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ABSTRACT

With the improved performance of deep learning, the number of studies trying to apply deep learning
to human emotion analysis is increasing rapidly. But even with this trend going on, it is still difficult
to obtain high-quality images and annotations. For this reason, the Learning from Synthetic Data
(LSD) Challenge, which learns from synthetic images and infers from real images, is one of the
most interesting areas. In general, Domain Adaptation methods are widely used to address LSD
challenges, but there is a limitation that target domains (real images) are still needed. Focusing on
these limitations, we propose a framework Bootstrap Your Emotion Latent (BYEL), which uses only
synthetic images in training. BYEL is implemented by adding Emotion Classifiers and Emotion
Vector Subtraction to the BYOL framework that performs well in Self-Supervised Representation
Learning. We train our framework using synthetic images generated from the Aff-wild2 dataset
and evaluate it using real images from the Aff-wild2 dataset. The result shows that our framework
(0.3084) performs 2.8% higher than the baseline (0.3) on the macro F1 score metric.

Keywords Facial expression recognition, learning from synthetic data, 4th Affective Behavior Analysis in-the-Wild
(ABAW), Self-Supervised Learning, representation learning, emotion-aware representaion learning

1 Introduction

Human emotion analysis is one of the most important fields in human-computer interaction. With the development of
deep learning and big data analysis, researches on human emotion analysis using these technologies are being actively
conducted [1, 2, 3, 4, 5, 6, 7, 8]. In response to this trend, three previous Affective Behavior Analysis in-the-wild
(ABAW) competitions were held in conjunction with the IEEE Conference on Face and Gesture Recognition (IEEE
FG) 2021, the International Conference on Computer Vision (ICCV) 2021 and the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR) 2022 [9, 10, 11]. The 4th Workshop and Competition on ABAW,
held in conjunction with the European Conference on Computer Vision (ECCV) in 2022 comprises two challenges [11].
The first one is Multi-Task-Learning (MTL), which simultaneously predicts Valence-Arousal, Facial Expression, and
Action Units. The second one is Learning from Synthetic Data (LSD), which trains with synthetic datasets and infers
real datasets.

Due to the successful performance of deep learning, there have been many studies using it to perform human emotion
analysis[1, 12, 13]. However, in human emotion analysis using deep learning, a large amount of high-quality facial
datasets are required for successful analysis. The problem is that it is difficult to easily utilize such datasets in all studies
because the cost of collecting a large number of high-quality images and their corresponding labels is high. Therefore,
LSD Challenge, which utilizes synthetic datasets to train a neural network and to apply real datasets to the trained
neural network, is one of the most interesting areas.
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In this paper, we solve the LSD Challenge of ABAW-4th [11]. A prominent problem to be solved for the LSD
Challenge is that the domain of training and inference is different. To solve this problem, Domain Adaptation (DA)
techniques are commonly used. DA is a method that increases generalization performance by reducing the domain gap
in the feature space of the source and target domains. Traditional DA methods reduce the domain gap in the feature
space of the source domain and target domain using the adversarial network [14, 15, 16]. Furthermore, studies have
recently been conducted to reduce the gap between source and target domains in feature space using the characteristics
of self-supervised learning (SSL) that learn similar representations in feature space without adversarial networks
[17, 18]. However, both traditional DA and SSL-based DA have limitations in that both the source domain dataset and
target domain dataset are necessary for the training phase. Focusing on these limitations, we propose an SSL-based
novel framework that learns the emotional representation of the target domain(real images) using only the source
domain(synthetic images). Our contributions are as follows.

• First, we propose the enabled emotion aware Self-Supervised Learning method to learn an invariant features
that represent emotion in both the synthetic image and the real image.

• Second, we solve domain adaptation by learning the optimal representation that is also applied in real images
using only the synthetic image.

We confirm the efficiency by comparing our contributions with the methods of various cases in 5.4.

2 Related Work

2.1 Self-Supervised Representation Learning

Recently, studies on methodologies for extracting representations using self-supervision are being actively conducted.
MoCo [19] performs contrastive learning based on dictionary look-up. When the key and query representations are
derived from the same data, learning is carried out in the direction of increasing the similarity. SimCLR [20] is proposed
as an idea to enable learning without an architecture or memory bank. it learns representations to operate as a positive
pair of two augmented image pairs.

