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Abstract. We present a simple domain generalization baseline, which
wins second place in both the common context generalization track and
the hybrid context generalization track respectively in NICO CHAL-
LENGE 2022. We verify the founding in recent literature, domainbed,
that ERM is a strong baseline compared to recent state-of-the-art do-
main generalization methods and propose SimpleDG which includes sev-
eral simple yet effective designs that further boost generalization perfor-
mance. Code is available at https://github.com/megvii-research/SimpleDG.
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1 Introduction

1.1 Domain Generalization

Deep learning models have achieved tremendous success in many vision and
language tasks, and even beyond human performance in well-defined and con-
strained tasks. However, deep learning models often fail to generalize to out-
of-distribution(OOD) data, which hinders greater usage and brings potential
security issues in practice. For example, a self-driving car system could fail when
encountering unseen signs, and a medical diagnosis system might misdiagnose
with the new imaging system.

Aware of this problem, the research community has spent much effort in
domain generalization(DG) where the source training data and the target test
data are from different distributions. Datasets like PACS [1], VLCS [2], Office-
Home [3], DomainNet [4] have been released to evaluate the generalization ability
of the algorithms. Many methods like MMD [5], IRM [6], MixStyle [7], SWAD [8]
have been proposed to tackle the problem.

However, We find that traditional CNN architecture with simple technologies
like augmentation and ensemble, when carefully implemented, is still a strong
baseline for domain generalization problem. We call our method SimpleDG which
is briefly introduced in Fiugre1.

ar
X

iv
:2

21
0.

14
50

7v
1 

 [
cs

.C
V

] 
 2

6 
O

ct
 2

02
2

https://github.com/megvii-research/SimpleDG


2 Zhi Lv, Bo Lin et al.

0

0.05

0.1

0.15
model1
model2
ensemble mode
gt class

class
pr

ob
ab

ili
ty

0 5k 10k 15k

0.2

0.4

0.6

0.8

1 train acc of CNN
train acc of ViT
test acc of CNN
test acc of ViT

iterations

ac
cu

ra
cy

a) ERM is simple yet strong baseline with proper setting b) Inductive bias matters for small dataset training

c) Strong augmentations help generalization d) Ensemble alleviates saturation in single model scale-up 
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Fig. 1: An overview of four key designs of our method. (a) ERM is a strong baseline
when carefully implemented. Many modern DG methods fail to outperform it; (b)
ViTs suffer from overfitting on the small dataset without pretraining. CNN due to
its proper inductive bias has a much smaller train-test accuracy gap than ViTs; (c)
Stronger augmentations help generalize better. The source domain’s distribution is
extended by strong augmentations and gets more overlap between different domains
which is of benefit to optimizing for the target domain. (d) Models ensemble improves
generalization performance as output probability distributions from models compensate
for each other and results in more reasonable predictions.

1.2 DomainBed

DomainBed [9] is a testbed for domain generalization including seven multi-
domain datasets, nine baseline algorithms, and three model selection criteria.
The author suggests that a domain generalization algorithm should also be re-
sponsible for specifying a model selection method. Since the purpose of DG is to
evaluate the generalization ability for unseen out-of-distribution data, the test
domain data should also not be used in the model selection phase. Under this
circumstance, the author found that Empirical Risk Minimization(ERM) [10]
results on the above datasets are comparable with many state-of-the-art DG
methods when carefully implemented with proper augmentations and hyper-
parameter searching.

1.3 NICO++

NICO++ [11] is a new DG dataset recently released in the NICO challenge 2022.
The goal of the NICO Challenge is to promote research on discarding spurious
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Fig. 2: An overview of the NICO++ dataset. Identical contexts are shared across all
different categories in the common contexts track, while contexts are mutually exclusive
in the unique contexts track. Some categories might have a single context only and
therefore are more likely to suffer from overfitting problems.

correlations and finding the causality in vision. The advantages of the NICO++
dataset compared with popular DG datasets are as follows: 1) more realistic and
natural context semantics. All the training data is collected from the real world
and categorized carefully with specific concepts; 2) more diversity is captured in
the dataset, which makes generalization not trivial; 3) more challenging settings.
Except for the classic DG setting, NICO++ also includes the unique contexts
track where the overfitting problem is more severe.

The NICO Challenge contains two main tracks: 1) common context general-
ization track; 2) hybrid context generalization track. The difference between
these two tracks is whether the context of all the categories is aligned and
whether the domain label is available. Same as the classic DG setting, iden-
tical contexts are shared across all categories in both training and test data in
the common context generalization track. However, contexts are mutually ex-
clusive in the hybrid context generalization track as shown in Figure2. Context
labels are available for the common context generalization track, but not for the
hybrid context generalization track.

One main challenge of this competition comes from the unique context. Some
of the samples have unique contexts, which might cause the model to overfit
the unrelated background information. Another challenge comes from the small
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object and multi-object samples. As we observe, some samples in the dataset
contain extremely small target objects. It’s very likely to crop the background
part when generating the training data which may cause training noise and
introduce bias. There are also some samples that have more than one target
category. This may cause the model to be confused and overfit noise. The rule
of preventing using extra data also makes the task harder since large-scale pre-
trained models are not permitted.

2 SimpleDG

In this section, we first introduce the evaluation metric of our experiments and
then discuss four major design choices of our method named SimpleDG, includ-
ing

– Why ERM is chosen as a baseline over other methods
– Why CNN is favored over ViT in this challenge
– How does augmentation help in generalization
– How to scale up the models to further improve performance

2.1 Evaluation Metric

To evaluate the OOD generalization performance internally, we use 4 domains,
i.e. dim, grass, rock, and water, as the training domains(in-distribution) and 2
domains, i.e. autumn and outdoor, as the test domains(out-of-distribution). For
model selection, we split 20% of the training data of each domain as the vali-
dation dataset and select the model with the highest validation top-1 accuracy.
All numbers are reported using top-1 accuracy on unseen test domains.

For submission, we retrain the models using all domains with a lower valida-
tion percentage(5%) for both track1 and track2. Because we find that the more
data we use, the higher accuracy we got in the public test dataset.

2.2 Key Designs of SimpleDG

I. ERM is a simple yet strong baseline
A recent literature [9] argues that many DG methods fail to outperform sim-
ple ERM when carefully implemented on datasets like PACS and Office-Home,
and proposes a code base, called domainbed, including proper augmentations,
hyperparameter searching and relatively fair model selection strategies.

We conduct experiments on NICO dataset with this code base and extend the
algorithms and augmentations in domainbed. Equipped with our augmentations,
we compare ERM with recent state-of-the-art DG algorithms. We find the same
conclusion that most of them have no clear advantage over ERM as shown in
Table1.
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Table 1: Many DG methods fail to outperform simple ERM

algorithm test acc

GroupDRO [12] 69.0
MMD [5] 69.4

MixStyle [7] 68.3
SelfReg [13] 69.5
CORAL [14] 68.6

SD [15] 69.3
RSC [16] 69.0

ERM [10] 70.1

II. ViTs suffer from overfitting on small training sets without pre-
training
ViT [17] has shown growing popularity these years, and we first compare the
performance of ViT with popular CNN in track1. We choose one CNN model,
ResNet18, and two vision transformer model, ViT-B/32 and CLIP [18]. CNN
outperforms ViT significantly when trained from scratch with no pre-trained
weights. ViT achieves higher training accuracy but fails to generalize well on
unseen test domains. We tried ViT training tricks such as LayerScale [19] and
stochastic depth [20]. The test accuracy improves, but there is still a huge gap
compared with CNN as shown in Table2. On the contrary, the ViTs outperform
CNN when using pre-trained weights and finetuning on NICO dataset.

