Skip to main content

Uncertainty Quantification Using Query-Based Object Detectors

  • Conference paper
  • First Online:
  • 958 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13808))

Abstract

Recently, a new paradigm of query-based object detection has gained popularity. In this paper, we study the problem of quantifying the uncertainty in the predictions of these models that derive from model uncertainty. Such uncertainty quantification is vital for many high-stakes applications that need to avoid making overconfident errors. We focus on quantifying multiple aspects of detection uncertainty based on a deep ensembles representation. We perform extensive experiments on two representative models in this space: DETR and AdaMixer. We show that deep ensembles of these query-based detectors result in improved performance with respect to three types of uncertainty: location uncertainty, class uncertainty, and objectness uncertainty (Code available at: https://github.com/colinski/uq-query-object-detectors).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ashukha, A., Lyzhov, A., Molchanov, D., Vetrov, D.: Pitfalls of in-domain uncertainty estimation and ensembling in deep learning. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=BJxI5gHKDr

  2. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 1613–1622. PMLR, Lille (2015). https://proceedings.mlr.press/v37/blundell15.html

  3. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  5. Chen, K., et al.: MMDetection: open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  6. Chen, T., Fox, E., Guestrin, C.: Stochastic gradient hamiltonian monte carlo. In: International Conference on Machine Learning, pp. 1683–1691. PMLR (2014)

    Google Scholar 

  7. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: keypoint triplets for object detection. In: ICCV (2019)

    Google Scholar 

  8. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  9. Gao, Z., Wang, L., Han, B., Guo, S.: Adamixer: a fast-converging query-based object detector. In: CVPR (2022)

    Google Scholar 

  10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  11. Hall, D., et al.: Probabilistic object detection: definition and evaluation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1031–1040 (2020)

    Google Scholar 

  12. Harakeh, A., Smart, M., Waslander, S.L.: Bayesod: a bayesian approach for uncertainty estimation in deep object detectors. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 87–93. IEEE (2020)

    Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017(December), Long Beach, CA, USA, pp. 4–9, 2017, pp. 5574–5584 (2017). https://proceedings.neurips.cc/paper/2017/hash/2650d6089a6d640c5e85b2b88265dc2b-Abstract.html

  16. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, pp. 6402–6413 (2017)

    Google Scholar 

  17. Law, H., Deng, J.: Cornernet: detecting objects as paired keypoints. In: ECCV (2018)

    Google Scholar 

  18. Le, M.T., Diehl, F., Brunner, T., Knol, A.: Uncertainty estimation for deep neural object detectors in safety-critical applications. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3873–3878. IEEE (2018)

    Google Scholar 

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Meng, D., et al.: Conditional detr for fast training convergence. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  21. Miller, D., Dayoub, F., Milford, M., Sünderhauf, N.: Evaluating merging strategies for sampling-based uncertainty techniques in object detection. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 2348–2354. IEEE (2019)

    Google Scholar 

  22. Miller, D., Nicholson, L., Dayoub, F., Sünderhauf, N.: Dropout sampling for robust object detection in open-set conditions. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3243–3249. IEEE (2018)

    Google Scholar 

  23. Miller, D., Sünderhauf, N., Milford, M., Dayoub, F.: Uncertainty for identifying open-set errors in visual object detection. IEEE Rob. Autom. Lett. (2021). https://doi.org/10.1109/LRA.2021.3123374

  24. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  25. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  27. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  28. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: ICCV (2019)

    Google Scholar 

  29. Tolstikhin, I., et al.: MLP-mixer: an all-mlp architecture for vision. In: NeurIPS (2021)

    Google Scholar 

  30. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  31. Wang, Y., Zhang, X., Yang, T., Sun, J.: Anchor detr: query design for transformer-based detector. In: AAAI (2022)

    Google Scholar 

  32. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient langevin dynamics. In: Proceedings of the 28th International Conference on Machine Learning (ICML-2011), pp. 681–688 (2011)

    Google Scholar 

  33. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net (2021). https://openreview.net/forum?id=gZ9hCDWe6ke

Download references

Acknowledgements

Research reported in this paper was sponsored in part by the CCDC Army Research Laboratory under Cooperative Agreement W911NF-17-2-0196 (ARL IoBT CRA). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meet P. Vadera .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 489 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vadera, M.P., Samplawski, C., Marlin, B.M. (2023). Uncertainty Quantification Using Query-Based Object Detectors. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13808. Springer, Cham. https://doi.org/10.1007/978-3-031-25085-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25085-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25084-2

  • Online ISBN: 978-3-031-25085-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics