
BiTAT: Neural Network Binarization
with Task-dependent Aggregated Transformation

Geon Park1∗ Jaehong Yoon1∗ Haiyang Zhang3 Xing Zhang3

Sung Ju Hwang1 2 Yonina C. Eldar3
KAIST1 AITRICS2 Weizmann Institute of Science3

Abstract

Neural network quantization aims to transform high-precision weights and ac-
tivations of a given neural network into low-precision weights/activations for
reduced memory usage and computation, while preserving the performance of the
original model. However, extreme quantization (1-bit weight/1-bit activations)
of compactly-designed backbone architectures (e.g., MobileNets) often used for
edge-device deployments results in severe performance degeneration. This paper
proposes a novel Quantization-Aware Training (QAT) method that can effectively
alleviate performance degeneration even with extreme quantization by focusing on
the inter-weight dependencies, between the weights within each layer and across
consecutive layers. To minimize the quantization impact of each weight on others,
we perform an orthonormal transformation of the weights at each layer by training
an input-dependent correlation matrix and importance vector, such that each weight
is disentangled from the others. Then, we quantize the weights based on their impor-
tance to minimize the loss of the information from the original weights/activations.
We further perform progressive layer-wise quantization from the bottom layer to
the top, so that quantization at each layer reflects the quantized distributions of
weights and activations at previous layers. We validate the effectiveness of our
method on various benchmark datasets against strong neural quantization baselines,
demonstrating that it alleviates the performance degeneration on ImageNet and
successfully preserves the full-precision model performance on CIFAR-100 with
compact backbone networks.

1 Introduction

Over the past decade, deep neural networks have achieved tremendous success in solving various
real-world problems, such as image/text generation [6, 15], unsupervised representation learning [11,
4, 38], and multi-modal training [32, 37, 28]. Recently, network architectures that aim to solve
target tasks are becoming increasingly larger, based on the empirical observations of their improved
performance. However, as the models become larger, it is increasingly difficult to deploy them on
resource-limited edge devices with limited memory and computational power. Therefore, many
recent works focus on building resource-efficient deep neural networks to bridge the gap between the
scale of deep neural networks and actual permissible computational complexity/memory-bounds for
on-device model deployments. Some of these works consider designing computation- and memory-
efficient modules for neural architectures, while others focus on compressing a given neural network
by either pruning its weights [7, 12, 19, 36] or reducing the bits used to represent the weights and
activations [3, 8, 18]. The last approach, neural network quantization, is beneficial for building on-
device AI systems since the edge devices oftentimes only support low bitwidth-precision parameters
and/or operations. However, it inevitably suffers from the non-negligible forgetting of the encoded

∗Equal contribution.

Preprint. Under review.

ar
X

iv
:2

20
7.

01
39

4v
1

 [
cs

.C
V

]
 4

 J
ul

 2
02

2

Prediction

𝒙𝒙

𝒘𝒘(𝑙𝑙)

Orthonormal
Weight

Transformation

Finetune
𝒘𝒘(𝑙𝑙+1:𝐿𝐿)

Quantized Training
for 𝒘𝒘(𝑙𝑙) at layer 𝒍𝒍

& freeze obtained 𝒘𝒘𝒒𝒒
(𝑙𝑙)

𝒍𝒍 += 𝟏𝟏

𝒘𝒘(𝑙𝑙+1)

: weight element : Intra-layer dependency
: Cross-layer dependency

…
…

METHOD
BRECQ

[18]
DBQ
[8]

ReActNet
[21] Ours

BITw / BITa 2/4 4/8 1/1 1/1
CORRELATION block N/A N/A block
TASK-BASED Q X × × X
STRUCTURED node × × dynamic
APPROACH PTQ1 QAT2 QAT QAT

T1@IMGNET 66.60% 70.5% 68.26% 68.51%
FLOPS ×107 3.31 3.60 1.2 1.2
1Post-training Quantization
2Quantization-aware Training

Figure 1: Left: An Illustration of our proposed method. Weight elements in a layer is highly correlated to
each other along with the weights in other layers. Our BiTAT sequentially obtains quantized weights of each
layer based on the importance of disentangled weights to others using a trainable orthonormal rotation matrix
and importance vector. Right: Categorization of relevant and strong quantization methods to ours.

information from the full-precision models. Such loss of information becomes worse with extreme
quantization into binary neural networks with 1-bit weights and 1-bit activations [3, 39, 29, 27].

How can we then effectively preserve the original model performance even with extremely low-
precision deep neural networks? To address this question, we focus on the somewhat overlooked
properties of neural networks for quantization: the weights in a layer are highly correlated with
each other and weights in the consecutive layers. Quantizing the weights will inevitably affect the
weights within the same layer, since they together comprise a transformation represented by the layer.
Thus, quantizing the weights and activations at a specific layer will adjust the correlation and relative
importance between them. Moreover, it will also largely impact the next layer that directly uses the
output of the layer, which together comprise a function represented by the neural network.

Despite their impact on neural network quantization, such inter-weight dependencies have been
relatively overlooked. As shown in Figure 1 Right, although BRECQ [18] addresses the problem
by considering the dependency between filters in each block, it is limited to the Post-Training
Quantization (PTQ) problem, which suffers from inevitable information loss, resulting in inferior
performance. The most recent Quantization-Aware Training (QAT) methods [8, 21] are concerned
with obtaining quantized weights by minimizing quantization losses with parameterized activation
functions, disregarding cross-layer weight dependencies during training process. To the best of our
knowledge, no prior work explicitly considers dependencies among the weights for QAT.

To tackle this challenging problem, we propose a new QAT method, referred to as Neural Network
Binarization with Task-dependent Aggregated Transformation (BiTAT), as illustrated in Figure 1 Left.
Our method sequentially quantizes the weights at each layer of a pre-trained neural network based
on chunk-wise input-dependent weight importance by training orthonormal dependency matrices
and scaling vectors. While quantizing each layer, we fine-tune the subsequent full-precision layers,
which utilize the quantized layer as an input for a few epochs while keeping the quantized weights
frozen. we aggregate redundant input dimensions for transformation matrices and scaling vectors,
significantly reducing the computational cost of the quantization process. Such consideration of
inter-weight dependencies allows our BiTAT algorithm to better preserve the information from a given
high-precision network, allowing it to achieve comparable performance to the original full-precision
network even with extreme quantization, such as binarization of both weights and activations. The
main contributions of the paper can be summarized as follows:

• We demonstrate that weight dependencies within each layer and across layers play an
essential role in preserving the model performance during quantized training.

• We propose an input-dependent quantization-aware training method that binarizes neural
networks. We disentangle the correlation in the weights from across multiple layers by
training rotation matrices and importance vectors, which guides the quantization process to
consider the disentangled weights’ importance.

• We empirically validate our method on several benchmark datasets against state-of-the-art
neural network quantization methods, showing that it significantly outperforms baselines
with the compact neural network architecture.

2 Related Work
Minimizing the quantization error. Quantization methods for deep neural networks can be
broadly categorized into several strategies [26]. We first introduce the methods by minimizing the

2

quantization error. Many existing neural quantization methods aim to minimize the weight/activation
discrepancy between quantized models and their high-precision counterparts. XNOR-Net [30] aims
to minimize the least-squares error between quantized and full-precision weights for each output
channel in layers. DBQ [8] and QIL [14] perform layerwise quantization with parametric scale or
transformation functions optimized to the task. Yet, they quantize full-precision weight elements
regardless of the correlation between other weights. While TSQ [33] and Real-to-Bin [22] propose
to minimize the `2 distance between the quantized activations and the real-valued network’s activa-
tions by leveraging intra-layer weight dependency, they do not consider cross-layer dependencies.
Recently, BRECQ [18] and the work in a similar vein on post-training quantization [24] consider the
interdependencies between the weights and the activations by using a Taylor series-based approach.
However, calculating the Hessian matrix for a large neural network is often intractable, and thus they
resort to strong assumptions such as small block-diagonality of the Hessian matrix to make them
feasible. BiTAT solves this problem by training the dependency matrices alongside the quantized
weights while grouping similar weights together to reduce the computational cost.

Modifying the task loss function. A line of methods aims to achieve better generalization perfor-
mance during quantization by taking sophisticatedly-designed loss functions. BNN-DL [10] adds a
distributional loss term that enforces the distribution of the weights to be quantization-friendly. Ap-
prentice [23] uses knowledge distillation (KD) to preserve the knowledge of the full-precision teacher
network in the quantized network. However, such methods only put a constraint on the distributional
properties of the weights, not the dependencies and the values of the weight elements. CI-BCNN [34]
parameterizes bitcount operations by exploring the interaction between output channels using rein-
forcement learning and quantizes the floating-point accumulation in convolution operations based
on them. However, reinforcement learning is expensive, and it still does not consider cross-layer
dependencies.

Reducing the gradient error. Bi-Real Net [20] devises a better gradient estimator for the sign
function used to binarize the activations and a magnitude-aware gradient correction method. It
further modifies the MobileNetV1’s architecture to better fit the quantized operations. ReActNet [21]
achieves state-of-the-art performance for binary neural networks by training a generalized activation
function for compact network architecture used in [20]. However, the quantizer functions in these
methods conduct element-wise unstructured compression without considering the change in other
correlated weights during quantization training. This makes the search process converge to the
suboptimal solutions since task loss is the only guide for finding the optimal quantized weights, which
is often insufficient for high-dimensional and complex architectures. However, our proposed method
can obtain a better-informed guide that compels the training procedure to spend more time searching
in areas that are more likely to contain high-performing quantized weights.

3 Weight Importance for Quantization-aware Training

We first introduce the problem of Quantization-Aware Training (QAT) in Section 3.1 and show that
the dependency among the neural network weights plays a crucial role in preserving the performance
of a quantized model obtained with QAT in Section 3.2. We further show that the dependency
between consecutive layers critically affects the performance of the quantized model in Section 3.3.

3.1 Problem Statement

We aim to quantize a full-precision neural network into a binary neural network (BNN), where the
obtained quantized network is composed of binarized 1-bit weights and activations, which preserves
the performance of the original full-precision model. Let f(·;W) be a L-layered neural network
parameterized by a set of pre-trained weights W = {w(1), . . . ,w(L)}, where w(l) ∈ Rdl−1×dl

is the weight at layer l and d0 is the dimensionality of the input. Given a training dataset X and
corresponding labels Y , existing QAT methods [30, 8, 14, 2, 35, 25] search for optimal quantized
weights by solving for the optimization problem that can be generally described as follows:

minimize
W,φ

Ltask (f (X ;Q (W;φ)) ,Y) , (1)

where Ltask is a standard task loss function, such as cross-entropy loss, and Q(·;φ) is the weight
quantization function parameterized by φ which transforms a real-valued vector to a discrete, binary

3

vector. The quantization function used in existing works typically minimize loss terms based on the
Mean Squared Error (MSE) between the full-precision weights and the quantized weights at each
layer:

Q(w) := α∗b∗, where α∗, b∗ = argmin
α∈R,b∈{−1,1}m

‖w − αb‖22 , (2)

-0.48
-0.02
+0.74

𝒘𝒘

-0.41
-0.41
+0.41

𝒘𝒘𝒒𝒒𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝒘𝒘)

-0.25
+0.25
+0.25

𝒘𝒘𝒒𝒒
𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝒘𝒘; 𝒔𝒔,𝑽𝑽)

Weight Quantization

Prediction MSE = 1.16

Prediction MSE = 0.02

1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝒘𝒘𝑞𝑞
𝑇𝑇𝒙𝒙𝑖𝑖 − 𝑦𝑦𝑖𝑖

2

𝒙𝒙1 = [+1.19,−0.60, +0.08]
𝒙𝒙2 = [−4.19,−1.93,−3.43]
𝒙𝒙3 = [+0.63,−1.56,−0.91]

Weight MSE = 0.09

Weight MSE = 0.12

Figure 2: A simple experiment that cross-
layer weight correlation is critical to find well-
performing quantized weights during QAT.

where m is the dimensionality of the target weight.
For inference, QAT methods use wq = Q(w) as the
final quantized parameters. They iteratively search
for the quantized weights based on the task loss with
a stochastic gradient descent optimizer, where the
model parameters converge into the ball-like region
around the full-precision weights w.

However, the region around the optimal full-precision
weights may contain suboptimal solutions with high
errors. We demonstrate such inefficiency of the exist-
ing quantizer formulation through a simple experiment in Figure 2. Suppose we have three input
points, x1,x2, and x3, and full-precision weights w. Quantized training of the weight using Equa-
tion 2 successfully reduces MSE between the quantized weight and the full-precision, but the task
prediction loss using wq is nonetheless very high.

We hypothesize that the main source of error comes from the independent application of the quanti-
zation process to each weight element. However, neural network weights are not independent, but
highly correlated and thus quantizing a set of weights will largely affect the others. Moreover, after
quantization, the relative importance among weights could also largely change. Both factors lead to
high quantization errors in the pre-activations. On the other hand, our proposed QAT method BiTAT,
described in Section 4, achieves a quantized model with much smaller MSE. This results from the
consideration of the inter-weights dependencies, which we describe in the next subsection.

3.2 Disentangling Weight Dependencies via Input-dependent Orthornormal Transformation

0.02 0.04 0.1 0.2 0.40.6 1 2
Weight noise scale

0.0

0.2

0.4

0.6

C
IF

AR
-1

00
 te

st
 a

cc
ur

ac
y

Top 5 rows
Bottom 5 rows

Figure 3: Solid lines: Test accu-
racy of a MobileNetV2 model on
CIFAR-100 dataset, after adding
Gaussian noise to the top 5 rows
and the bottom 5 rows of ŵ(l)

for all layers, considering the
dependency on the lower layers.
Dashed lines: Not considering
the dependency on the lower lay-
ers. The x axis is in log scale.

How can we then find the low-precision subspace, which contains
the best-performing quantized weights on the task, by exploiting
the inter-weight dependencies? The properties in the input distri-
bution give us some insights into this question. Let us consider a
task composed of centered N training samples {x1, . . . ,xN} =
X ∈ RN×d0 . We can obtain principal components of the train-
ing samples v1, . . . ,vd0 ∈ Rd0 and the corresponding coefficients
λ1, . . . , λd0 ≥ 0, in a descending order. Let us further suppose that
we optimize a single-layered neural network parameterized by w(1).
Neurons corresponding to the columns ofw(1) are oriented in a sim-
ilar direction to the principal components with higher variances (i.e.,
vi than vj , where i < j) that is much more likely to get activated
than the others. We apply a change of basis to the column space of
the weight matrix w(1) with the bases (v1, . . . ,vd0):

V w̃(1) = w(1) (3)

w̃(1) = V >w(1), (4)

where V = [v1 | · · · | vd0] ∈ Rd0×d0 is an orthonormal matrix. The top rows of the transformed
weight matrix w̃(1) will contain more important weights, whereas the bottom rows will contain less
important ones. Therefore, the accuracy of the model will be more affected by the perturbations
of the weights at top rows than ones at the bottom rows. Note that this transformation can also be
applied to the convolutional layer by “unfolding” the input image or feature map into a set of patches,
which enables us to convert the convolutional weights into a matrix (The detailed descriptions of the
orthonormal transformations for convolutional layers is provided in the supplementary file).

4

We can also easily generalize the method to multi-layer neural networks, by taking the inputs for the
l-th layer as the “training set”, assuming that all of the previous layer’s weights are fixed, as follows:{

x
(l)
i = σ

(
w(l)>x

(l−1)
i

)}N
i=1

, (5)

where σ(·) is the nonlinear transformation defined by both the non-linear activations and any layers
other than linear transformation with the weights, such as a average-pooling or Batch Normalization.
Then, we straightforwardly obtain the change-of-basis matrix V (l) and s(l) for layer l. The impact
of transformed weights is shown in Figure 3. We compute the principal components of each layer
in the initial pre-trained model and measure the test accuracy when adding the noise to the top-5
highest-variance (dashed red) or lowest-variance components (dashed blue) per layer. While a model
with perturbed high-variance components degenerates the performance as the noise scale increases,
a model with perturbed low-variance components consistently obtains high performance even with
large perturbations. This shows that preserving the important weight components that correspond to
high-variance input components is critically important for effective neural network quantization that
can preserve the loss of the original model.

3.3 Cross-layer Weight Correlation Impacts Model Performance

So far, we only described the dependency among the weights within a single layer. However,
dependencies between the weights across different layers also significantly impact the performance.
To validate that, we perform layerwise sequential training from the bottom layer to the top. At
the training of each layer, the model computes the principal components of the target layer and
adds noise to its top-5 high/low components. As shown in Figure 3, progressive training with the
low-variance components (solid blue) achieves significantly improved accuracy over the end-to-end
training counterpart (dashed blue) with a high noise scale, which demonstrates the beneficial effect of
modeling weight dependencies in earlier layers. We describe further details in the supplementary file.

4 Task-dependent Weight Transformation for Neural Network Binarization

Our objective is to train binarized weightswq given pre-trained full-precision weights. We effectively
mitigate performance degeneration from the loss of information incurred by binarization by focusing
on the inter-weight dependencies within each layer and across consecutive layers. We first reformulate
the quantization function Q in Equation 2 with the weight correlation matrix V and the importance
vector s so that each weight is disentangled from the others while allowing larger quantization errors
on the unimportant disentangled weights:

Q(w; s,V) = argmin
wq∈Q

∥∥diag(s) (V > ⊗w − V > ⊗wq)∥∥2F + γ ‖wq‖1 , (6)

where s ∈ Rd0 is a scaling term that assigns different importance scores to each row of ŵ. We
denote Q = {α � b : α ∈ Rdout , b ∈ {−1, 1}din×dout} as the set of possible binarized values
for w ∈ Rdin×dout with a scalar scaling factor for each output channel. The operation ⊗ denotes
permuted matrix multiplication with index replacement, where we detail the computation in the
following subsection. We additionally include `1 norm adjusted by a hyperparameter γ. At the same
time, we want our quantized model to minimize the empirical task loss (e.g., cross-entropy loss) for a
given dataset. Thus we formulate the full objective in the form of a bilevel optimization problem to
find the best quantized weights which minimizes the task loss by considering the cross-layer weight
dependencies and the relative importance among weights:

w∗, s∗,V ∗ =argmin
w,s,V

Ltask (f (X ;wq) ,Y) , where wq = Q(w; s,V). (7)

After the quantized training, the quantized weights w∗q are determined by w∗q = Q(w∗; s∗,V ∗).

In practice, directly solving the above bilevel optimization problem is impractical due to its excessive
computational cost. We therefore instead consider the following relaxed problem:

w∗, s∗,V ∗ = argmin
w,s,V

Ltask (f(X ; sgn(w)),Y)+λ
∥∥diag(s)V > ⊗ (w − sgn(w))

∥∥2
F

+γ ‖sgn(w)‖1 ,
(8)

5

𝒘(1)

𝒘(2)

𝒘(3)

𝒙 0

b
lo

ck

…while
Finetuning

𝒘(2:)

: Frozen parameters: Trainable parameters: Principal Component Analysis : Quantized Weights (Frozen)

… …

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑺𝑽𝑇||𝒘 − 𝒘∗||2
2

+𝑅 𝑺, 𝑽
𝑺, 𝑽,𝒘

Training to quantize

weights 𝒘(1) by

𝑽(0)𝑺(0)

𝒘(2)

𝒘(3)

𝒙 0

b
lo

ck

…

Quantize weights

𝒘(𝟐)

𝒘(3)

𝒙 0

…

𝒘𝑞
1

𝑽(0)

𝑽(1)

𝑺(0)

𝑺(1)

Block
Correlation

Matrix

Importance
Vector

Quantize weights

𝒘(𝟑)

𝑽(0)

𝑽(1)

𝑽(2)

𝑺(0)

𝑺(1)

𝑺(2)
𝒘𝑞

2

𝒘𝑞
1

𝑽(0,1)𝑺(:1)

𝑽(0,1,2)𝑺(:2)

Block
Correlation

Matrix

Importance
Vector

Block
Correlation

Matrix

Importance
Vector

…while
Finetuning

𝒘(3:)

Figure 4: Quantization-aware Training with BiTAT: We perform a sequential training process: quantization
training of a layer - rapid finetuning for upper layers. At each layerwise quantization, we also train the importance
vector and orthonormal correlation matrix, which are initialized by PCA components of the current and lower
layer inputs in the target block, and guide the quantization to consider the importance of disentangled weights.

where λ is a hyperparameter to balance between the quantization objective and task loss. Since
it is impossible to compute the gradients for discrete values in quantized weights, we adopt the
straight-through estimator [1] that is broadly used across QAT methods: sgn(w) indicates the sign
function applied elementwise to w. We follow [21] for the derivative of sgn(·). Finally, we obtain
the desired quantized weights by w∗q = sgn(w∗). In order to obtain the off-diagonal parts of the
cross-layer dependency matrix V , we minimize Equation 8 with respect to s and V to dynamically
determine the values (we omit X and Y from the arguments of Ltrain(·) for readability):

Ltrain(w, s,V) = Ltask (f (X ; sgn(w)) ,Y)+λ
∥∥diag(s)V > ⊗ (w − sgn(w))

∥∥2
F

+γ ‖sgn(w)‖1 +Reg(s,V),
(9)

where Reg(s,V) := ‖V V > − I‖2 + |σ −
∑
i log(si)|2 is a regulariztion term which enforces V

to be orthogonal and keeps the scale of s constant. Here, σ is the constant initial value of
∑
i log(si),

which is a non-negative importance score.

4.1 Layer-progressive Quantization with Block-wise Weight Dependency

While we obtain the objective function in Equation 9, it is inefficient to perform quantization-aware
training while considering the complete correlations of all weights in the given neural network.
Therefore, we only consider cross-layer dependencies between only few consecutive layers (we
denote it as a block), and initialize s and V using Principal Component Analysis (PCA) on the inputs
to those layers within each block.

Figure 5: Initialization of
the block correlation matrix.

Formally, we define a weight correlation matrix in a neural network block
V (block) ∈ R(

∑k
i=1 di)×(

∑k
i=1 di), where k is the number of layers in a

block, similarly to the block-diagonal formulation in [18] to express the
dependencies between weights across layers in the off-diagonal parts. We
initialize s(l) and in-diagonal parts V (l) by applying PCA on the input
covariance matrix:

s(l) ← (λ(l))
1
2 , V (l) ← U (l), where U (l)λ(l)(U (l))> :=

1

N

N∑
i=1

o
(l−1)
i o

(l−1)
i

>
, (10)

where o(l) is the output of l-th layer and o(0) = x. This allows the weights at l-th layer to consider
the dependencies on the weights from the earlier layers within the same neural block, and we refer to
this method as sequential quantization. Then, instead of having one set of s and V for each layer, we
can keep the previous layer’s s and V and expand them. Specifically, when quantizing layer l which
is a part of the block that starts with the layer m, we first apply PCA on the input covariance matrix
to obtain λ(l) and U (l). We then expand the existing s(m:l−1) and V (m:l−1) to obtain s ∈ RD+dl−1

and s ∈ RD+dl−1 as follows†:

[s(m:l)]i :=

{
[s(m:l−1)]i, i ≤ D,

[(λ(l))
1
2]i−D, D < i,

[V (m:l)]i,j :=


[V (m:l−1)]i,j , i, j ≤ D,

[U (l)]i−D,j−D, D < i, j,

0, otherwise,
(11)

where D =
∑l−2
i=m di, as illustrated in Figure 4. The weight dependencies between different layers

(i.e., off-diagonal areas) are trainable and zero-initialized. To enable the matrix multiplication of the
†[·]i indicates the i-th element of the object inside the brackets.

6

Algorithm 1 Neural Network Binarization with Task-dependent Aggregated Transformation

1: Input: Pre-trained weights w(1), . . . ,w(L) for L layers, task loss function L, Maximum size of input-
dimension group k, quantization epochs per layer Nep.

2: Output: Quantized weightsw∗(1), . . . ,w∗(L).
3: B1, . . . ,Bn ←Divide the neural network into n blocks
4: for each block B do
5: s = [],V = []
6: for each layer l in B do
7: o(l−1) ← inputs for layer l
8: P ← if dl−1 > k then K-MEANS(X(l), k) else Idl−1

B Grouping permutation matrix

9: U diag(λ)U> = PCA(Po(l−1))
B Initialization values
for the expanded part

10: s← [s;λ
1
2], V ←

[
V 0
0 U

]
B expand s and V

11: w(l:L), s,V ← argminw,s,V Ltrain(w
(l:L), s,V) B Iterate for Nep epochs

12: w
(l)
q ← sgn(w(l))

weights with the expanded s and V , we define the expanded block weights as follows‡:

w(m:l) =
[
PadCol(w(m:l−1), dl);w

(l)
]
, (12)

where PadCol(·, c) zero-pads the input matrix to the right by c columns. Then, our final objective
from Equation 9 with cross-layer dependencies is given as follows:

Ltrain(w(l:L), s(m:l),V (m:l)) = Ltask
(
f
(
X ; {sgn(w(l)),w(l+1:L)}

)
,Y
)

+ λ
∥∥∥diag(s(m:l))V (m:l)>

(
w(m:l) − sgn(w(m:l))

)∥∥∥2
F

+ γ
∥∥∥sgn(w(m:l))

∥∥∥
1
+Reg(s(m:l),V (m:l)).

(13)

Given the backbone architecture with L layers, we minimize Ltrain(w(l), s(l),V (l)) with respect to
w(l), s(l), and V (l) to find the desired binarized weights w∗(l)q for layer l while keeping the other
layers frozen. Next, we finetune the following layers using the task loss function a few epochs before
performing QAT on following layers, as illustrated in Figure 4. This sequential quantization proceeds
from the bottom layer to the top and the obtained binarized weights are frozen during the training.

4.2 Cost-efficient BiTAT via Aggregated Weight Correlation using Reduction Matrix

We derived a QAT formulation which focues on the cross-layer weight dependency by learning
block-wise weight correlation matrices. Yet, as the number of inputs to higher layers is often large,
the model constructs higher-dimensional V (l) on upper blocks, which is costly. In order to reduce
the training memory footprint as well as the computational complexity, we aggregate the input
dimensions into several small groups based on functional similarity using k-means clustering.

First, we take feature vectors, the outputs of the l-th layer o(l)1 , . . . ,o
(l)
N ∈ Rdl for each output

dimension, to obtain dl points p1,p2, . . . ,pdl ∈ RN , then aim to cluster the points to k groups using
k-means clustering, each containing N/k points. Let gi ∈ {1, 2, . . . , k} indicate the group index of
pi, for i = 1, . . . , dl. We construct the reduction matrix P ∈ Rk×dl , where Pij = 1

N/k if gj = i,

and 0 otherwise. Each group corresponds to a single row of the reduced V̂ (l+1) ∈ Rk×k instead of
the original dimension dl × dl. In practice, this significantly reduces the memory consumption of
the V (down to 0.07%). Now, we replace s and V > in Equation 13 to ŝ and V̂ >P , respectively,
initializing ŝ and V̂ with the grouped input covariance 1

N

∑N
i=1(Po

(l)
i)(Po

(l)
i)>. We describe the

full training process of our proposed method in Algorithm 1. The total number of training epochs
taken in training is O(LNep), where L is the number of layers, and Nep is the number of epochs for
the quantizing step for each layer.

‡[A;B] indicates vertical concatenation of the matrices A and B.

7

Table 1: Performance comparison of BiTAT with baselines. We report the averaged test accuracy across
three independent runs. The best results are highlighted in bold, and results of cost-expensive models (108 ↑
ImgNet FLOPs) are de-emphasized in gray. We refer to several results reported from their own papers, denoted
as †.

METHODS ARCHITECTURE
BITWIDTH

WEIGHT / ACTIV.
IMGNET

FLOPS (×107)
IMGNET
ACC (%)

CIFAR-10
ACC (%)

CIFAR-100
ACC (%)

Full-precision ResNet-18 32 / 32 200.0 69.8 93.02 75.61
MobileNet V2 32 / 32 31.40 71.9 94.43 68.08

BRECQ [18] MobileNet V2 4 / 4 3.31 66.57† - -
DBQ [8] MobileNet V2 4 / 8 3.60 70.54† 93.77 73.20

LCQ [35] ResNet-18 2 / 2 15.00 68.9† - -
MobileNet V2 4 / 4 3.31 70.8† - -

MeliusNet59 [2] N/A 1 / 1 24.50 70.7† - -
Bi-Real Net [20] ResNet-18 1 / 1 15.00 56.4† - -
Real-to-Bin [22] ResNet-18 1 / 1 15.00 65.4† - 76.2†

EBConv [3] ResNet-18 1 / 1 11.00 71.2† - 76.5†

ReActNet-C [21] MobileNet V1 1 / 1 14.00 71.4† 90.77 -
ReActNet-A [21] MobileNet V1 1 / 1 1.20 68.26 89.73 65.51

BiTAT (Ours) MobileNet V1 1 / 1 1.20 68.51 90.21 68.36

5 Experiments

We validate a new quantization-aware training method, BiTAT, over multiple benchmark datasets;
CIFAR-10, CIFAR-100 [17], and ILSVRC2012 ImageNet [9] datasets. We use MobileNet V1 [13]
backbone network, which is a compact neural architecture designed for mobile devices. We follow
overall experimental setups from prior works [35, 21].

Baselines and training details. While our method aims to solve the QAT problem, we extensively
compare our BiTAT against various methods; Post-training Quantization (PTQ) method: BRECQ [18],
and Quantization-aware Training (QAT) methods: DBQ [8], EBConv [3], Bi-Real Net [20], Real-to-
Bin [22], LCQ [35], MeliusNet [2], ReActNet [21]. Note that DBQ, LCQ, and MeliusNet, which
keep some crucial layers, such as 1×1 downsampling layers, in full-precision, leading to inefficiency
at evaluation time. Due to the page limit, we provide the details on baselines, and the training and
inference phase during QAT including hyperparameter setups in the Supplementary file. We also
discuss about the limitations and societal impacts of our work in the Supplementary file.

5.1 Quantitative Analysis

We compare our BiTAT against various PTQ and QAT-based methods in Table 1 on multiple datasets.
BRECQ introduces an adaptive PTQ method by focusing on the weight dependency via hessian
matrix computations, resulting in significant performance deterioration and excessive training time.
DBQ and LCQ suggest QAT methods, but the degree of bitwidth compression for the weights and
activations is limited to 2- to 8-bits, which is insufficient to meet our interest in achieving neural
network binarization with 1-bits weights and activations. MeliusNet only suffers a small accuracy
drop, but it has a high OP count. DBQ and LCQ restrict the bit-width compression to be higher at
4 bits so that they cannot enjoy the XNOR-Bitcount optimization for speedup. Although Bi-Real
Net, Real-to-Bin, and EBConv successfully achieve neural network binarization, over-parameterized
ResNet is adopted as backbone networks, resulting in higher OP count. Moreover, except EBConv,
these works still suffer from a significant accuracy drop. ReActNet binarizes all of the weights
and activations (except the first and last layer) in compact network architectures while preventing
model convergence failure. Nevertheless, the method still suffers from considerable performance
degeneration of the binarized model. On the other hand, our BiTAT prevents information loss
during quantized training up to 1-bits, showing a superior performance than ReActNet, 0.37 %
↑ for ImageNet, 0.53% ↑ for CIFAR-10, and 2.31% ↑ for CIFAR-100. Note that BiTAT further
achieves on par performance of the MobileNet backbone for CIFAR-100. The results support our
claim on layer-wise quantization from the bottom layer to the top, reflecting the disentangled weight
importance and correlation with the quantized weights at earlier layers.

Ablation study We conduct ablation studies to analyze the effect of salient components in our
proposed method in Figure 7 Left. BiTAT based on layer-wise sequential quantization without

8

METHOD
INTRA-LAYER
TRANSFORM

CROSS-LAYER
TRANSFORM

Accuracy
(%)

Train Time
(hours)

REACTNET [21] N/A N/A 65.51 ± 0.74 10.75

BITAT
(Ours)

× × 68.17 ± 0.07 3.49
X × 67.82 ± 0.22 3.66
X X 68.21 ± 0.24 8.50

w/ Filter-wise Transform 67.86 ± 0.11 3.01
w/ Aggregated Transform 68.36 ± 0.45 3.11

Figure 7: Left: Ablation study for analyzing core components in our method. We report the averaged
performance and 95% confidence interval across 3 independent runs and the complete BiTAT result is highlighted
in gray background. Right: Visualization of the weight grouping during sequential quantization of BiTAT.
Each 3×3 square represents a convolutional filter of the topmost layer (26th, excluding the classifier) of our
model, and each unique color represents each group to which weight elements belong.

weight transformation already surpasses the performance of ReActNet, demonstrating that layer-
wise progressive QAT through an implicit reflection of adjusted importance plays a critical role in
preserving the pre-trained models during quantization. We adopt intra-layer weight transformation
using the input-dependent orthonormal matrix, but no significant benefits are observed. Thus, we
expect that only disentangling intra-layer weight dependency is insufficient to fully reflect the
adjusted importance of each weight due to a binarization of earlier weights/activations. This is evident
that BiTAT considering both intra-layer and cross-layer weight dependencies achieves improved
performance than the case with only intra-layer dependency. Yet, this requires considerable additional

0 500

0

250

500

750

V

0 500

0

200

400

600

0 500

0

200

400

600

0 500
Block 1

0

250

500

750di
ag

(s
)V

T

0 500
Block 3

0

200

400

600

0 500
Block 5

0

200

400

600 0.004

0.002

0.000

0.002

0.004

Figure 6: Visualization of the learned V matrix and
the diag(s)V > of three blocks of the network, with
the CIFAR-100 dataset. Notice the off-diagonal
parts which represent cross-layer dependencies.

training time to compute with a chunk-wise transfor-
mation matrix. In the end, BiTAT with aggregated
transformations, which is our full method, outper-
forms our defective variants in both terms of model
performance and training time by drastically remov-
ing redundant correlation through reduction matri-
ces. We note that using k-means clustering for ag-
gregated correlation is also essential, as another vari-
ant, BiTAT with filter-wise transformations, which
filter-wisely aggregates the weights instead, results
in deteriorated performance.

5.2 Qualitative Analysis

Visualization of Reduction Matrix We visualize
the weight grouping for BiTAT in Figure 7 Right
to analyze the effect of the reduction matrix, which groups the weight dependencies in each layer
based on the similarity between the input dimensions. Each 3×3 square represents a convolutional
filter, and each unique color in weight elements represents which group each weight is assigned to,
determined by the k-means algorithm, as described in Section 4.2. We observe that weight elements
in the same filter do not share their dependencies; rather, on average, they often belong to four-five
different weight groups. Opposite to these observations, BRECQ regards the weights in each filter
as the same group for computing the dependencies in different layers, which is problematic since
weight elements in the same filter can behave differently from each other.

Visualization of Cross-layer Weight Dependency In Figure 6, we visualize learned transforma-
tion matrices V (top row), which shows that many weight elements at each layer are also dependent
on other layer weights as highlighted in darker colors, verifying our initial claim. Further, we provide
visualizations for their multiplications with corresponding importance vectors diag(s)V > (bottom
row). Here, the row of V > is sorted by the relative importance in increasing order at each layer. We
observe that important weights in a layer affect other layers, demonstrating that cross-layer weight
dependency impacts the model performance during quantized training.

6 Conclusion

In this work, we explored long-overlooked factors that are crucial in preventing the performance
degeneration with extreme neural network quantization: the inter-weight dependencies. That is,
quantization of a set of weights affect the weights for other neurons within each layer, as well as
weights in consecutive layers. Grounded by the empirical analyses of the node interdependency, we

9

propose a Quantization-Aware Training (QAT) method for binarizing the weights and activations of
a given neural network with minimal loss of performance. Specifically, we proposed orthonormal
transformation of the weights at each layer to disentangle the correlation among the weights to
minimize the negative impact of quantization on other weights. Further, we learned scaling term
to allow varying degree of quantization error for each weight based on their measured importance,
for layer-wise quantization. Then we proposed an iterative algorithm to perform the layerwise
quantization in a progressive manner. We demonstrate the effectiveness of our method in neural
network binarization on multiple benchmark datasets with compact backbone networks, largely
outperforming state-of-the-art baselines.

References
[1] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients

through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[2] Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen, and Christoph Meinel. MeliusNet:
Can binary neural networks achieve MobileNet-level accuracy? Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[3] Adrian Bulat, Georgios Tzimiropoulos, and Brais Martinez. High-capacity expert binary
networks. Proceedings of the International Conference on Learning Representations (ICLR),
2021.

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR, 2020.

[5] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to +1
or -1, 2016.

[6] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and
Anil A Bharath. Generative adversarial networks: An overview. IEEE Signal Processing
Magazine, 2018.

[7] Bin Dai, Chen Zhu, Baining Guo, and David Wipf. Compressing neural networks using the
variational information bottleneck. In Proceedings of the International Conference on Machine
Learning (ICML), 2018.

[8] Hassan Dbouk, Hetul Sanghvi, Mahesh Mehendale, and Naresh Shanbhag. DBQ: A differen-
tiable branch quantizer for lightweight deep neural networks. Proceedings of the European
Conference on Computer Vision (ECCV), 2020.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

[10] Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Marculescu. Regularizing activation
distribution for training binarized deep networks. Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[11] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

[12] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and Yi Yang. Learning filter
pruning criteria for deep convolutional neural networks acceleration. In Proceedings of the
IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

10

[14] Sangil Jung, Changyong Son, Seohyung Lee, JinWoo Son, Jae-Joon Han, Youngjun Kwak,
Sung Ju Hwang, and Changkyu Choi. Learning to quantize deep networks by optimizing
quantization intervals with task loss. Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[15] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. Alias-free generative adversarial networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2015.

[17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[18] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang,
and Shi Gu. BRECQ: Pushing the limit of post-training quantization by block reconstruction.
Proceedings of the International Conference on Learning Representations (ICLR), 2021.

[19] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and
Ling Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[20] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real
net: Enhancing the performance of 1-bit CNNs with improved representational capability and
advanced training algorithm. Proceedings of the European Conference on Computer Vision
(ECCV), 2018.

[21] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. ReActNet: Towards pre-
cise binary neural network with generalized activation functions. Proceedings of the European
Conference on Computer Vision (ECCV), 2020.

[22] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tzimiropoulos. Training binary neural
networks with real-to-binary convolutions. Proceedings of the International Conference on
Learning Representations (ICLR), 2020.

[23] Asit Mishra and Debbie Marr. Apprentice: Using knowledge distillation techniques to improve
low-precision network accuracy. Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

[24] Markus Nagel, Rana Ali Amjad, Mart van Baalen, Christos Louizos, and Tijmen Blankevoort.
Up or down? adaptive rounding for post-training quantization. Proceedings of the International
Conference on Machine Learning (ICML), 2020.

[25] Eunhyeok Park and Sungjoo Yoo. PROFIT: A novel training method for sub-4-bit MobileNet
models. Proceedings of the European Conference on Computer Vision (ECCV), 2020.

[26] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary
neural networks: A survey. Proceedings of the International Conference on Pattern Recognition
(ICPR), 2020.

[27] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. Binary
neural networks: A survey. Pattern Recognition, 2020.

[28] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021.

[29] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision. Springer, 2016.

[30] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Ima-
genet classification using binary convolutional neural networks. Proceedings of the European
Conference on Computer Vision (ECCV), 2016.

11

[31] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
MobileNetV2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[32] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. Vl-bert:
Pre-training of generic visual-linguistic representations. arXiv preprint arXiv:1908.08530,
2019.

[33] Peisong Wang, Qinghao Hu, Yifan Zhang, Chunjie Zhang, Yang Liu, and Jian Cheng. Two-step
quantization for low-bit neural networks. Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[34] Ziwei Wang, Jiwen Lu, Chenxin Tao, Jie Zhou, and Qi Tian. Learning channel-wise interactions
for binary convolutional neural networks. Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[35] Kohei Yamamoto. Learnable companding quantization for accurate low-bit neural networks.
Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[36] Jaehong Yoon and Sung Ju Hwang. Combined group and exclusive sparsity for deep neural
networks. In Proceedings of the International Conference on Machine Learning (ICML), 2017.

[37] Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-Fu Chang. Open-vocabulary object
detection using captions. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14393–14402, 2021.

[38] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. arXiv preprint arXiv:2103.03230, 2021.

[39] Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Structured binary
neural networks for accurate image classification and semantic segmentation. In Proceedings of
the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

12

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See supplementary file.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

supplementary file.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tary materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See supplementary file.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See supplementary file.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

7 Appendix

7.1 Details for Problem Setups

Baselines. While our method aims to solve the QAT problem, we extensively compare our BiTAT
against various Post-training Quantization (PTQ)- or QAT methods: BRECQ [18] is a PTQ method
that considers weight dependencies using the Hessian of the task loss. DBQ [8] is a QAT method based
on continuous relaxation of the quantizer function. EBConv [3] conditionally selects appropriate
binarized weights based on the task information. Bi-Real Net [20] adds residual connections to
propagate full-precision values, preventing information loss to activation quantization. Real-to-
Bin [22] constrains a loss term at the end of each convolution to minimize the output discrepancy
between the full-precision and the quantized model. LCQ [35] devises a trainable quantization
function in order to reduce the quantization error. MeliusNet [2] proposes a new architecture that
better propagates full-precision values throughout the network. ReActNet [21] is the state-of-the-art
binary quantization method, which additionally adopts residual connections, and element-wise shift
operations before/after the activation and the sign operation. Note that DBQ, LCQ, and MeliusNet
keep some crucial layers of MobileNet in full-precision, leading to inefficiency at evaluation time.

Training. Following the setup from ReActNet [21], we quantize all layers’ weights and activations
except the initial and final layers. We use the Adam optimizer [16]. For the ImageNet experiment,
a learning rate is 0.002 and 0.0002 for quantization training and the fine-tuning, respectively, with
linear learning rate decay. We set batch size as 512 both the quantization phase and the fine-tuning
phase is done for 5 epochs per layer. For the CIFAR-100 experiment, a learning rate is 3× 10−4 for
quantization training and the fine-tuning with linear learning rate decay. We set batch size as 800 and
both the quantization and fine-tuning are done with 40 epochs per layer. For all experiments, we set
λ = 100, and γ = 10−5, which notes that simple choice of the hyperparameters for our regularization
terms is sufficient to show impressive performance. The number of input dimension groups is set
k = 256, applying the grouped weight correlation to layers with input dimensions smaller than k.

