terward to obtain pseudo-labels over the remaining unannotated partition of the
RGB dataset. A new randomly selected subset is then curated and hϑ training
is repeated but using a larger partition of the data. This process was repeated
three times resulting in a fully annotated version of the RGB dataset.

Finally, bounding box annotations for the IR dataset are obtained by pairing
images from both modalities, followed by a coordinate aligning procedure. Since
the videos for IR and RGB were out of synchronization, the initial time shift was
manually determined using an overlay visualization of both modalities (see Fig-
ure 3c). Such a synchronization was performed individually for every video. The
final IR localization annotations were obtained by doing a linear interpolation
of the bounding box coordinates from the labeled RGB dataset. The param-
eters for the alignment were estimated using linear regression. An example of
the obtained bounding box annotation for both RGB and IR modalities can be
observed in Figure 3a and b, respectively.

(a) (b) (c)

Fig. 3: Example of an RGB image with its ground truth (a), the corresponding
IR image with the aligned bounding box (b), and an overlay of RGB and IR
modalities (c) from the FIR-Image-Action dataset.

2) Distech-IR

The second dataset, named hereafter Distech-IR, followed the same separa-
tion proportions containing 1500 images for training, 500 for validation, and 800
for testing. Such a dataset, similar to FIR-Image-Action, contains two modalities
of images (RGB and IR) with their corresponding bounding box level annotations
provided by Distech Controls Inc. The dataset reflects the increasing interest by
the industry for privacy preserving-based solutions for person localization and
constitute an actual use case for this task. The Distech-IR dataset also proved
to reflect better real-world scenarios since it is composed of seven rooms with
different levels of difficulties, i.e., heat radiating appliances, sun-facing windows,
and more than one person per room. For simulating deployment, we used rooms
not seen before during training for the test set. Figure 4 shows some examples
of images from both datasets.
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(a) (b) (c) (d)

Fig. 4: Examples of IR images with their corresponding ground truth for FIR-
Image-Action (a) and Distech-IR (b)-(d) datasets.

4.2 Implementation details

We used normalization by 50◦ to ensure small scale within the input map. Adam
optimizer [12] was employed with an initial learning rate of 10−4 and decay of 0.2
with a patience of ten epochs. Additionally, a 15 epoch patience early-stopping
was implemented. Then, the best model according to the validation loss was
selected for each case. The time calculations were evaluated on an Intel Xeon
CPU at 2.3 Ghz, however the training of the models was done on an NVIDIA
Tesla P100 GPU. Each experiment was performed 3 times with different seeds.
The validation protocols are presented with each dataset in section 4.1.

4.3 Performance metrics

In this study, we use the optimal Localization Recall Precision (oLRP) [18] in
order to characterize the ability of each method to detect the presence of people
and locate them. This metric allows us to evaluate with the same measurement
methods that provide bounding box detections without a score associated (such
as AEs and CAMs) and methods with a detection score (as SSD and Yolo v5 de-
tectors). Additionally, as stated by the authors, it reflects the localization quality
more accurately than other measurements, providing separate measures for the
different errors that a detection method can commit. The metric takes values
between 0 and 100, with lower values being better. As part of the metric com-
putation, we also calculate the localization (oLRPloc), False Positive (oLRPFP ),
and False Negative (oLRPFN ) components which provide more insights of meth-
ods behavior. Finally, execution time on the same hardware has been computed
to obtain an approximation of the time complexity.

5 Results and Discussion

Tables 1 and 2 summarize the obtained results for FIR-Image-Action and Distech-
IR datasets, respectively. As expected, the fully supervised approaches obtained
the best performance for most metrics and comparable results to the other ap-
proaches regarding False Negatives. The methods proved useful for locating peo-
ple in diverse scenarios, even under low-resolution settings. However, they take
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Table 1: Performance of detection methods on the FIR-Image-Action dataset.
All metrics are calculated with an IoU of 0.5.

