Skip to main content

Explainable Model for Localization of Spiculation in Lung Nodules

  • Conference paper
  • First Online:
  • 1517 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13807))

Abstract

When determining a lung nodule malignancy one must consider the spiculation represented by spike-like structures in the nodule’s boundary. In this paper, we develop a deep learning model based on a VGG16 architecture to locate the presence of spiculation in lung nodules from Computed Tomography images. In order to increase the expert’s confidence in the model output, we apply our novel Riemann-Stieltjes Integrated Gradient-weighted Class Activation Mapping attribution method to visualize areas of the image (spicules). Therefore, the attribution method is applied to the layer of the model that is responsible for the detection of the spiculation features. We show that the first layers of the network are specialized in detecting low-level features such as edges, the last convolutional layer detects the general area occupied by the nodule, and finally, we identify that spiculation structures are detected at an intermediate layer. We use three different metrics to support our findings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andrejeva, L., Geisel, J.L., Harigopa, M.: Spiculated masses, breast imaging. Oxford Medicine Online (2018). https://doi.org/10.1093/med/9780190270261.003.0025

  2. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop, vol. 27, pp. 17–37 (2011)

    Google Scholar 

  3. Chattopadhyay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) (2018). https://doi.org/10.1109/wacv.2018.00097

  4. Devore, J.L., Berk, K.N.: Discrete random variables and probability distributions. In: Devore, J.L., Berk, K.N. (eds.) Modern Mathematical Statistics with Applications. STS, pp. 96–157. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-0391-3_3

    Chapter  MATH  Google Scholar 

  5. Hancock, M.C., Magnan, J.F.: Lung nodule malignancy classification using only radiologist-quantified image features as inputs to statistical learning algorithms: probing the lung image database consortium dataset with two statistical learning methods. J. Med. Imaging 3(4), 044504 (2016)

    Article  Google Scholar 

  6. Hochreite, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 06(02), 107–116 (1998)

    Article  Google Scholar 

  7. Hofer, M.: CT Teaching Manual, A Systematic Approach to CT Reading. Thieme Publishing Group (2007)

    Google Scholar 

  8. Huanga, S., Yang, J., Fong, S., Zhao, Q.: Artificial intelligence in cancer diagnosis and prognosis: opportunities and challenges. Cancer Lett. 471(28), 61–71 (2020)

    Article  Google Scholar 

  9. Armato III, S.G., et al.: Lung image database consortium: developing a resource for the medical imaging research community. Radiology 232(3), 739–748 (2004). https://doi.org/10.1148/radiol.2323032035

  10. Kantorovich, L.V.: Mathematical methods of organizing and planning production. Manage. Sci. 6(4), 366–422 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lao, Z., Zheng, X.: Multiscale quantification of tissue spiculation and distortion for detection of architectural distortion and spiculated mass in mammography. In: M.D., R.M.S., van Ginneken, B. (eds.) Medical Imaging 2011: Computer-Aided Diagnosis, vol. 7963, pp. 468–475. International Society for Optics and Photonics, SPIE (2011). https://doi.org/10.1117/12.877330

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  13. Lucas, M., Lerma, M., Furst, J., Raicu, D.: Visual explanations from deep networks via Riemann-Stieltjes integrated gradient-based localization (2022). https://arxiv.org/abs/2205.10900

  14. Mann, H., Whitney, D.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mendez, D.M.M., Bermúdez, A., Tyrrell, P.N.: Visualization of layers within a convolutional neural network using gradient activation maps. J. Undergraduate Life Sci. 14(1), 6 (2020)

    Article  Google Scholar 

  16. Protter, M.H., Morrey, C.B.: The Riemann-Stieltjes integral and functions of bounded variation. In: Protter, M.H., Morrey, C.B. (eds.) A First Course in Real Analysis. Undergraduate Texts in Mathematics. Springer, New York (1991). https://doi.org/10.1007/978-1-4419-8744-0_12

  17. Nadeem, W.C.S., Alam, S.R., Deasy, J.O., Tannenbaum, A., Lu, W.: Reproducible and interpretable spiculation quantification for lung cancer screening. Comput. Methods Programs Biomed. (2020). https://doi.org/10.1016/j.cmpb.2020.105839

    Article  Google Scholar 

  18. Paci, E., et al.: Ma01.09 mortality, survival and incidence rates in the italung randomised lung cancer screening trial (Italy). J. Thorac. Oncol. 12(1), S346–S347 (2017)

    Google Scholar 

  19. Qiu, B., Furst, J., Rasin, A., Tchoua, R., Raicu, D.: Learning latent spiculated features for lung nodule characterization. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1254–1257 (2020). https://doi.org/10.1109/EMBC44109.2020.9175720

  20. Qiu, S., Sun, J., Zhou, T., Gao, G., He, Z., Liang, T.: Spiculation sign recognition in a pulmonary nodule based on spiking neural p systems. BioMed Res. Int. 2020 (2020). https://doi.org/10.1155/2020/6619076

  21. Ramdas, A., Garcia, N., Cuturi, M.: On Wasserstein two sample testing and related families of nonparametric tests. Entropy 19(2), 47 (2017). https://doi.org/10.3390/e19020047

    Article  MathSciNet  Google Scholar 

  22. Rizzo, M.L., Székely, G.J.: Energy distance. Wiley Interdiscip. Rev. Comput. Stat. 8(1), 27–38 (2015)

    Article  MathSciNet  Google Scholar 

  23. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  24. Sattarzadeh, S., Sudhakar, M., Plataniotis, K.N., Jang, J., Jeong, Y., Kim, H.: Integrated Grad-CAM: sensitivity-aware visual explanation of deep convolutional networks via integrated gradient-based scoring (2021). https://arxiv.org/abs/2102.07805

  25. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vision 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7

    Article  Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015). https://arxiv.org/abs/1409.1556

  27. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 3319–3328. PMLR (2017). https://proceedings.mlr.press/v70/sundararajan17a.html

  28. Szekely, G.J.: E-statistics: the energy of statistical samples. Technical report, Bowling Green State University, Department of Mathematics and Statistics (2002)

    Google Scholar 

  29. Waserstein, L.N.: Markov processes over denumerable products of spaces, describing large systems of automata. Problemy Peredac̆i Informacii 5(3), 6–72 (1969)

    Google Scholar 

  30. Winkels, M., Cohena, T.S.: Pulmonary nodule detection in CT scans with equivariant CNNs. Med. Image Anal. 55, 15–26 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirtha Lucas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lucas, M., Lerma, M., Furst, J., Raicu, D. (2023). Explainable Model for Localization of Spiculation in Lung Nodules. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13807. Springer, Cham. https://doi.org/10.1007/978-3-031-25082-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25082-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25081-1

  • Online ISBN: 978-3-031-25082-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics