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Abstract. This paper presents our system for the Multi-Task Learn-
ing (MTL) Challenge in the 4th Affective Behavior Analysis in-the-wild
(ABAW) competition. We explore the research problems of this chal-
lenge from three aspects: 1) For obtaining efficient and robust visual
feature representations, we propose MAE-based unsupervised represen-
tation learning and IResNet/DenseNet-based supervised representation
learning methods; 2) Considering the importance of temporal informa-
tion in videos, we explore three types of sequential encoders to capture
the temporal information, including the encoder based on transformer,
the encoder based on LSTM, and the encoder based on GRU; 3) For mod-
eling the correlation between these different tasks (i.e., valence, arousal,
expression, and AU) for multi-task affective analysis, we first explore the
dependency between these different tasks and propose three multi-task
learning frameworks to model the correlations effectively. Our system
achieves the performance of 1.7607 on the validation dataset and 1.4361
on the test dataset, ranking first in the MTL Challenge. The code is
available at https://github.com/AIM3-RUC/ABAW4.

1 Introduction

Affective computing aims to develop technologies to empower machines with the
capability of observing, interpreting, and generating emotions just like humans
do [30]. There has emerged a wide range of application scenarios of affective com-
puting, including health research, society analysis, and other interaction scenar-
ios. More and more people are interested in affective computing due to the signif-
icant improvement of machine learning technology performance and the growing
attention to the mental health field. There are lots of datasets to support the
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research of affective computing, including Aff-wild [16], Aff-wild2 [19], and s-Aff-
Wild2[12,13,17,22,15,21,20,18,14,33,16]. The advancement of multi-task learning
algorithms [28] has also boosted performance via exploring supervision from dif-
ferent tasks.

Our system for the Multi-Task Learning (MTL) Challenge contains four key
components. 1) We explore several unsupervised (MAE-based) and supervised
(IResNet/DenseNet-based) visual feature representation learning methods for
learning effective and robust visual representations; 2) We utilize three types
of temporal encoders, including GRU [4], LSTM [29] and Transformer [31], to
capture the sequential information in videos; 3) We employ multi-task frame-
works to predict the valence, arousal, expression and AU values. Specifically,
we investigate three different strategies for multi-task learning, namely Share
Encoder (SE), Share Bottom of Encoder (SBE) and Share Bottom of Encoder
with Hidden States Feedback (SBE-HSF); 4) Finally, we adopt ensemble strate-
gies and cross-validation to further enhance the predictions, and we get the
performance of 1.7607 on the validation dataset and 1.4361 on the test dataset,
ranking first in the MTL Challenge.

2 Related Works

There are lots of solutions proposed for former ABAW competitions. We investi-
gate some studies for valence and arousal prediction, facial expression classifica-
tion and facial action unit detection, which are based on deep learning methods.

For valence and arousal prediction, [25] proposes a novel architecture to fuse
temporal-aware multimodal features and an ensemble method to further enhance
performance of regression models. [34] proposes a model for continuous emotion
prediction using a cross-modal co-attention mechanism with three modalities
(i.e., visual, audio and linguistic information). [27] combines local attention with
GRU and uses multimodal features to enhance the performance. For expression
classification, facing the problem that the changes of features for expression are
difficult to be processed by one attention module, [32] proposes a novel attention
mechanism to capture local and semantic features. [35] utilizes multimodal fea-
tures, including visual, audio and text to build a transformer-based framework
for expression classification and AU detection. For facial action unit detection, [8]
utilizes a multi-task approach with a center contrastive loss and ROI attention
module to learn the correlations of facial action units. [9] proposes a model-level
ensemble method to achieve comparable results. [5] introduces a semantic cor-
respondence convolution module to capture the relations of AU in a heat map
regression framework dynamically.

3 Method

Given an image sequence consisting of {F1, F2, ..., Fn} from video X, the goal
of the MTL challenge is to produce four types of emotion predictions for each
frame, including the label yv for valence, the label ya for arousal, the label ye
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Fig. 1. The pipeline of our method for the challenge.

for expression, and the labels {yAU1, yAU2, ..., yAU26} for 12 AUs. Please note
that only some sampled frames in a video are annotated in the training data,
and the four types of annotations may be partially missing for an image frame.
Our pipeline for the challenge is shown in figure 1.

3.1 Features

MAE-based Features The features of the first type are extracted by MAE [6]
models† which use C-MS-Celeb [10] and EmotionNet [3] datasets at the pre-
training stage. The first model is pre-trained on the C-MS-Celeb dataset and fine-
tuned on different downstream tasks, including expression classification on the
s-Aff-Wild2 dataset, AU classification task on the s-Aff-Wild2 dataset, expression
classification on the AffectNet [26] dataset and expression classification on the
dataset combining FER+ [2] and AffectNet [26] datasets. As for the second
model, we first use the EmotionNet dataset to pre-train the MAE model with
the reconstruction task, and then use the AffectNet [26] dataset to fine-tune the
model further.

IResNet-based Features The features of the second type are extracted by
IResNet100 models. The models are pre-trained in two different settings. As for
the first setting, we use FER+ [2], RAF-DB [24,23], and AffectNet [26] datasets
to pre-train the model. Specifically, the faces are aligned by keypoints and the
input size is resized into 112x112 before pre-training. As for the second setting,
we use the Glint360K [1] dataset to pre-train the model, and then use an FAU
dataset with commercial authorization to train this model further.

DenseNet-based Features The features of the third type are extracted by a
DenseNet [7] model. The pre-training stage uses FER+ and AffectNet datasets,
and we also try to fine-tune the pre-trained model on the s-Aff-Wild2 dataset,
including the expression classification task and AU classification task.

† https://github.com/pengzhiliang/MAE-pytorch
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3.2 Temporal Encoder

Because the GPU memory is limited, the annotated frames are firstly split into
segments. If the length of the split segment is l and n available annotated frames
are contained in the video, we can split the frames into [n/l] + 1 segments,
which means annotated frames {F(i−1)∗l+1, ..., F(i−1)∗l+l} are contained in the
i-th segment. After getting the visual features from the i-th segment fm

i , three
different temporal encoders including GRU, LSTM and transformer encoder are
used to capture the temporal information in the video.

GRU-based Temporal Encoder We use a Gate Recurrent Unit Network
(GRU) to encode the temporal information of the image sequence. Segment si
means the i-th segment, and fm

i means the input of GRU is the visual features
for si. Furthermore, the hidden states of the last layer are fed from the previous
segment si−1 into the GRU to utilize the information from the last segment.

gi, hi = GRU(fm
i , hi−1) (1)

where hi denotes the hidden states at the end of si. h0 is initialized to be
zeros. To ensure that the last frame of si−1 and the first frame of segment si are
consecutive frames, there is no overlap between the two adjacent segments.

LSTM-based Temporal Encoder We employ a Long Short-Term Memory
Network (LSTM) to model the sequential dependencies in the video. It can be
formulated as follows:

gi, hi = LSTM(fm
i , hi−1) (2)

The symbols have the same meaning as in the GRU part.

Transformer-based Temporal Encoder We utilize a transformer encoder
to model the temporal information in the video segment as well, which can be
formulated as follows:

gi = TRMEncoder(fm
i ) (3)

Unlike GRU and LSTM, the transformer encoder just models the context in
a single segment and ignores the dependencies of frames between segments.

3.3 Single Task Loss Function

We first introduce the loss function for each task in this subsection.

Valence and Arousal estimation task :
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We utilize the Mean Squared Error (MSE) loss which can be formulated as

LV = LA =
1

N

N∑
i=1

(yi − ŷi) (4)

where N denotes the number of frames in each batch, ŷi and yi denote the
prediction and label of valence or arousal in each batch respectively.

Expression Classification task :
We utilize the Cross Entropy (CE) loss which can be formulated as

LEXPR = −
N∑
i=1

C∑
j=1

yij log(ŷij) (5)

where C is equal to 8 which denotes the total classification number of all ex-
pression, ŷij and yij denote the prediction and label of expression in each batch.

AU Classification task :
We utilize Binary Cross Entropy (BCE) loss which can be formulated as

LAU =

N∑
i=1

M∑
j=1

(−(yij log(ŷij + (1 − yij)log(1 − ŷij)))) (6)

where M is equal to 12 which denotes the total number of facial action units,
ŷij and yij denote the logits and label of facial action units in each batch.

3.4 Multi-Task Learning Framework

As we mentioned above, the overall estimation objectives can be divided into four
tasks, including the estimation of valence, arousal, expression and action units
on expressive facial images. These four objectives focus on different information
on the facial images, where the essential information about one task may be
helpful to the modeling of some other tasks.

The dependencies between tasks are manifested mainly in two aspects: First,
the low-level representations are common for some tasks and they can be shared
to benefit each task. Second, some high-level task-specific information of one task
could be important features for other tasks. For example, since the definition of
expressions depends on facial action units to some extent, the high-level features
in the AU detection task can help the estimation of expression.

In order to make use of such dependencies between different tasks, we make
some efforts on the multi-task learning frameworks instead of the single-task
models. Specifically, we propose three multi-task learning frameworks, as illus-
trated in Figure 2.

Share Encoder We propose the Share Encoder (SE) framework as the baseline,
which is commonly used in the field of multi-task learning. In the SE framework,
the temporal encoder is directly shared between different tasks, while each task
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Fig. 2. Our proposed multi-task learning frameworks.

retains task-specific regression or classification layers. The structure of the SE
framework is shown in Figure 2(a), which can be formulated as follows:

gi = TE(fm
i ) (7)

ŷt
i = W t

pgi + btp, t ∈ T (8)

where TE denotes the temporal encoder, T denotes the collection of chosen
tasks in the multi-task learning framework, t denotes a specific task in {v, a, e,
au}, yti denotes the predictions of task t of segment si, W

t
p and btp denote the

parameters to be optimized.

Share Bottom of Encoder Under the assumption that the bottom layers of
the encoder capture more basic information in facial images while the top layers
encode more task-specific features, we propose to only share the bottom layers of
the temporal encoder between different tasks. The structure of the Share Bottom
of Encoder (SBE) framework is shown in Figure 2(b), which can be formulated
as follows:

gi = TE(fm
i ) (9)

gti = TEt(gi), t ∈ T (10)

ŷt
i = W t

pg
t
i + btp, t ∈ T (11)

where TE denotes the temporal encoder, t denotes a specific task and T denotes
the collection of chosen tasks, TEt denotes the task-specif temporal encoder of
task t, yti denotes the predictions of task t of segment si, W

t
p and btp denote the

parameters to be optimized.

Share Bottom of Encoder with Hidden States Feedback Although the
proposed SBE framework has captured the low-level shared information between
different tasks, it might ignore the high-level task-specific dependencies of tasks.
In order to model such high-level dependencies, we propose the Share Bottom
of Encoder with Hidden States Feedback (SBE-HSF) framework, as illustrated
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in Figure 2(c). In the SBE-HSF framework, all the tasks share the bottom lay-
ers of the temporal encoder and retain task-specific top layers, as in the SBE
framework.

Afterward, considering that the information of one task could benefit the
estimation of another task, we feed the last hidden states of the temporal encoder
of the source task into the temporal encoder of the target task as features. It
can be formulated as follows:

gi = TE(fm
i ) (12)

gti = TEt(gi), t ∈ T \ {ttgt} (13)

gtgti = TEtgt(Concat(gi, g
src
i )) (14)

ŷt
i = W t

pg
t
i + btp, t ∈ T (15)

where TE denotes the temporal encoder, t denotes a specific task and T denotes
the collection of chosen tasks, src and tgt denote the source and target task of the
feedback structure, respectively, TEt denotes the task-specif temporal encoder
of task t, yti denotes the predictions of task t of segment si, W

t
p and btp denote

the parameters to be optimized. In addition, in the backward propagation stage,
the gradient of gsrci is detached.

Multi-Task Loss Function In the multi-task learning framework, we utilize
the multi-task loss function to optimize the model, which combines the loss
functions of all tasks chosen for multi-task learning:

L =
∑
t∈T

αtLt (16)

where t denotes a specific task and T denotes the collection of chosen tasks,
Lt denotes the loss function of task t, which is mentioned above, αt denotes the
weight of Lt which is a hyper-parameter.

4 Experiments

4.1 Dataset

The Multi-Task Learning (MTL) Challenge in the fourth ABAW competition[12]
uses the s-Aff-Wild2 dataset as the competition corpora, which is the static
version of the Aff-Wild2[19] database and contains some specific frames of the
Aff-Wild2 database.

As for feature extractors, the FER+[2], RAF-DB[24,23], AffectNet[26], C-
MS-Celeb[10] and EmotionNet[3] datasets are used for pre-training. In addition,
an authorized commercial FAU dataset is also used to pre-train the visual feature
extractor. It contains 7K images in 15 face action unit categories(AU1, AU2,
AU4, AU5, AU6, AU7, AU9, AU10, AU11, AU12, AU15, AU17, AU20, AU24,
and AU26).
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4.2 Experiment Setup

As for the training setting, we use Nvidia GeForce GTX 1080 Ti GPUs to train
the models, and the optimizer is the Adam[11]. The number of epochs is 50, the
dropout rate of the temporal encoder and the FC layers is 0.3, the learning rate
is 0.00005, the length of video segments is 250 for arousal and 64 for valence,
expression and AU, and the batch size is 8.

As for the model architecture, the dimension of the feed-forward layers or
the size of hidden states is 1024, the number of FC layers is 3 and the sizes of
hidden states are {512, 256}. Specially, the encoder of transformer has 4 layers
and 4 attention heads.

As for the smooth strategy, we search for the best window of valence and
arousal for each result based on the performance on the validation set. Most
window lengths are 5 and 10.

4.3 Overall Results on the validation set

In this section, we will demonstrate the overall experimental results of our pro-
posed method for the valence, arousal, expression and action unit estimation
tasks. Specifically, the experimental results are divided into three parts, includ-
ing the single-task results, the exploration of multi-task dependencies and the
results of multi-task learning frameworks. We report the average performance of
3 runs with different random seeds.

Single-Task Results In order to verify the performance of our proposed model
without utilizing the multi-task dependencies, we conduct several single-task
experiments. The results are demonstrated in Table 1.

Table 1. The performance of our proposed method on the validation set for each single
task.

Model Task Features Performance

Transformer Valence MAE,ires100,fau,DenseNet 0.6414
Transformer Arousal MAE,ires100,fau,DenseNet 0.6053
Transformer EXPR MAE,ires100,fau,DenseNet 0.4310
Transformer AU MAE,ires100,fau,DenseNet 0.4994

Results of Multi-Task Learning Frameworks We try different task combi-
nations and apply the best task combination to the multi-task learning frame-
works for each task. As a result, we find the best task combinations as follows:
{V, EXPR} for valence, {V, A, AU} for arousal, {V, EXPR} for expression and
{V, AU} for action unit. The experimental results of our proposed multi-task
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learning frameworks and the comparison with single-task models are shown in
Table 2. Specifically, the combination of features is the same as that in single-
task settings, and the set of tasks chosen for the multi-task learning frameworks
is based on the multi-task dependencies, which have been explored above.

As is shown in the table, first, all of our proposed multi-task frameworks
outperform the single-task models on valence, expression and action unit esti-
mation tasks. On the arousal estimation task, only the SE framework performs
inferior to the single-task model and the other two frameworks outperform it.
These results show that our proposed multi-task learning frameworks can im-
prove performance and surpass the single-task models.