We surmise that ViTs need more amount of training to generalize than CNNs
as no strong inductive biases are included. So we decide not to use them since
one of the NICO challenge rules is that no external data (including ImageNet)
can be used and the model should be trained from scratch.

Table 2: Test domain accuracy of CNN and ViTs on NICO track1

ResNet18 ViT-B/32 CLIP

w/ pretrain 81 87 90
w/o pretrain 64 30

III. More and stronger augmentation help generalize better

Both track1 and track2 suffer from overfitting since large train-validation ac-
curacy gaps are clearly observed. Track2 has mutually exclusive contexts across
categories and therefore suffers more from overfitting. With relatively weak aug-
mentations, the training and test accuracy saturate quickly due to the overfit-
ting problem. Generalization performance improves by adding more and stronger
augmentations and applying them with a higher probability.
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Fig. 3: Visualization of Fourier Domain Adaptation. The low-frequency spectrum of
the content image and the style image is swapped to generate a new-style image.

Following the standard ImageNet training method, we crop a random por-
tion of the image and resize it to 224x224. We adopt timm [21]’s RandAugment
which sequentially applies N(default value 2) operations randomly chosen from
a candidate operation list, including auto-contrast, rotate, shear, etc, with mag-
nitude M(default value 10) to generate various augmented images. Test domain
accuracy gets higher when more candidate operations(color jittering, grayscale
and gaussian blur, etc.) are applied, and larger M and N are used.

Mixup [22] and FMix [23] are simple and effective augmentations to improve
generalization. Default Mixup typically samples mixing ratio λ ≈ 0 or 1, making
one of the two interpolating images dominate the interpolated one. RegMixup
[24] proposes a simple method to improve generalization by enforcing mixing
ratio distribution concentrate more around λ ≈ 0.5, by simply increase the hyper-
parameter α in mixing ratio distribution λ ∼ Beta(α, α). We apply RegMix to
both Mixup and Fmix to generate augmented images with more variety. With
these stronger augmentations, we mitigate the saturation problem and benefit
from a longer training schedule.

For domain adaption augmentation, we adopt Fourier Domain Adaptation [25]
proposed by Yang et al. FDA uses Fourier transform to do analogous “style
transfer”. FDA requires two input images, reference and target images, it can
generate the image with the “style” of the reference image while keeping the
semantic “content” of the target image as shown in Figure3. The breakdown
effect for each augmentation is shown in Table3.
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Table 3: The breakdown effect for augmentation, high resolution finetuning and en-
semble inference for Top-1 accuracy (%) of NICO challenge track 1 training on ResNet-
101.

Method Top-1 accuracy (%)
Vanilla 81.22
+ RandAugment 82.85
+ Large alpha Mixup series 84.58
+ Fourier Domain Adaptation 85.61
+ High Resolution Fine-tune 86.01
+ Ensemble inference 87.86

IV. Over-parameterized models saturate quickly, and ensemble mod-
els continue to help

Big models are continuously refreshing the best results on many vision and
language tasks. We investigate the influence of model capacity on NICO with
the ResNet [26] series. When we test ResNet18, ResNet50, and ResNet101, the
accuracy improves as the model size increases. But when we continue to increase
the model size as large as ResNet152, the performance gain seems to be sat-
urated. The capacity of a single model might not be the major bottleneck for
improving generalization when only the small-scale dataset is available.

To further scale up the model, we adopt the ensemble method which aver-
ages the outputs of different models. When we average ResNet50 and ResNet101
as an ensemble model whose total flops is close to ResNet152, the performance
gets higher than ResNet152. When further averaging different combinations of
ResNet50, ResNet101, and ResNet152, the test accuracy get up to 2% improve-
ment. The ensemble method results are shown in Figure4.

To figure out how ensemble helps, we conduct the following experiments.
We first study ensemble models of best epochs from different train runs with the
same backbone such as ResNet101. There is nearly no performance improvement
even with a large ensemble number. The variety of candidate models should be
essential for the ensemble method to improve performance. We launch exper-
iments with different settings including different augmentations and different
random seeds which influence the training/validation data split while still keep-
ing the backbone architecture the same, i.e. ResNet101, among all experiments.
This time, the ensemble models of these ResNet101s get higher test accuracy.
We conclude that model variety not only comes from backbone architecture but
also can be influenced by experiment settings that might lead to significantly
different local minimums.

2.3 More Implementation Detail

Distributed training. We re-implemented the training config using PyTorch’s
Distributed Data Parallels framework [27]. We can train ResNet101 with 512
batch-size in 10 hours with 8 GPUs(2080ti).
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Fig. 4: Test domain accuracy with different model size

Training from scratch. All models use MSRA initialization [28]. We set the
gamma of all batch normalization layers that sit at the end of a residual block
to zero, SGD optimizer with 0.9 momentum, linear scaling learning rate, 1e-5
weight decay. We use 224x224 resized input images, 512 batch size, learning
rate warmup for 10 epochs, and cosine annealing in overall 300 epochs. All
experiments are trained with 8 GPUs.
Fine-tune in high-resolution. We fine-tune all models in 448x448 resolution
and 128 batch size for 100 epochs, this can further boost the model performance.
Ensemble inference. In the inference phase, we use the ensemble method to
reduce the variance. We average the features before softmax layer from multiple
models, which is better than logits averaging after softmax layer.

2.4 Public Results

The top-10 public test dataset, which is available during the competition, results
in track1 and track2 are shown in the Table 4.

2.5 Private Results

The NICO official reproduced our method and tested it on the private test
dataset, which is unavailable during the competition, and the results are shown
in Table5.

Our method is quite stable between public dataset and private dataset, the
ranking stays the same in track1 and becomes better in track2 while other meth-
ods undergo ranking turnover.
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Table 4: Top-10 Teams’ Public Dataset Results of Track1 and Track2

Rank
Track1 Track2

Team Top1-Acc Team Top1-Acc

1 detectors 218 88.15704 PingPingPang 84.62421
2 megvii is fp(Ours) 87.85504 vtddggg 84.05049
3 mcislab840 87.53865 timmy11hu 81.99656
4 ShitongShao 86.83397 megvii is fp(Ours) 81.49168
5 MiaoMiao 85.83447 Wentian 79.91968
6 Wentian 85.75538 czyczyyzc 79.35743
7 test404 85.54685 wangyuqing 78.81813
8 peisen 85.46775 Jarvis-Tencent-KAUST 78.78371
9 HuanranChen 84.92126 Wild 78.41652
10 wangyuqing 84.6624 peisen 77.80838

Table 5: Top-5 Teams’ Private Dataset Results of Track1 and Track2

Team Phase 1 Rank Phase 2 Score Phase 2 Rank

Track1

MCPRL-TeamSpirit 1 0.7565 1
megvii-biometrics(Ours) 2 0.7468 2
DCD404 6 0.7407 3
mcislab840 3 0.7392 4
MiaoMiao 4 0.7166 5

Track2

vtddggg 2 0.8123 1
megvii-biometrics(Ours) 4 0.788 2
PingPingPangPangBangBangBang 1 0.7631 3
jarvis-Tencent-KAUST 5 0.7442 4
PoER 8 0.6724 5

3 Conclusion

In this report, we proposed SimpleDG which wins both the second place in the
common context generalization track and the hybrid context generalization track
of NICO CHALLENGE 2022. With proper augmentations and a longer training
scheduler, the ERM baseline could generalize well on unseen domains. Many
existing DG methods failed to continue to increase the generalization from this
baseline. Based on ERM, both augmentations and model ensembles played an
important role in further improving generalization.

After participating in the NICO challenge, we found that simple techniques
such as augmentation and model ensemble are still the most effective ways to
improve generalization. General and effective domain generalization methods are
in demand, but there is still a long way to go.
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