Inference. In deployment, the highly efficient XNOR-Bitcounting operations can be used for the
convolutional layers, also used in existing neural network binarization works [5, 30, 21].

7.2 Extension to Convolutional Layers

Let us consider a convolutional layer of size nout × nin × k× k, where nin and nout are the number
of input and output channels, respectively, and k is the kernel size. We define the set Px as the set of
all patches of size nin × k × k extracted from the training image x. This patch-extracting operation
is sometimes called im2col or F.unfold in PyTorch.

A convolutional layer applied to x can be thought of as a fully-connected layer individually applied
to all patches in Px and then concatenated:

w ∗ x = {Reshape(nink2)×(nout)(w)>vec(p)}p∈Px , (14)

where ∗ denotes the convolution operation, Reshapeshape(·) denotes the reshaping of the tensor into
the specified shape, and vec(·) denotes the flattening operation. Each pixel of the output feature map
corresponds to a matrix multiplication between a patch and the weight matrix. Therefore, we can
analogically apply the same transformation as explained in Section 3 to convolutional layers.

7.3 Details on Cross-layer Dependency

In this section, we further explain the detailed experimental setting for Figure 3. We take the standard
MobileNetV2 [31] model and train it to convergence on the CIFAR-100 dataset with standard SGD
with a weight decay. Then, we add noise to the same pretrained model parameters before evaluating
the test accuracy based on the following two different ways:

1. Layer-dependent noise addition. We first compute the covariance of the input to the first
layer and perform PCA using obtained covariance values to compute w̃(1) in Equation 4.
Now, we add independent gaussian noise with varying scales to the top five rows of w̃(1).
Next, we sequentially repeat the process to the consecutive layers, and after that, we evaluate

14

METHOD Accuracy (%) Qorig Qours

REACTNET [21] 65.51 ± 0.74 13.35 475.94
BITAT (Ours) 68.36 ± 0.45 39.77 434.92

0 25 50 75 100 125
ReActNet Epoch

10

20

30

40

Q
ou

rs
/Q

or
ig

ReActNet
Ours

Figure 8: Additional ablation studies. Left: The comparison of the final Qorig (Equation 2) and Qours

(Equation 6) values in ReActNet and BiTAT. Right: The evolution of the ratio of Qours to Qorig in ReActNet,
in comparison to the final ratio in our BiTAT. Cross-layer dependencies not considered in both computations.

the model performance, which is shown in solid red lines. The same process is done but
with the bottom five rows of each layer instead of the top five, shown in solid blue lines.

2. Layer-independent noise addition. Before adding noise to model parameters, we compute
the covariance of the input values for all layers. Next, we perform PCA and compute w̃(l)

with Equation 4 per layer using these initial covariance values. That is, a layer cannot
reflect the weight change through noise addition in others layers, as different from the first
approach. Independent gaussian noise with varying scales is added to the top five rows of
w̃(l) for each layer, and then the performance of the model is evaluated, shown in red dashed
lines. The same is done with the bottom five rows of w̃(l), shown in blue dashed lines.

7.4 Additional Analysis

This paper suggests that the proposed quantization loss on disentangled weights is a better indicator
for prediction accuracy than the general quantization loss (Equation 2), which is evident in multiple
validation analyses and the superior model performance in our BiTAT as described in the main
text. Here, we provide the quantitative analysis to show that ReActNet [21] fails to minimize the
quantization loss on disentangled weights while our BiTAT successfully does. In Figure 8 Left, we
show the Qorig (Equation 2) and Qours (Equation 6 w/o `1 norm) between the initial full-precision
weights of the pre-trained model and the obtained binarized weights from ReActNet and BiTAT.
Qorig represents the naive MSE between the full-precision weights and the binarized weights. Qours
represents the dependency-weighted MSE between the full-precision weights and the binarized
weights. Note that, in this analysis, we obtain s and V for each layer from the initial pre-trained
model by Equation 10 to compute Qours and neglect the weight dependency across different layers,
which is hard to be computed analytically.

We observe that while the value of Qorig is lower in ReActNet than in BiTAT, Qours is higher in
ReActNet than in BiTAT. As shown in Figure 8 Right, the ratio r = Qours/Qorig in ReActNet (Red)
drastically increases at the beginning stage and is maintained in a high degree until the completion
of the quantization-aware training, compared to the r value of the model obtained by BiTAT (Blue
dashed). While disregarding the first few epochs of ReActNet training, where the accuracy is very low,
ReActNet’s r value dominates that of BiTAT. The value slowly decreases as the ReActNet training
proceeds, but never reaches the level of BiTAT, demonstrating the inefficiency of the ReActNet
training procedure compared to ours.

7.5 Limitations

We consider two limitations of our work in this section. First, our BiTAT framework is built based on
a sequential quantization strategy, which progressively quantizes the layers from the bottom to the
top. Therefore, the training time of our algorithm depends on the number of layers in the backbone
network architecture. While we have already validated the cost-efficiency of our proposed method
against ReActNet using MobileNet (26 stacked layers) in Figure 7 Left, we might spend more training
time quantizing all layer weights for the backbones, composed of much more layers like ResNet-1001
(1001 stacked layers). Next, our method focuses on the cross-layer weight dependency within each
neural block, including a few consecutive layers. We thereby avoid the excessive computational
cost of obtaining the relationship across all layers in the backbone architecture, yet we consider it a
tradeoff between accurate dependency and computation budgets.

15

	1 Introduction
	2 Related Work
	3 Weight Importance for Quantization-aware Training
	3.1 Problem Statement
	3.2 Disentangling Weight Dependencies via Input-dependent Orthornormal Transformation
	3.3 Cross-layer Weight Correlation Impacts Model Performance

	4 Task-dependent Weight Transformation for Neural Network Binarization
	4.1 Layer-progressive Quantization with Block-wise Weight Dependency
	4.2 Cost-efficient BiTAT via Aggregated Weight Correlation using Reduction Matrix

	5 Experiments
	5.1 Quantitative Analysis
	5.2 Qualitative Analysis

	6 Conclusion
	7 Appendix
	7.1 Details for Problem Setups
	7.2 Extension to Convolutional Layers
	7.3 Details on Cross-layer Dependency
	7.4 Additional Analysis
	7.5 Limitations