Model oLRP↓ oLRPloc ↓ oLRPFP ↓ oLRPFN ↓ Time(ms)↓
Threshold 86.5± 0.1 32.3 45.3 44.2 0.4
Otsu’s Threshold 83.5± 0.1 31.6 45.7 27.7 0.7
dVAE 74.7± 1.3 31.2 26.6 24.5 13.0
dAE 77.4± 1.3 30.4 31.2 29.1 12.3
CAM 85.1± 1.1 34.3 41.2 29.0 11.4
GradCAM 85.5± 3.2 34.5 43.0 32.1 24.3
LayerCAM 84.8± 2.2 34.9 37.2 33.1 25.6
SSD 63.8± 2.7 25.3 12.6 18.6 46.6
Yolo v5 56.9± 1.8 25.5 6.3 6.2 45.9

longer to execute than the second-best performed techniques, which is an impor-
tant downside to take into account for measuring real-time occupancy levels in
intelligent buildings. In particular, the dAE approach was 3.7 times faster than
Yolo v5 and 3.8 times faster than SSD.

We can refer to the AE-based anomaly detection approaches as second-placed
strategies. Both dAE and dVAE showed similar performance in terms of LRP
and efficiency between them. Furthermore, the techniques obtained localization
performance comparable to the fully-supervised approaches, especially in more
complex situations like the Distech-IR dataset. This result is remarkable con-
sidering that localization supervision is not used during AE training, and only
empty room images were used (10% of the data in the FIR-Image-Action and
30% in Distech-IR). The methods also showed acceptable execution times for
the application.

CAM methods provide a lower level of performance than other methods, de-
spite having access to class-label annotations for training. Indeed, these methods

Table 2: Performance of detection methods on the Distech-IR dataset. All metrics
are calculated with an IoU of 0.5.

Model oLRP↓ oLRPloc ↓ oLRPFP ↓ oLRPFN ↓ Time(ms)↓
Threshold 93.6± 2.4 37.1 72.7 54.1 0.4
Otsu’s Threshold 95.5± 1.2 34.2 83.3 50.0 0.7
dVAE 83.3± 8.9 33.2 32.7 40.6 13.0
dAE 82.7± 9.0 32.4 33.7 40.0 12.3
CAM 93.1± 1.9 37.6 59.7 52.3 11.4
GradCAM 91.6± 2.3 37.5 50.3 48.8 24.3
LayerCAM 91.1± 2.5 37.7 45.5 50.3 25.6
SSD 82.0± 7.2 31.1 26.3 44.7 46.6
Yolo v5 80.2± 7.7 30.2 31.4 37.4 45.9
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are known to activate strongly for discriminant regions of an input image (since
the backbone CNN is trained to discriminate classes), and be affected by com-
plex image backgrounds [3]. These two factors affect its ability to define precise
contours around a person.

As can be seen in the tables, Otsu’s Threshold provides good person local-
ization. However, it assumes a multi-modal intensity distribution for finding the
threshold, which leads to false person localization in empty rooms. This effect
can be observed by the high values of oLRPFP . The rest of the approaches
showed comparable results to this last one but were still far from the fully-
supervised process. Figure 5 shows some examples of the obtained result over
the FIR-Image-Action for dVAE, gradCAM, and Yolo v5 methods.

As expected, real scenarios like those depicted in Distech-IR proved harder to
generalize. A decrease in the performance was observed in all levels of supervision
with a significant drop of 18.2% oLRP for SSD and 23.3% for Yolo v5. A smaller
decrease was observed for AEs obtaining even closer results to the one from
supervised approaches. The primary issue in this dataset was the large number
of False Negative which almost doubled the FN obtained for FIR-Image-Action.

6 Conclusions

In this work, we presented a study comprising different methods with increasing
levels of supervision for privacy-preserving person localization. Our experimen-
tal results over two low-resolution top-view IR datasets showed that reduced
image-level supervision is enough for achieving results almost comparable to a
fully-supervised detectors. Specifically, AE-based approaches proved to perform
similarly to Yolo v5 in real-world scenarios by only using images of empty rooms
for training and with 3.7 times less execution time. Such a result is significant for
reducing annotation costs and improving the scalability of intelligent building
applications. Additionally, we detailed the process for producing bounding box
annotations for low-resolution IR images and provided the localization for the
publicly available dataset FIR-Image-Action.

Acknowledgements: This work was supported by Distech Controls Inc., and
the Natural Sciences and Engineering Research Council of Canada (RGPIN-
2018-04825).
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(a) (b) (c) (d)

Fig. 5: Examples of low-resolution IR people detection results. Overlay of RGB
and IR modalities with their corresponding ground truth (a), along with bound-
ing box predictions of dVAE (b), gradCAM (c), and Yolo v5 (d).
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