Moreover, the two proposed frameworks, SBE and SBE-HSF, show the ad-
vanced performance, where the former is an improvement on the SE framework
and the latter is an improvement on the former. The SBE framework outperforms
the SE frameworks, and the SBE-HSF framework outperforms the SBE frame-
work on arousal, expression and action unit estimation tasks. It indicates our
proposed multi-task learning framework can effectively improve performance.

Table 2. The performance of our proposed multi-task learning frameworks on the
validation set.

Valence Arousal EXPR AU
Tasks CCC Tasks CCC Tasks F1 Tasks F1

Single Task V 0.6414 A 0.6053 EXPR 0.4310 AU 0.4994

SE V, EXPR 0.6529 V, A, AU 0.5989 V, EXPR 0.4406 V, AU 0.5084

SBE V, EXPR 0.6558 V, A, AU 0.6091 V, EXPR 0.4460 V, AU 0.5107

SBE-HSF
Src: V

0.6535
Src: V,AU

0.6138
Src: EXPR

0.4543
Src: V

0.5138
Tgt: EXPR Tgt: A Tgt: V Tgt: AU

4.4 Model Ensemble

Table 3. The single model results and ensemble result on the validation set for the
valence prediction task.

Model Features Loss Valence-CCC

Transformer MAE,ires100,fau,DenseNet V,EXPR 0.6778
LSTM MAE,ires100,fau,DenseNet V 0.6734

Ensemble 0.7101

We evaluate the proposed methods for the valence and arousal prediction
task on the validation set. As is shown in the Table 3 and Table 4, the best
performance for valence is achieved by transformer-based model, and the best
performance for arousal is achieved by LSTM-based model and the GRU-based
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Table 4. The single model results and ensemble result on the validation set for the
arousal prediction task.

Model Features Loss Arousal-CCC

LSTM MAE,ires100,fau,DenseNet V,A,AU 0.6384
LSTM MAE,ires100,fau,DenseNet V,A,AU 0.6354
GRU MAE,ires100,fau,DenseNet V,A,AU 0.6292
GRU MAE,ires100,DenseNet V,A,AU 0.6244

Ensemble 0.6604

model also achieves competitive performance for arousal. Furthermore, the en-
semble result can achieve 0.7101 on valence and 0.6604 on arousal, which shows
that the results of different models benefit each other.

Table 5. The single model results and ensemble result on the validation set for the
EXPR prediction task.

Model Features Loss EXPR-F1

Transformer MAE,ires100,fau,DenseNet V,EXPR 0.4739
Transformer MAE,ires100,fau,DenseNet V,EXPR 0.4796

Ensemble 0.5090

Table 5 shows the results on the validation set for expression prediction.
As is shown in the table, the transformer-based model can achieve the best
performance for expression and the ensemble result can achieve 0.5090 on the
validation set. We use the vote strategy for expression ensemble, and we choose
the class with the least number in the training set when the number of classes
with the most votes is more than one.

Table 6. The single model results and ensemble result on the validation set for the
AU prediction task.

Model Features Loss Threshold AU-F1

Transformer MAE,ires100,fau,DenseNet V,AU 0.5 0.5217
Transformer MAE,ires100,fau,DenseNet V,AU 0.5 0.5213
Transformer MAE,ires100,fau,DenseNet V,A,AU 0.5 0.5262

LSTM MAE,ires100,fau,DenseNet V,AU 0.5 0.5246
LSTM MAE,ires100,fau,DenseNet V,AU 0.5 0.5228
LSTM MAE,ires100,DenseNet V,AU 0.5 0.5227

Ensemble
0.5 0.5486

variable 0.5664

Table 6 shows the results on the validation set for AU prediction. As is shown
in the table, the transformer-based model and LSTM-based model can achieve
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excellent performance for AU and the ensemble result can achieve 0.5664 on the
validation set. We try two ensemble types for AU. The first is the vote strategy,
and we predict 1 when 0 and 1 have the same number of votes. The second is
averaging the probabilities from different models for each AU and search the best
threshold based on the performance on the validation set for the final prediction.

Table 7. The results of the 6-fold cross-validation experiments. The first five folds are
from the training set. Fold 6 means the official validation set.

Valence Arousal EXPR AU PMTL

Fold 1 0.6742 0.6663 0.4013 0.5558 1.6274
Fold 2 0.5681 0.6597 0.3673 0.5496 1.5306
Fold 3 0.6784 0.6536 0.3327 0.5977 1.5963
Fold 4 0.6706 0.6169 0.3851 0.5886 1.6275
Fold 5 0.7015 0.6707 0.4389 0.5409 1.6658
Fold 6 0.6672 0.6290 0.4156 0.5149 1.5786

Average 0.6600 0.6494 0.3901 0.5579 1.6027

6-fold cross-validation is also conducted for avoiding overfitting on the vali-
dation set. After analyzing the dataset distribution, we find the training set is
about five times the size of the validation set, so we divide the training set into
five folds, and each fold has approximately the same video number and frame
number as the validation set. The validation set can be seen as the 6th fold. The
feature set {MAE, ires100, fau, DenseNet} and the transformer-based structure
are chosen for valence, expression and AU prediction. The feature set {MAE,
ires100, fau, DenseNet} and the LSTM-based structure are chosen for arousal
prediction. Note that we have features fine-tuned on the s-Aff-Wild2 dataset,
which may interfere with the results of the corresponding task, so we remove the
features fine-tuned on the s-Aff-Wild2 dataset for corresponding 6-fold cross-
validation experiments. The results are shown in Table 7.

4.5 Results on the test set

We will briefly explain our submission strategies and show the test results of
them, which are demonstrated in table 8.

We only use a simple strategy for the 1st and 2nd submissions, which means
we train models on the training set using the features we extract, and choose the
models of best epochs for different tasks. Specifically, only several models are
chosen to ensemble to prevent lowering the result and we use vote strategy for
expression and AU ensemble for the 1st submission. Furthermore, more models
are used to ensemble and we choose the best ensemble strategy to pursue the
highest performance on the validation set for 2nd submission.

Further, we use two carefully designed strategies for the 3rd and 5th sub-
missions, including Train-Val-Mix and 6-Fold. Specifically, the Train-Val-Mix
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Table 8. The results of different submission strategies on the test set.

Submit Strategy PMTL

1 Ensemble 1 1.4105
2 Ensemble 2 1.3189
3 Train-Val-Mix 1.3717
4 Ensemble 3 1.3453
5 6-Fold 1.4361

strategy means the training and validation set are mixed up for training. In this
case, we don’t have meaningful validation performance to choose models, so we
analyze the distribution of the best epochs for previous experiments under the
same parameter setting, and empirically choose the models. The selected epoch
interval is from 10 to 19 for valence, from 15 to 19 for arousal, from 15 to 24
for expression, and from 30 to 34 for AU. Further, all these models are used to
ensemble for better results. As for the 6-Fold strategy, five folds are used for
the training stage and the rest fold is used for validation each time. Since we
get six models under six settings, all six models are used to ensemble to get the
final results. Additionally, the 4th submission is a combination of 2nd and 3rd
submissions.

As is shown in the Table8, the 6-Fold strategy achieves the best performance
on the test set, and the 1st ensemble strategy also achieves competitive perfor-
mance.

5 Conclusion

In this paper, we introduce our framework for the Multi-Task Learning (MTL)
Challenge of the 4th Affective Behavior Analysis in-the-wild (ABAW) competi-
tion. Our method utilizes visual information and uses three different sequential
models to capture the sequential information. And we also explore three multi-
task framework strategies using the relations of different tasks. In addition, the
smooth method and ensemble strategies are used to get better performance. Our
method achieves the performance of 1.7607 on the validation dataset and 1.4361
on the test dataset, ranking first in the MTL Challenge.
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