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Abstract. This paper presents our solution for the 2nd COVID-19 Com-
petition, occurring in the framework of the AIMIA Workshop at the Eu-
ropean Conference on Computer Vision (ECCV 2022). In our approach,
we employ the winning solution last year which uses a strong 3D Con-
trastive Mixup Classification network (CMC_v1) as the baseline method,
composed of contrastive representation learning and mixup classification.
In this paper, we propose CMC_v2 by introducing natural video priors
to COVID-19 diagnosis. Specifically, we adapt a pre-trained (on video
dataset) video transformer backbone to COVID-19 detection. Moreover,
advanced training strategies, including hybrid mixup and cutmix, slice-
level augmentation, and small resolution training are also utilized to
boost the robustness and the generalization ability of the model. Among
14 participating teams, CMC_v2 ranked 1st in the 2nd COVID-19 Com-
petition with an average Macro F1 Score of 89.11%.

Keywords: COVID-19 detection, Hybrid CNN-transformer, Contrastive
learning, Hybrid mixup and cutmix

1 Introduction

The Coronavirus Disease 2019 SARS-CoV-2 (COVID-19), identified at the end
of 2019, is a highly infectious disease, leading to an everlasting worldwide pan-
demic and collateral economic damage [29]. Early detection of COVID-19 is
crucial to the timely treatment of patients, and beneficial to slowdown or even
break viral transmission. COVID-19 detection aims to identify COVID from
non-COVID cases. Among several COVID-19 detection means, chest computed
tomography (CT) has been recognized as a key component in the diagnostic pro-
cedure for COVID-19. In CT, we resort to typical radiological findings to confirm
COVID-19, including ground glass opacities, opacities with rounded morphology,
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(a) non-COVID (b) COVID

Fig. 1. Some examples of (a) non-COVID and (b) COVID cases from the COV19-CT-
DB dataset. The non-COVID category includes no pneumonia and other pneumonia
cases. The COVID category contains COVID-19 cases of different severity levels.

crazy-paving pattern, and consolidations [3]. As a CT volume contains hundreds
of slices, delivering a convincing diagnosis from these data demands a heavy
workload on radiologists. Relying on manual analysis is barely scalable consid-
ering the surging increasing number of infection cases. Regarding this, there is
an urgent need for accurate automated COVID-19 diagnosis approaches.
Recently, deep learning approaches have achieved promising performance in
fighting against COVID-19. They have been widely applied to various medical
practices, including the lung and infection region segmentation [27JI82IT0] as
well as the clinical diagnosis and assessment [28/2522/9]. Though a line of works
[10/28/9] has been employed for COVID-19 detection via CT analysis and yielded
effective results, it is still worth pushing its detection performance to a new level
in a faster and more accurate manner for a better medical assistant experience.
Improving this performance is non-trivial, since the inner variances between
CT scans of COVID are huge and its differences with some non-COVID like
pneumonia are easily overlooked. Specifically, CT scans vary greatly in imaging
across different devices and hospitals (Fig. [1)), and they share several similar
visual manifestations with other types of pneumonia. Further, the scarcity of
CT scans of COVID-19 due to regulations in the medical area makes these
challenges even harder, as we cannot simply turn to a deep model to learn these
mentioned characteristics with a big number of annotated scans from scratch.
To tackle these challenges, we exploit video priors along with the given lim-
ited number of CT scans to learn an effective feature space for COVID-19 detec-
tion, along with contrastive training and some hybrid data augmentation means
for further data-efficient learning. Specifically, we employ the advanced 3D con-
trastive mixup classification network (CMC-COV19D, abbr. CMC_v1) [8], the
winner in the ICCV 2021 COVID-19 Diagnosis Competition of Al-enabled Medi-
cal Image Analysis Workshop [13], as a baseline. CMC_v1 introduces contrastive
representation learning to discover discriminative representations of COVID-19
cases. Besides, a joint training loss is devised by combining the classification
loss, mixup loss, and contrastive loss. In this work, we propose CMC_v2 by in-
troducing the following mechanisms customized for 3D models. (1) To capture
the long-range lesion span across the slices in the CT scans, we adopt a hy-
brid CNN-transformer model, i.e. Uniformer [I7] as the backbone network. The
combination of convolution and self-attention reduces the network parameters
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and computational costs. It relieves the potential overfitting when deploying 3D
models to small-scale medical datasets. Besides, we empirically show that ini-
tializing the model with 3D weights pre-trained on video datasets is promising
as modeling the relationship among slices is critical for COVID-19 detection.
(2) We develop a hybrid mixup and cutmix augmentation strategy to enhance
the models’ generalization ability. Due to the limited memory, a gather-and-
dispatch mechanism is also customized for the modern Distributed DataParallel
(DDP) scheme in Multi-GPU training. (3) We showcase both the 2D slice-level
augmentation and the small resolution training bring improvements. By apply-
ing the intra-and-inter model ensemble [8], CMC_v2 won the first prize in the
2nd COVID-19 detection challenge of the Workshop “Al-enabled Medical Im-
age Analysis — Digital Pathology & Radiology/COVID19 (AIMIA)”. CMC_v2
significantly outperforms the baseline model provided by the organizers by 16%
Macro F1 Score.

The remainder of this paper is organized as follows. Section |2 reviews related
works. In Section [3] we first recap the CMC_v1 network, the basis of CMC_v2,
and then introduce the newly proposed modules in CMC_v2. Section |4] describes
the COV19-CT-DB dataset used in this paper. Section [5| provides the experi-
mental settings and results. Section [f] concludes our work.

2 Related Work

2.1 COVID-19 detection

Numerous deep learning approaches have made great efforts to separate COVID
patients from non-COVID subjects. Despite the binary classification, the task is
challenging as the non-COVID cases include both common pneumonia subjects
and non-pneumonia subjects.

The majority of deep learning approaches are based on Convolutional Neural
Networks (CNN). [25] was a pioneering work that designed a CNN model to
classify COVID-19 and typical viral pneumonia. Song et al. [22] proposed a deep
learning-based CT diagnosis system (Deep Pneumonia) to detect patients with
COVID-19 from patients with bacteria pneumonia and healthy people. Li et al.
[18] developed a 3D COVNet based on ResNet50, aiming to extract both 2D
local and 3D global features to classify COVID-19, CAP, and non-pneumonia.
Xu et al. [3I] introduced a location-attention model to categorize COVID-19,
Influenza-A viral pneumonia, and healthy cases. It took the relative distance-
from-edge of segmented lesion candidates as extra weight in a fully connected
layer to offer distance information.

Recently, Vision Transformer (ViT) has demonstrated its potentials by achiev-
ing competitive results on a variety of computer vision tasks. Relevant studies
have also been conducted on the COVID-19 diagnosis. Gao et al. [6] used a ViT
based on the attention models to classify COVID and non-COVID CT images.
To integrate the advantages of convolution and transformer for COVID-19 detec-
tion, Park et al. [20] presented a novel architecture that utilized CNN as a feature
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extractor for low-level Chest X-ray feature corpus, upon which Transformer was
trained for downstream diagnosis tasks with the self-attention mechanism.

2.2 Advanced network architecture

In our approach, we adopt two representative deep learning architectures as the
backbones, namely ResNeSt-50 and Uniformer-S. Here, we briefly introduce the
closely related ResNet and Transformer architectures and their variants.

In the family of ResNets, ResNet [7] introduced a deep residual learning
framework to address the network degradation problem. ResNeXt [30] estab-
lished a simple architecture by adopting group convolution in the ResNet bot-
tleneck block. ResNeSt [33] presented a modular split-attention block within the
individual network blocks to enable attention across feature-map groups.

Although CNN models have shown promising results, the limited receptive
field makes it hard to capture global dependency. To solve this problem, Vi-
sion Transformer (ViT) [4] was applied to the sequences of image patches for
an image classification task. Later on, Swin Transformer [I9] proposed to use
shifted windows between consecutive self-attention layers, which had the flexi-
bility to model at various scales and had linear computational complexity with
respect to the image size. Multi-scale Vision Transformer [5] connected the semi-
nal idea of multi-scale feature hierarchies with transformer models for video and
image recognition. Pyramid Vision Transformer [26] used a progressive shrinking
pyramid to reduce the computations of large feature maps, which overcame the
difficulties of porting Transformer models to various dense prediction tasks and
inherits the advantages of both CNN and Transformer. Unified transformer (Uni-
Former) [I7] sought to integrate the merits of convolution and self-attention in a
concise transformer format, which can tackle both local redundancy and global
dependency. To achieve the balance between accuracy and efficiency, we adopt
Uniformer as the default backbone network.

3 Methodology

The overall framework of our model is shown in Fig.[2] In this section, we review
the baseline method CMC_v1 [§] firstly and then introduce several simple and
effective mechanisms to boost the detection performance.

3.1 Recap of CMC_vl

CMC_v1 employs the contrastive representation learning (CRL) as an auxiliary
task to learn discriminative representations of COVID-19. CRL is comprised
of the following components. 1) A stochastic data augmentation module A(-),
which transforms an input CT z; into a randomly augmented sample Z;. Two
augmented volumes are generated from each input CT scan. 2) A base encoder
E(-), mapping the augmented CT sample Z; to its feature representation r; =
E(%;) € R%. 3) A projection network P(-), used to map the representation
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Fig. 2. Overview of our CMC_v2 network for COVID-19 detection.

vector r; to a relative low-dimension vector z; = P(r;) € R%. 4) A classifier
C(+), classifying the vector r; € R% to the final prediction.

Contrastive representation learning. Given a minibatch of N CT volumes
and their labels {(z;, y;)}, we can generate a minibatch of 2N samples {(Z;, 7;)}
after data augmentations. Inspired by the supervised contrastive loss [I1], we
define the positives as any augmented CT samples from the same category,
whereas the CT samples from different classes are considered as negative pairs.
Let ¢ € {1,...,2N} be the index of an arbitrary augmented sample, the con-
trastive loss function is defined as:

1 2N
Leon = ON: —1 231 Lizj - Lgi=g, -
j=

) exp(z - 2/T)

= 08 2N T ) (1)
Yi Zk:l ]]-i;ék . exp(zi . Zk/T)

where 1 € {0, 1} is an indicator function, and 7 > 0 denotes a scalar temperature
hyper-parameter. Ny, is the total number of samples in a minibatch that have
the same label ;.

Mixup classification. CMC_v1 adopts the mixup [34] strategy during training
to further boost the generalization ability of the model. For each augmented CT
sample Z;, the mixup sample and its label are generated as:

= N+ (1= g, 5 = A+ (1= M), (2)

where p is randomly selected indice; A is the balancing coefficient. The mixup
loss is defined as the cross-entropy loss of mixup samples:

L:... = CrossEntropy (2", §i"**). (3)

mix 7
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Different from the original design [34] where they replaced the classification
loss with the mixup loss, we merge the mixup loss with the standard cross-
entropy classification loss Eilf = CrossEntropy(Z;, ;) to enhance the classifica-
tion ability on both mixup samples and raw samples.

The total loss is defined as the combination of the contrastive loss, mixup
loss, and classification loss:

L ‘ _
L= ﬁ;([’fmn +£?mzx +Llclf) (4)

3.2 Improving COVID-19 detection with CMC_v2

To boost the COVID-19 detection performance, we incorporate natural video
priors into CMC_v1 by adapting an efficient pre-trained video backbone to our
task, and develop a hybrid data augmentation strategy to increase data efficiency.

Transfer learning with a stronger backbone and pre-training. In CMC_v1,
a 3D ResNeSt-50 model [33] is employed as the backbone network for feature ex-
traction. Although 3D convnets capture local volume semantics efficiently, they
are incapable of modeling long-range dependencies between spatial/temporal
features explicitly. For simplicity, we refer ‘temporal’ to the relationship among
different CT slices in this paper. Recent works on Vision Transformer [] man-
aged to encode long-range information using self-attention. However, global self-
attention is computationally inefficient and transformer models only demon-
strate superior results when huge data is available. Compared with natural im-
age datasets, COVID-19 image datasets have a smaller scale and the model is
prone to overfitting. To alleviate this issue, we adopt a video transformer named
Uniformer [17], a novel hybrid CNN-transformer model which integrates the ad-
vantages of convolution and self-attention in spatial-temporal feature learning
while achieving the balance between accuracy and efficiency. In particular, Uni-
former replaces the naive transformer block with a Uniformer block, which is
comprised of a Dynamic Position Embedding (DPE) layer, a Multi-Head Rela-
tion Aggregator (MHRA) layer, and a Feed-Forward Network (FFN).

Furthermore, we experimentally find that training the model from scratch
leads to poor results. In transfer learning, it is a common practice to initialize the
model on downstream tasks with weights pre-trained on a large-scale ImageNet
dataset. To initialize the 3D model, CMC_v1 inflated the ImageNet pre-trained
2D weights to the 3D model. This is achieved by either copying the 2D weights
to the center of the 3D weights or repeating the 2D weights along the third
dimension. However, these inflated 3D weights may not excel at modeling the
temporal relationship between different slices. To address this issue, we directly
initialize the model with 3D weights pre-trained on video action recognition
datasets, i.e. k400 [I]. We empirically prove that k400 pre-training yields better
results than inflated weight initialization in this task.
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Hybrid mixup and cutmix strategy. In CMC_v1l, the mixup strategy is
introduced to generate diverse CT samples. These pseudo samples are beneficial
for improving the model’s generalization ability. Similar to a mixup, cutmix [32]
replaces a local region in the target image with the corresponding local region
sampled in the source image. To combine the merits of both, we develop a hybrid
mixup and cutmix strategy. In each iteration, we select one strategy with equal
probability. This hybrid strategy works well on the traditional Data Parallel
(DP) mechanism [21I] in multi-GPU training. However, it’s challenging to scale
to the modern Distributed Data Parallel (DDP) mechanism. The original batch
size on each GPU is set to 1 in our case because the effective batch size is 4
after two-view augmentation and hybrid mixup and cutmix strategy, reaching
the memory limit on each GPU (The shape of the mini-batch tensors on each
GPU is 4xTx3xHxW). As the DDP mechanism starts an individual process on
each GPU, the hybrid strategy is directly employed on each GPU individually.
Performing the hybrid mixup and cutmix strategy on the augmented views of
the same image does not align with the original effect. To make it work, we
gather all the samples from the GPUs, conduct the hybrid mixup and cutmix
over all the samples, and dispatch the generated samples back to each GPU. It
guarantees that the hybrid strategy is performed across different CT scans in the
current mini-batch. The hybrid mixup and cutmix strategy boost the model’s
generalization ability.

Slice-level augmentation. The data augmentation strategies used in CMC_v1
are 3D rescaling, 3D rotation, and color jittering on all the slices. To further in-
crease the data diversity, we follow the common practice in video data process-
ing and perform different 2D augmentations on each slice, termed as SliceAug.
SliceAug achieves slightly better performance than 3D augmentation while hav-
ing a comparable pre-processing time.

Small resolution training. Prior works [4)23] have demonstrated the effec-
tiveness of using small image resolution during training and large resolution
during validation/testing. This mechanism bridges the gap between the image
size mismatch caused by the random resized cropping during training and center
cropping during testing [24]. Besides, the small resolution makes training more
efficient. In the experiments, we use the resolution of 192x192 and 224 x224 for
training and testing, respectively.

4 Dataset

We evaluate our proposed approach on the COV19-CT-Database (COV19-CT-
DB) [12]. The COV19-CT-DB contains chest CT scans marking the existence
of COVID-19. It consists of about 1,650 COVID and 6,100 non-COVID chest
CT scan series from over 1,150 patients and 2,600 subjects. In total, 724,273
slices correspond to the CT scans of the COVID category and 1,775,727 slices
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correspond to the non-COVID category. Data collection was conducted in the
period from September 1, 2020 to November 30, 2021. Annotation of each CT
scan was obtained by 4 experienced medical experts and showed a high degree
of agreement (around 98%). Each 3D CT scan includes a different number of
slices, ranging from 50 to 700. This variation in the number of slices is due to
the context of CT scanning. The database is split into training, validation, and
testing sets. The training set contains 1,992 3D CT scans (1,110 non-COVID
cases and 882 COVID cases). The validation set consists of 504 3D CT scans
(289 non-COVID cases and 215 COVID cases). The testing set includes 5,281
scans and the labels are not available during the challenge.

5 Experiments

5.1 Implementation details

All CT volumes are resized from (T, 512,512) to (128,224,224), where T' denotes
the number of slices. For training, data augmentations include random resized
cropping on the transverse plane, random cropping on the vertical section to 64,
rotation, and color jittering. We employ the 3D ResNeSt-50 and Uniformer-S as
the backbones in our experiments. The value of parameter d. is 2,048/512 for
ResNeSt-50/Uniformer-S, and d,, is set to 128. All networks are optimized using
the Adam algorithm with a weight decay of 1e-5. The initial learning rate is set
to le-4 and then divided by 10 at 30% and 80% of the total number of training
epochs. The networks are trained for 100 epochs. Our methods are implemented
in PyTorch and run on eight NVIDIA Tesla A100 GPUs.

5.2 Evaluation metrics

To evaluate the performance of the proposed method, we adopt the same official
protocol of 2nd COVID-19 Competition as the evaluation metric. We report F1
Scores for non-COVID and COVID categories as well as the Macro F1 Score for
overall comparison. The Macro F1 Score is defined as the unweighted average
of the class-wise/label-wise F1 Scores. We also present ROC curves and Area
Under Curve (AUC) for each category.

5.3 Ablation studies on COVID-19 detection challenge

We conduct ablation studies on the validation set of COVID-19 detection chal-
lenge to show the impact of each component of our proposed methods. We first
analyze the effects of different backbones, and then we discuss the effectiveness of
the CMC_v1 framework and the choice of various pre-training methods. Finally,
we investigate the impact of the new components in our CMC_v2, i.e. slice-level
augmentation (SliceAug), hybrid mixup and cutmix strategy (Hybrid), and small
resolution training (SmallRes).
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Table 1. The results on the validation set of COVID-19 detection challenge.

ID Method Param FLOPs Pre-train Macro F1 1
Non-COVID COVID

1  ResNet50-GRU [12] - - - 77.00 - -

2 ResNeSt-50 52.8M 371.9G ImageNet 89.89 91.27 88.52
3 Uniformer-S 21.2M 230.1G ImageNet 90.98 92.08 89.88
4 CMC.vl (R) 57.3M 371.9G ImageNet 91.98 93.14 90.82
5 CMC.vl (U) 21.5M 230.1G  ImageNet 92.26 93.11 91.42
6 CMC.vl (U) 21.5M 230.1G k400_16x4 92.48 93.28 91.67
7 CMC.vl (U) 21.5M 230.1G  k400_16x8 92.70 93.41 91.99
8 CMC_v2 (U, SliceAug) 21.56M 230.1G  k400-16x8 93.07 93.94 92.20
9 CMC_v2 (U, Hybrid) 21.5M 230.1G  k400_16x8 93.29 94.12 92.45
10 CMC_v2 (U, Hybrid+SmallRes) 21.5M 169.1G k400-16x8 93.30 94.07 92.52

Backbone network. To analyze the effects of architectures, we compare dif-
ferent backbone models, and the results are shown in the first three rows of
Table |1l The reported result of the baseline approach ‘ResNet50-GRU’ [12]
is 77.00% Macro F1 Score. This model is based on CNN-RNN architecture
[T4UT6UT5], where the CNN part performs local analysis on each 2D slice, and
the RNN part combines the CNN features of the whole 3D CT scan. Compared
to the baseline, our 3D ResNeSt-50 and Uniformer-S backbones achieve more
than 12% improvements on the Macro F1 Scores. Specifically, the Uniformer-S
achieves better performance on all the metrics, surpassing ResNeSt-50 by 1.09%
Macro F1 Score, 0.81% and 1.36% F1 Scores for non-COVID and COVID classes.
Besides, the Uniformer-S greatly reduces the network parameters and compu-
tational costs. The results demonstrate the long-range dependencies modeling
ability of Uniformer-S, which is important to capture the relationships between
different CT slices.

Analysis of CMC_v1l. We evaluate the effectiveness of the previous CMC_v1
network. The 4th and 5th rows in Table |1 show the results of CMC_v1 (R) and
CMC_vl (U), where the R and U denote ResNeSt-50 and Uniformer-S back-
bones, respectively. CMC_v1 on both backbones can achieve significant perfor-
mance improvements. In particular, CMC_v1l (U) obtains 92.26% on Macro F1
Score, 93.11% and 91.42% on F1 Scores for non-COVID and COVID categories.
The results demonstrate the generality of the CMC_v1, which can consistently
improve the COVID-19 detection performance with different backbones.

Pre-training schemes. We compare three pre-training methods, namely Im-
ageNet, k400_16x4, and k400-16x8. ImageNet pre-training inflates the 2D pre-
trained weights to our 3D models. K400 pre-training denotes 3D weights pre-
trained on the video action recognition dataset k400, where 16x4 and 16x8
indicate the sampling 16 frames with frame stride 4 and 8, respectively. It can
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Fig. 3. The ROC curves and AUC scores of different networks.

be seen from the 5th to 7th rows in Table [l] CMC_v1 (U) with k400_-16x8 pre-
training weights outperforms the other two methods on all metrics. Based on the
above results, we choose the Uniformer-S with k400_16x8 pre-training weights
as the default backbone for our proposed CMC_v2.

Analysis of CMC_v2. In this part, we investigate the impact of our newly pro-
posed components in CMC_v2, including slice-level augmentation (SliceAug), hy-
brid mixup and cutmix strategy (Hybrid), and small resolution training (Small-
Res). The experimental results in the 8th row of Table [1|indicate that CMC_v2
(U, SliceAug) can improve the performance on all metrics compared with the
CMC_v1 (U). The slice-level augmentation can further increase the data diversity
and benefit COVID-19 detection performance. As for the hybrid mixup and cut-
mix strategy, the CMC_v2 (U, Hybrid) achieves further improvement by 0.59%
Macro F1 Score, 0.71% COVID F1 Score, and 0.46% non-COVID F1 Score, com-
pared with the CMC_v1 (U) that only employs the single mixup strategy. Our
hybrid mixup and cutmix strategy generates diversified data for improving the
model’s generalization ability in COVID-19 detection. When we adopt the small
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Table 2. The leaderboard on the 2nd COVID-19 detection challenge.

Rank Teams Macro F1 F1
Non-COVID COVID

1 FDVTS (Ours) 89.11 97.31 80.92
1 ACVLab 89.11 97.45 80.78
3 MDAP 87.87 96.95 78.80
4 Code 1055 86.18 96.37 76.00
5 CNR-IEMN 84.37 95.98 72.76
6 Dslab 83.78 96.22 71.33
7 Jovision-Deepcam 80.82 94.56 67.07
8 ICL 79.55 93.77 65.34
9 etro 78.72 93.48 63.95
10 ResNet50-GRU [12] 69.00 83.62 54.38

resolution training mechanism, the CMC_v2 (U, Hybrid+SmallRes) achieves the
best performance with minimal computational costs among all models. It ob-
tains 93.30% on Macro F1 Score, 94.07% on non-COVID F1 Score, and 92.52%
on COVID F1 Score. In particular, this model shows the superior recognition
ability for the COVID-19 category among all other approaches.

In addition, we present the ROC curves and AUC of our models in Fig.[3] The
AUC results of all the models reach more than 0.94 for both non-COVID and
COVID classes. Especially, the full version of CMC_v2 (U, Hybrid+SmallRes)
obtains the highest AUC Scores (0.9734 and 0.9741 for non-COVID and COVID,
respectively) among all settings.

5.4 Results on COVID-19 detection challenge leaderboard

Table 2 shows the results of our method and other participants on the testing set
of 2nd COVID-19 detection challenge. Our method ensembles all the CMC_v2,
including CMC_v2 (U, SliceAug), CMC_v2 (U, Hybrid), and CMC_v2 (U, Hy-
brid+SmallRes) following the strategy in [8]. The final prediction of each CT
scan is obtained by averaging the predictions from individual models. We also
adopt a test time augmentation (TTA) operation to boost the generalization
ability of our models on the testing set. It can be seen from Table 2] that our
proposed method ranks first in the challenge with 89.11% Macro F1 Score. Com-
pared to other methods, our model achieves significant improvement on the F1
Score for the COVID category (80.92%), indicating the ability to distinguish
COVID cases from non-pneumonia and other types of pneumonia correctly.

5.5 Visualization results

To verify the interpretability of our model, we visualize the results using Class
Activation Mapping (CAM) [35]. As illustrated in Fig. [4] we select four COVID-
19 CT scans from the validation set of COV19-CT-DB dataset. In each group,



12 J. Hou et al.

Fig. 4. The visualization results on the COVID-19 CT scans.

the upper row shows the series of CT slices, and the lower row presents the
corresponding CAM results. In the first group, it can be seen that the attention
maps focus on the local infection regions accurately. In the second group, the
wide range of infection regions can also be covered. In the third and fourth
groups, the infections in bilateral lungs can also be located precisely. These
attention maps provide convincing interpretability for the COVID-19 detection
results, which is helpful for real-world clinical diagnosis.

6 Conclusions

In this paper, we propose a novel and practical solution winning COVID-19
detection at the 2nd COVID-19 Competition. Based on the CMC_v1 network, we
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further develop the CMC_v2 network with substantial improvements, including
the CNN-transformer video backbone, hybrid mixup and cutmix strategy, slice-
level augmentation, and small resolution training mechanism. The experimental
results demonstrate that the new components boost the COVID-19 detection
performance and the generalization ability of the model. On the testing set, our
method ranked 1st in the 2nd COVID-19 Competition with 89.11% Macro F1
Score among 14 participating teams.
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