All existing contrastive learning-based methodologies before BYOL use negative pairs. BYOL [21] achieved excellent
performance through a method that does not use negative pairs by using a method that utilizes two networks instead of
using a negative pair. In this study, an online network predicts the representation of target network which has same
architecture with online network and updates the parameters of the target network using an exponential moving average.
As such, the iteratively refining process is bootstrapping.

2.2 Human Emotion Analysis

Human Emotion Analysis is rapidly growing as an important study in Human-computer interaction field. In particular,
through the Affective Behavior Analysis in-the-wild(ABAW) competition, many methodologies are proposed and
their performance has been improved. In the 3rd Workshop and Competition on ABAW, the four challenges i) uni-
task Valence-Arousal Estimation, ii) uni-task Expression Classification, iii) uni-task Action Unit Detection, and iv)
Multi-Task Learning and evaluation are described with metrics and baseline systems [11].

Many methodologies have been presented through the ABAW challenge. D. Kollias et al. [6, 8] exploits convolutional
features while modeling the temporal dynamics arising from human behavior through recurrent layers of CNN-RNN
from AffwildNet. They perform extensive experiments with CNNs and CNN-RNN architectures using visual and
auditory modalities. and show that the network achieves state-of-the-art performance for emotion recognition tasks
[5]. According to one study [2], new multi-tasking and holistic frameworks are provided to learn collaboratively,
generalize effectively. In this study, multi-task DNNs, being trained on AffWild2 outperform the state-of-the-art for
affect recognition over all existing in-the-wild databases. D. Kollias et al. [1] present FacebehaviorNet and perform
zero- and few-shot learning to the ability to encapsulate all aspects of facial behavior. MoCo [19] is also applied in
the field of Human Emotion Analysis. EmoCo [22], an extension of the MoCo framework, removes non-emotional
information in the features with the Emotion classfier, and then performs emotion-aware contrastive learning through
intra-class normalization in an emotion-specific space.

Also, various new approaches for facial emotion synthesis have been presented. D. Kollias et al. [7] propose a novel
approach to synthesizing facial effects based on 600,000 frame annotations from the 4DFAB database in terms of
valence and arousal. VA-StarGAN [4] applies StarGAN to generate a continuous emotion synthesis image. D. Kollias
et al. [3] propose a novel approach for synthesizing facial affect. In this study, impact synthesis is implemented by
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Synthetic Image 𝑿𝒔𝒚𝒏

Real Image 𝑿𝒓𝒆𝒂𝒍
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: forwarding
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Figure 1: Problem description of ABAW-4th’s LSD(Learning from Synthetic Data) Challenge [11].

fitting a 3D Morphable Model to a neutral image, then transforming the reconstructed face, adding the input effect, and
blending the new face and the given effect to the original image.

3 Problem Description

ABAW-4th’s Learning from Synthetic Data (LSD) Challenge is a task that uses synthetic datasets to train neural
networks and classify emotions using trained neural networks in real images. In training phase, we train neural
networks fθ that classify emotions using Ytrue ∈ {Anger, Disgust, Fear, Happiness, Sadness, Surprise } corresponding
to synthetic image Xsyn ∈ RN×N , where N is size of image. Also predicted emotions from Xsyn are defined as
Ypred ∈ {Anger, Disgust, Fear, Happiness, Sadness, Surprise }. In inference phase, Ypred is obtained using real image
Xreal ∈ RN×N . Figure 1 shows our problem description.

4 Method

Like previous Self-Supervised Learning frameworks, our method consists of two phases [21, 19, 20]. The first,
representation learning is conducted in the pre-training phase, and the second, transfer-learning is performed for emotion
classification. We use the Bootstrap Your Emotion Latent (BYEL) framework to do representation learning and then
transfer-learning for the emotion classification task. As shown in Figure 2 (a), the BYEL framework performs emotion-
aware representation learning on feature extractor hθ. As shown in Figure 2 (b), fθ, which consists of pre-trained hθ
and classifier cθ, is trained in a supervised learning method in the emotion classification task. The final model, fθ, is
formulated as equation 1, where ◦ is the function composition operator.

fθ = cθ ◦ hθ(◦ : function composition operator) (1)

4.1 Bootstrap Your Emotion Latent

Inspired by the excellent performance of EmoCo [22] with MoCo [19] applied in the face behavior unit detection task,
we apply BYOL [21] to solve LSD tasks. There are several changes in applying BYOL to emotion-aware representaion
learning. We add Emotion Classifier Eθ and Emotion Vector Subtraction.

