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Abstract. Cell identification within the H&E slides is an essential pre-
requisite that can pave the way towards further pathology analyses in-
cluding tissue classification, cancer grading, and phenotype prediction.
However, performing such a task using deep learning techniques requires
a large cell-level annotated dataset. Although previous studies have in-
vestigated the performance of contrastive self-supervised methods in tis-
sue classification, the utility of this class of algorithms in cell identifi-
cation and clustering is still unknown. In this work, we investigated the
utility of Self-Supervised Learning (SSL) in cell clustering by proposing
the Contrastive Cell Representation Learning (CCRL) model. Through
comprehensive comparisons, we show that this model can outperform
all currently available cell clustering models by a large margin across
two datasets from different tissue types. More interestingly, the results
show that our proposed model worked well with a few number of cell
categories while the utility of SSL models has been mainly shown in the
context of natural image datasets with large numbers of classes (e.g., Im-
ageNet). The unsupervised representation learning approach proposed in
this research eliminates the time-consuming step of data annotation in
cell classification tasks, which enables us to train our model on a much
larger dataset compared to previous methods. Therefore, considering the
promising outcome, this approach can open a new avenue to automatic
cell representation learning.

Keywords: Self-Supervised Learning · Contrastive Learning · Cell Rep-
resentation Learning · Cell Clustering

1 Introduction

Cells are the main components that determine the characteristics of tissues and,
through mutual interactions, can play an important role in many aspects includ-
ing tumor progression and response to therapy [19,30,23]. Therefore, cell identifi-
cation can be considered as the first and essential building block for many tasks,
including but not limited to tissue identification, slide classification, T-cell in-
filtrating lymphocytes analysis, cancer grade prediction, and clinical phenotype
prediction [21,25]. In clinical practice, manual examination of the Whole Slide
Images (WSI), multi-gigapixel microscopic scans of tissues stained with Hema-
toxylin & Eosin (H&E), is the standard and widely available approach for cell
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type identification [1]. However, due to the large number of cells and their vari-
ability in texture, not only is the manual examination time-consuming and ex-
pensive, but it also introduces intra-observer variability [5]. Although techniques
such as immunohistochemistry (IHC) staining can be used to identify various
cell types in a tissue, they are expensive, are not routinely performed for clinical
samples, and require a deep biological knowledge for biomarker selection [26].

With the exponential growth of machine learning techniques in recent years,
especially deep learning, computational models have been proposed to accelerate
the cell identification process [29,15]. However, these models need large cell-level
annotated datasets to be trained on [15,2]. Collecting such datasets is time-
consuming and costly as the pathologists have to annotate tens of thousands of
cells present in H&E slides, and this procedure has to be carried out for any
new tissue type. To mitigate this, several research groups have moved to crowd-
sourcing [2]. Nevertheless, providing such pipelines is still difficult in practice.
Therefore, all the aforementioned problems set a strong barrier to the important
cell identification task which is a gateway to more complex analyses.

In this paper, using state-of-the-art deep learning methods, we investigate
the utility of contrastive self-supervised learning to obtain representations of
cells without any kind of supervision. Moreover, we show that clusters of these
representations are associated with specific types of cells enabling us to apply the
proposed model for cell identification on routine H&E slides in a massive scale.
Furthermore, our results demonstrate that our trained model can outperform all
the existing counterparts.

Therefore, the contributions of this work can be summarized as: 1) the
first work to study the utility of self-supervised learning in cell representation
learning in H&E images; 2) introducing a novel framework for this purpose;
3) outperforming all the existing unsupervised baselines with a large margin.
The code will be available at https://github.com/raminnakhli/Contrastive-Cell-
Representation-Learning.

2 Previous Works

2.1 Self-Supervised Learning

Self-Supervised Learning (SSL) is a technique to train a model without any
human supervision in a way that the generated representations capture the se-
mantics of the image. Learning from the pseudo-labels generated by applying
different types of transformations has been a popular approach in the early ages
of this technique. Learning local position of image patches [28], rotation an-
gle prediction [22], and color channel prediction [35] are some of the common
transformations used to this end.

Recent studies have shown that using similar transformations in a contrastive
setting can significantly enhance the quality of the representations to an ex-
tent that makes it possible to even outperform supervised methods after fine-
tuning [10]. In this setting, models pull the embeddings of two augmentations of
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the same image (one called query and the other called positive sample) together
while they push the embedding of other images (negative samples) as far as
possible. SimCLR [7,8] proposes using the same encoder network to encode the
query, positive, and negative samples while MoCo [17,10] introduces using the
momentum encoder to encode the positive and negative samples, which is up-
dated by the weights of the query image encoder. On the other hand, BYOL [16]
and DINO [6] remove the need for negative samples.

In addition to the applications of the self-supervised learning in image classi-
fication [8,10,6] and object detection [32], several papers have shown benefits of
this approach in medical imaging. Azizi et al. [3] show their model can outper-
form supervised models across multiple medical imaging datasets by pulling the
embeddings of two different views from the same patient under different condi-
tions, and [33] applies self-supervised learning for cell detection. while [33] applies
self-supervised learning for cell segmentation, [11] uses SimCLR to learn repre-
sentations on patches of H&E slides. Furthermore, they show that increasing
the dataset size and variety improves the performance of the model on the patch
classification task. In contrast, [34] shows that using another type of contrastive
learning architecture reduces the final performance of patch classification com-
pared to the pre-trained models on the ImageNet dataset [14]. Although some of
the aforementioned studies investigate the influence of contrastive self-supervised
learning in the context of histopathology patch classification, to the best of our
knowledge, the applications of self-supervised techniques for cell labelling (as
opposed to patch classification) are largely ignored. Furthermore, the contradic-
tory results of the aforementioned studies (one showing the superiority of SSL
over the ImageNet pre-trained model, and the other showing the opposite) war-
rant further investigation of these models in the context of cell clustering and
labelling in histopathology.

2.2 Cell Classification in Histopathology

The utility of machine learning algorithms in cell classification is an active and
important area of research. Earlier works have been mainly focused on extracting
hand-crafted features from cell images and applying machine learning classifi-
cation models to perform this task. For example, using the H&E images, [27]
extracts cytological features from cells and applies Support Vector Machines
(SVM) to separate the cell types. [13] uses the size, color, and texture of the
cells to assign a score to each cell based on which they can classify the cell.
Later works combined the deep and hand-crafted features to improve the ac-
curacy of cell classification [12]. However, recent studies (for example, [29,15])
show that cell classification accuracy can significantly improve, solely based on
deep learning-based features.

Although these studies have shown promising performance, they require a
large annotated dataset which is difficult to collect. A few recent studies have
focused on unsupervised cell classification to address this problem. For example,
Hue et al. [20] take advantage of the InfoGAN [9] design to provide a categorical
embedding for images, based on which they can differentiate between cell types
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and Vununu et al. [31] propose using Deep Convolution Auto-encoder (DCAE)
which learns feature embeddings by performing image reconstruction and clus-
tering at the same time. However, all of these works are focused on only one
tissue type. In this study, we present the first contrastive self-supervised cell
representation learning framework using H&E images and show that this design
can consistently outperform all the currently available baselines across two tissue
types.

3 Method

Given an image of a cell, our objective is to learn a robust representation for the
cell which can be used for down-stream tasks such as cell clustering. Fig. 1 depicts
an overview of our proposed self-supervised method, called CCRL (Contrastive
Cell Representation Learning). The main goal of our framework is to provide the
same representation for different views of a cell. More specifically, this framework
consists of two branches, query and key, which work on different augmentations
of the same image.

Loss 

Function

Q: Augmented 

Whole-View of Cell

K: Augmented 

Partial-View of Cell

Encoder
Prediction Head

Momentum Encoder

Cell Representation 1

Cell Representation 2

Fig. 1. Overview of the Framework

In this design, cell embeddings are learned by pulling the embeddings of two
augmentations of the same image together, while the representations of other
images are pushed away. Consider the input image batch of X = x1, x2, ..., xN

where xi is a small crop of the H&E image around a cell in a way that it only
includes that specific cell. Two different sets of augmentations are applied to X
to generate Q = {qi|i = 1, ..., N} and K = {ki|i = 1, ..., N} where N is the
batch size. These sets are called query and key, respectively, and qi and kj are
the augmentations of the same image if and only if i = j. The query batch is
encoded using a backbone model, a neural network of choice, while the keys
are encoded using a momentum encoder, which has the same architecture as the
backbone. Using a momentum encoder can be viewed as keeping an ensembling of
the query model throughout its training, providing more robust representations.
This momentum encoder is updated using the equation 1 in which θtk is the
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parameter of momentum encoder at time t, m is the momentum factor, and θtq
is the parameter of the backbone at time t

θtk = mθt−1
k + (1−m)θtq. (1)

Consequently, the obtained query and key representations are passed through
separate Multi-Layer Perceptron (MLP) layers called projector heads. Although
the query projector is trainable, the key projector is updated with momentum
using the weight of the query projector head. Similar to the momentum encoder,
the key projector can be considered as an ensembling of that of the query branch.
We have restricted these models to be 2-layer MLPs with the input size of 512,
hidden size of 128, and output size of 64. In addition to the projector head, we use
an extra MLP on the query side of the framework, called prediction head. This
extra network enables us to provide asymmetricity in the design of our model (as
apposed to using a deeper projector head which keeps the design symmetric),
providing more flexible representations on the query branch for competing with
the ensembled representations coming from the key branch. This network is a
2-layer MLP with input, hidden, and output sizes of 64, 32, and 64, respectively.
Similar to the last fully-connected layers of a conventional classification network,
the projection and prediction heads provide more representation power to the
model.

Finally, the models are trained using the equation 2, pulling the positive and
pushing the negative embeddings

Lcell
qi = − log

exp
∥fq(qi)∥2.∥fk(ki)∥2

τ∑N+Q
j=0 exp

∥fq(qi)∥2.∥fk(kj)∥2

τ

. (2)

In this equation, τ is the temperature which controls the sharpness of the sim-
ilarity distribution, Q is the number of items stored in the queue from the key
branch, ∥x∥2 is the second-order normalization of x, fq is the equal function for
the combination of the backbone, query projection head, and query prediction
head, and fk shows the equal function for the momentum encoder and the key
projection head.

As mentioned above, we use an external memory bank to store the processed
key representations. The stored representation will be used in the contrastive
setting as negative samples, and they are limited to 65, 536 samples throughout
the training.

Additionally, we incorporated a local-global connection technique to ensure
that the model is always focusing on the whole view representation of the cell
throughout the training process. To this end, only one of the two augmentation
pipelines includes cropping operations. This pipeline generates local regions of
the cell image while the images generated by the other augmentation pipeline
are global, containing the whole-cell view. The rest of the operations are the
same in both pipelines, and they include color jitter (brightness of 0.4, contrast
of 0.4, saturation of 0.4, and hue of 0.1), gray-scale conversion, Gaussian blur
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(with a random sigma between 0.1 and 2.0), horizontal and vertical flip, and
rotation (randomly selected between 0 to 180 degrees).

At inference time, cell embeddings were generated from the trained momen-
tum encoder and were clustered by applying the K-means algorithm. It is worth
mentioning that one can use either the encoder or momentum encoder for em-
bedding generation; however, the momentum encoder provides more robust rep-
resentations since it aggregates the learned weights of the encoder network from
all of the training steps (an ensembling version of the encoder throughout train-
ing). We refer to this technique as ensembling in the rest of this article.

4 Experiments

4.1 Evaluation Metrics

As the main goal of this work was to provide a framework for clustering of
cell types, we evaluated the performance of the models using Adjusted Mutual
Information (AMI), Adjusted Random Index (ARI), and Purity of the identified
cell clusters by the model and the ground truth labels.

AMI captures the agreement between two sets of assignments using the amount
of the mutual information that exists between these sets. However, it is adjusted
to mitigate the effect of chance in the score.

ARI is the chance adjusted form of the Rand Index, which calculates the quality
of the clustering based on the number of instance pairs.

Purity measures how the samples within each cluster are similar to each other.
In other words, it demonstrates if each cluster is a mixture of different classes.

4.2 Datasets

To demonstrate the utility and performance of our proposed model, we used
two publicly available datasets (CoNSeP [15] and NuCLS [2]) representing two
different tissue types with cell-level annotations. Although the annotations were
not used in the training step, we leveraged them to evaluate the performance of
different models on the test set.

The CoNSeP dataset consisted of 41 H&E tiles from colorectal tissues ex-
tracted from 16 whole slide images of a single patient. All tiles were in 40×
magnification scale with the size of 1,000×1,000 pixels. Cell types included 7
different categories of normal epithelial, malignant epithelial, inflammatory, en-
dothelial, muscle, fibroblast, and miscellaneous. However, as suggested by the
original paper, normal and malignant epithelial were grouped into the epithe-
lial category, and the muscle, fibroblast, and endothelial cells were grouped into
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the spindle-shaped category. Therefore, the final 4 groups included epithelial,
oval-shaped, inflammatory, and miscellaneous.

The NuCLS dataset included 1744 H&E tiles of breast cancer images from
the TCGA dataset collected from 18 institutions. The tiles had different sizes,
but they were roughly 300×300 pixels. There were 12 different cell types avail-
able in this dataset: tumor, fibroblast, lymphocyte, plasma, macrophage, mi-
totic, vascular endothelium, myoepithelium, apoptotic body, neutrophil, ductal
epithelium, and eosinophil. However, as suggested by the paper, these subtypes
were grouped together into 5 superclasses including tumor (containing tumor
and mitotic cells), stromal (containing fibroblast, vascular endothelium, and
macrophage), sTILs (containing lymphocyte and plasma cells), apoptotic cells,
and others.

Details of each dataset can be found in Table 1.

Table 1. Dataset details

CoNSeP NuCLS

Type Count 4 5

Cell Count 24,319 51,986

Tile Count 41 1,744

Tile Size 1,000×1,000 300×300

Tissue Type Colorectal Breast

4.3 Data Preparation

The aforementioned datasets included patch-level images, while we required cell-
level ones for the training of the model. To generate such data, we used the
instance segmentation provided in each of the datasets to find cells and crop a
small box around them. We adopted an adaptive window size to extract these
images, whose size was equal to twice the size of the cell in CoNSeP and equal
to the size of the cell in the NuCLS dataset. The images were resized to 32× 32
pixels before being fed into our proposed framework.

4.4 Implementation Details

The code was implemented in Pytorch, and the model was run on a V100 GPU.
The batch size was set to 1024, the queue size to 65536, and pre-activated
ResNet18 [18] was used for the backbone. The model was trained using Adam
optimizer for 500 epochs with a starting learning rate of 0.001, a cosine learning
rate scheduler, and a weight decay of 0.0001. We also adopted a 10-epoch warm-
up step. The momentum factor in the momentum encoders was set to 0.999, and
the temperature was set to 0.07.



8 R. Nakhli et al.

4.5 Results

The results of unsupervised clustering of CCRL can be found in Table 2 as well
as that of the baselines. We compared the performance of our model with five dif-
ferent baseline and state-of-the-art models. The pre-trained ImageNet used the
weights trained on the ImageNet dataset to generate the cell embeddings. The
second baseline model used morphological features to produce a 30-dimensional
feature vector, consisting of geometrical and shape attributes [4]. The third base-
line method utilized the Manual Features (MF), a combination of Scale-Invariant
Feature Transform (SIFT) and Local Binary Patterns (LBP) features, proposed
by [20]. We also compared the results of our model with two state-of-the-art
unsupervised cell clustering methods. The DCAE [31] model adopted a deep
convolution auto-encoder model alongside a clustering layer to learn cell em-
beddings by preforming an image reconstruction task. Also, the authors of [20]
developed a generative adversarial model for cell clustering by increasing the
mutual information between the cell representation and a categorical noise vec-
tor.

Table 2. Unsupervised clustering performance comparison.

Model
CoNSeP NuCLS

AMI ARI Purity AMI ARI Purity

Pre-trained
ImageNet

7.3% 7% 42.7% 9.3% 7.8% 56.7%

Morphological [4] 12.7% 1.3% 48.8% 21.1% 18.8% 66.1%

Manual Features [20] 9.5% 6.4% 45.5% 11.25% 7.8% 56.2%

Auto-Encoder [31] 10.1% 7.3% 50.5% 8.3% 7.2% 56.8%

InfoGAN [20] 14.8% 15.7% 58.4% 14% 12.6% 62%

CCRL (Ours) 24.2% 21.7% 51.8% 22.8% 24% 68.3%

As can be seen in Table 2, our model can outperform its counterparts with
a large margin in terms of different clustering metrics across all datasets.

4.6 Ablation Study

Ablation studies were performed on three most important components of our
framework: 1) local-global connection technique; 2) inference with the ensemble
model; 3) query prediction head.

Tables 3 demonstrates the effect of ablation of each component. Based on
these experiments, all components are essential for learning effective cell repre-
sentations regardless of the tissue type. In this part, we used NuCLS dataset for
ablation, as it has been collected from multiple patients and diverse locations.
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Table 3. Ablation study. First and second performances are highlighted and under-
lined, respectively.

AMI ARI Purity

w/o Local-Global 21.9% 20.4% 69.7%

w/o Ensembling 21.1% 19.2% 67.2%

w/o Prediction Head 22% 20.9% 68.1%

w/ All 22.8% 24% 68.3%

5 Discussion & Conclusion

Cell identification is a gateway to many complex tissue analysis applications.
However, due to the large number of cells in H&E slides, manual execution
of such a task is very time-consuming and resource-intensive. Although several
research studies have provided machine learning models to classify cells in an
automatic manner, they still require a large dataset that is manually annotated.
In this paper, we investigated the utility of self-supervised learning in the con-
text of cell representation learning by designing a self-supervised model with
designated architecture for the task of cell representation learning. The quality
of the representations was measured based on the clustering performance, by
applying the K-means algorithm on top of these representations and measuring
the cluster enrichment in specific cell types. Our experiments confirm that the
SSL training improves the clustering metrics compared to currently available
unsupervised methods.

It is worthwhile to mention that SSL frameworks are mostly evaluated on
natural images (e.g., ImageNet dataset), which include a large number of cate-
gories. However, in our case, the number of classes (i.e., cell types) is extremely
small (4 and 5 classes for the CoNSeP and NuCLS datasets, respectively, ver-
sus 1000 classes for ImageNet). This means that, on average, 25% and 20% of
the negative samples for the CoNSeP and NuCLS dataset are false-negatives,
respectively, while this ratio is only 0.1% for the ImageNet dataset. Therefore,
our findings show that the proposed SSL framework can operate well when a
small number of classes or categories exists.

This paper is the first attempt to apply contrastive self-supervised learning
to cell identification in H&E images. The proposed model enables us to achieve
robust cell representation using an enormous amount of unlabeled data which
can simply be generated by scanning routine H&E stained slides in the clinical
setting. Furthermore, due to the unsupervised learning nature of the framework,
the proposed model has the potential to identify novel cell types that may have
been overlooked by pathologists. In addition to the above-mentioned benefits
that an SSL framework could provide in the context of cell classification, these
models are also robust to long-tail distributions in the data [24]; hence addressing
the common issue of rare cell populations in pathology (e.g., tumor budding,
mitotic figures). Therefore, we hope that this work motivates researchers and
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serves as a step towards more utilization of unsupervised learning in pathology
applications, especially in the context of cell-level information representation.
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