4.1.1 Emotion Classifier.

Eθ is a matrix with WE ∈ Rsize of qθ(z)×C , where C is number of emotion class. WE is a matrix that converts qθ(z)
into an emotion class. To conduct emotion-aware training as in EmoCo[22], we add Emotion Classifier Eθ to BYOL
framework. The matrix WE is updated through the, Lclassify, which is the Cross-Entropy of the Emotion Prediction
and Emotion Label. As WE is trained, each column becomes a vector representing the corresponding emotion.
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Figure 2: An illustration of our method.

4.1.2 Emotion Vector Subtraction.

Emotion Vector Subtraction is an operation to move qθ(z) to the emotion area within the feature space of qθ(z). Using
WE , we can obtain a prediction vector excluding the emotion information qθ(z) by subtracting the emotion vector widx
from the qθ(z) of Xsyn, like EmoCo [22]. Here, widx is a column vector of WE corresponding to the emotion label.
In the same way, we subtract the emotion vector from the z′ of the target network to obtain the projection vector z′
excluding the emotion vector widx. The whole process is formulated as equation 2.

qθ(z) = qθ(z)− widx
z′ = z′ − widx
(T : transpose, idx ∈ {0, ..., C − 1})

(2)

Figure 2 (a) shows the framework of BYEL, where feature extractor hθ, decay rate τ , Projection layer gθ, Prediction layer
qθ and Augmentation function (t,t’) is same as BYOL. The target network (hθ′ , gθ′ ), which is label for representation
learning, is not updated by Lbyol but only through exponential moving average of hθ, gθ like BYOL. This target network
update is formulated as an equation 3. In addition, Figure 2 (a) is an example of a situation in which the emotion label
is Fear. Here, since the label index of emotion vector corresponding to Fear in WE is 2, it can be confirmed that widx is
subtracted from qθ(z) and z′. After subtraction, as in BYOL, BYEL trains qθ(z) to have the same representation as z′
so that hθ performs emotion-aware representation learning for synthetic image Xsyn.

θ
′
= τ ∗ θ

′
+ (1− τ) ∗ θ(0 ≤ τ ≤ 1) (3)
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4.2 Transfer-Learning

After the pre-training phase, we can obtain hθ with emotion-aware representation learning. Since hθ can extracts
emotion representation at Xsyn, fθ consists of feature extractor hθ and classifier cθ, which is a one linear layer. As
shown in Figure 2 (b), fθ is learned in the supervised learning method for the emotion classification task.

4.3 Loss

We use three loss functions to train our method. The first is Lclassify for emotion classification in pre-training
phase, transfer-learning phase, the second is Lorthogonal to orthogonalize the columns of WE , and the third is Lbyol in
pre-training phase. Lclassify is formulated as equation 4, where p is the softmax function and y is the ground truth.

Lclassify = −
C−1∑
c=0

yc log(p(c))(C : Class Number) (4)

Inspired by Pointnet’s T-Net regularization [23], which helps with stable training of transformation matrix, we use
Lorthogonal to train Eθ stably. Lorthogonal is formulated as equation 5, where I is identity matrix ∈ RC×C and ‖·‖1 is
the L1 norm.

Lorthogonal =

C−1∑
i=0

C−1∑
j=0

∥∥WT
E ∗WE − I

∥∥
1
[i][j]

(C : Class Number, I : Identity Matrix ∈ RC×C)

(5)

Lbyol is the same as Mean Square Error with L2 Normalization used by BYOL [21]. Lbyol is formulated as equation 6,
where 〈·, ·〉 is the dot product function and ‖·‖2 is the L2 norm.

Lbyol = 2− 2

〈
qθ(z), z

′
〉

‖qθ(z)‖2 ∗
∥∥∥z′
∥∥∥
2

(6)

Lbyel is obtained by adding L̃byol, L̃classify obtained by inverting t and t’ in Figure 2 (a) to Lbyol, Lclassify , Lorthogonal
as in BYOL. Finally, Lbyel used in pre-training phase is formulated as equation 7 and Loss used in transfer-learning
phase is formulated as equation 4.

Lbyel = Lbyol + L̃byol + Lclassify + L̃classify + Lorthogonal (7)

5 Experiments

5.1 Dataset

Like the LSD task dataset in ABAW-4th [11], synthetic images used in method development are all generated from
real images used in validation. We can finally get a total of 277,251 synthetic images for training and a total of 4,670
real images for validation. Table 1 shows the detailed distribution of synthetic images and real images. Expression
values are {0, 1, 2, 3, 4, 5} that correspond to {Anger, Disgust, Fear, Happiness, Sadness, Surprise}.

5.2 Settings

In the pre-training phase, we apply LARS [24] optimizer as in BYOL [21] to train the BYEL framework and the τ ,
augmentation t, projection layer gθ and prediction layer qθ are the same as BYOL [21], where epoch is 100, learning
rate is 0.2, batch size is 256 and weights decay is 1.5−e−6. In transfer-learning phase, we apply Adam[25] optimizer to
learn the model fθ consisting of hθ that completed the 100-th epoch learning and 1 linear layer cθ, where epoch is 100,
learning rate is 0.1− e−3 and batch size is 256. The size of images Xreal, Xsyn ∈ RN×N is all set to N = 128. We
select a model with the best F1 score across all 6 categories(i.e., macro F1 score) after full learning. All experimental
environments are implemented in pytorch [26] 1.9.0.
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Table 1: Distribution of datasets by emotion class.
Number of Images

Expression Synthetic Image Real Image
0:Anger 18,286 804

1:Disgust 15,150 252

2:Fear 10,923 523

3:Happiness 73,285 1,714

4:Sadness 144,631 774

5:Surprise 14,976 603

Table 2: Comparison of macro F1 scores according to methods
macro F1 score with unit 0.01(↑)

Method Validation set Test set
baseline 50.0 30.0

ResNet50 with LSD 59.7 -
BYOL with LSD 59.7 29.76

BYEL with LSD 62.7 30.84

5.3 Metric

We use the evaluation metric F1 score across all 6 categories(i.e., macro F1 score) according to the LSD task
evaluation metric proposed in ABAW-4th [11]. F1 score is defined as the harmonic mean of recall and precision and is
formulated as equation 8. Finally, the F1 score across all 6 categories (i.e., macro F1 score) is formulated as equation 9.
The closer the macro F1 score is to 1, the better the performance.

Precision =
TruePositive

TruePositive+ FalsePositive

Recall =
TruePositive

TruePositive+ FalseNegative

F1− Score = 2 ∗ Precision ∗Recall
Precision+Recall

(8)

PLSD =

∑5
c=0 F

c
1

6
(9)

5.4 Results

We demonstrate the effectiveness of our method through comparison with the baseline presented in ABAW-4th [11].
A baseline model is set to a transfer-learning model of ResNet50 [27] pre-trained with ImageNet. ResNet50 with LSD
is a case where ResNet50 is trained using the LSD dataset. BYOL with LSD is a case of training in the LSD dataset
using the BYOL [21] framework and then transfer-learning. BYEL with LSD is our method. Table 2 summarizes
results. We also prove that our method is more effective than other methods.

5.4.1 Ablation Study.

We analyze the relationship between pre-training epoch and performance through the performance comparison of
feθ = cθ ◦ heθ according to the training epoch of pre-training. heθ represents the situation in which training has been
completed using the BYEL framework for as many as e epochs. feθ is a transfer-learned model using heθ. In Table 3, it
can be confirmed that the larger the pre-training epoch, the higher the performance.
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Table 3: Comparison of macro F1 scores in ablation study
macro F1 score with unit 0.01(↑)

Method Validation set Test set
baseline 50.0 30.0
f45θ 56.9 -
f90θ 59.3 -

f100θ 62.7 30.84

6 Conclusion

In this paper, inspired by EmoCo, we propose an emotion-aware representaion learning framework applying BYOL.
This framework shows generalization performance in real images using only synthetic images for training. In section
5.4, we demonstrate the effectiveness of our method. However, it does not show a very large performance difference
compared to other methods. Therefore, we recognize these limitations, and in future research, we will apply the
Test-Time Adaptation method to further advance.
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