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Abstract. Transparent objects present multiple distinct challenges to
visual perception systems. First, their lack of distinguishing visual fea-
tures makes transparent objects harder to detect and localize than opaque
objects. Even humans find certain transparent surfaces with little spec-
ular reflection or refraction, e.g. glass doors, difficult to perceive. A sec-
ond challenge is that common depth sensors typically used for opaque
object perception cannot obtain accurate depth measurements on trans-
parent objects due to their unique reflective properties. Stemming from
these challenges, we observe that transparent object instances within
the same category (e.g. cups) look more similar to each other than to
ordinary opaque objects of that same category. Given this observation,
the present paper sets out to explore the possibility of category-level
transparent object pose estimation rather than instance-level pose esti-
mation. We propose TransNet, a two-stage pipeline that learns to esti-
mate category-level transparent object pose using localized depth com-
pletion and surface normal estimation. TransNet is evaluated in terms
of pose estimation accuracy on a recent, large-scale transparent object
dataset and compared to a state-of-the-art category-level pose estima-
tion approach. Results from this comparison demonstrate that TransNet
achieves improved pose estimation accuracy on transparent objects and
key findings from the included ablation studies suggest future direc-
tions for performance improvements. The project webpage is available
at: https: //progress.eecs.umich.edu/projects/transnet /.

Keywords: Transparent Objects. Category-level Object Pose Estima-
tion. Depth Completion. Surface Normal Estimation.

1 Introduction

From glass doors and windows to kitchenware and all kinds of containers, trans-
parent materials are prevalent throughout daily life. Thus, perceiving the pose
(position and orientation) of transparent objects is a crucial capability for au-
tonomous perception systems seeking to interact with their environment. How-
ever, transparent objects present unique perception challenges both in the RGB
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Fig. 1. Overview of TransNet, a pipeline for category-level transparent object pose
estimation. Given instance-level segmentation masks as input, TransNet estimates the
6 degrees of freedom pose and scale for each transparent object in the image. Internally,
TransNet uses surface normal estimation, depth completion, and a transformer-based
architecture for accurate pose estimation despite noisy sensor data.

and depth domains. As shown in Figure [2| for RGB, the color appearance of
transparent objects is highly dependent on the background, viewing angle, ma-
terial, lighting condition, etc. due to light reflection and refraction effects. For
depth, common commercially available depth sensors record mostly invalid or
inaccurate depth values within the region of transparency. Such visual chal-
lenges, especially missing detection in the depth domain, pose severe problems
for autonomous object manipulation and obstacle avoidance tasks. This paper
sets out to address these problems by studying how category-level transparent
object pose estimation may be achieved using end-to-end learning.

Recent works have shown promising results on grasping transparent objects
by completing the missing depth values followed by the use of a geometry-based
grasp engine [290129], or transfer learning from RGB-based grasping neural net-
works [36]. For more advanced manipulation tasks such as rigid body pick-and-
place or liquid pouring, geometry-based estimations, such as symmetrical axes,
edges [27] or object poses [26], are required to model the manipulation tra-
jectories. Instance-level transparent object poses could be estimated from key-
points on stereo RGB images [24123] or directly from a single RGB-D image [38]
with support plane assumptions. Recently emerged large-scale transparent ob-
ject datasets [29J39123/9J6] pave the way for addressing the problem using deep
learning.

In this work, we aim to extend the frontier of 3D transparent object percep-
tion with three primary contributions.

— First, we explore the importance of depth completion and surface normal
estimation in transparent object pose estimation. Results from these studies
indicate the relative importance of each modality and their analysis suggests
promising directions for follow-on studies.

— Second, we introduce TransNet, a category-level pose estimation pipeline for
transparent objects as illustrated in Figure|[l] It utilizes surface normal esti-
mation, depth completion, and a transformer-based architecture to estimate
transparent objects’ 6D poses and scales.
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— Third, we demonstrate that TransNet outperforms a baseline that uses a
state-of-the-art opaque object pose estimation approach [7] along with trans-
parent object depth completion [9].

Fig. 2. Challenge for transparent object perception. Images are from Clearpose dataset
[6]. The left is an RGB image. The top right is the raw depth image and the bottom
right is the ground truth depth image.

2 Related Works

2.1 Transparent Object Visual Perception for Manipulation

Transparent objects need to be perceived before being manipulated. Lai et al. [18]
and Khaing et al. [16] developed CNN models to detect transparent objects from
RGB images. Xie et al. [37] proposed a deep segmentation model that achieved
state-of-the-art segmentation accuracy. ClearGrasp [29] employed depth comple-
tion for use with pose estimation on robotic grasping tasks, where they trained
three DeepLabv3+ [4] models to perform image segmentation, surface normal
estimation, and boundary segmentation. Follow-on studies developed different
approaches for depth completion, including implicit functions [47], NeRF fea-
tures [12], combined point cloud and depth features [39], adversarial learning [30],
multi-view geometry [I], and RGB image completion [9]. Without completing
depth, Weng et al. [36] proposed a method to transfer the learned grasping pol-
icy from the RGB domain to the raw sensor depth domain. For instance-level
pose estimation, Xu et al. [38] utilized segmentation, surface normal, and im-
age coordinate UV-map as input to a network similar to [32] that can estimate
6 DOF object pose. Keypose [24] was proposed to estimate 2D keypoints and
regress object poses from stereo images using triangulation. For other special
sensors, Xu et al. [40] used light-field images to do segmentation using a graph-
cut-based approach. Kalra et al. [15] trained Mask R-CNN [I1] using polarization
images as input to outperform the baseline that was trained on only RGB im-
ages by a large margin. Zhou et al. [40/4544] employed light-field images to
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learn features for robotic grasping and object pose estimation. Along with the
proposed methods, massive datasets, across different sensors and both synthetic
and real-world domains, have been collected and made public for various related
tasks [37292444T52314739/9J6]. Compared with these previous works, and to
the best of our knowledge we propose the first category-level pose estimation ap-
proach for transparent objects. Notably, the proposed approach provides reliable
6D pose and scale estimates across instances with similar shapes.

2.2 Opaque Object Category-level Pose Estimation

Category-level object pose estimation is aimed at estimating unseen objects’ 6D
pose within seen categories, together with their scales or canonical shape. To
the best of our knowledge, there is not currently any category-level pose esti-
mation works focusing on transparent objects, and the works mentioned below
mostly consider opaque objects. They won’t work well for transparency due to
their dependence on accurate depth. Wang et al. [35] introduced the Normalized
Object Coordinate Space (NOCS) for dense 3D correspondence learning, and
used the Umeyama algorithm [33] to solve the object pose and scale. They also
contributed both a synthetic and a real dataset used extensively by the following
works for benchmarking. Later, Li et al. [I9] extended the idea towards articu-
lated objects. To simultaneously reconstruct the canonical point cloud and esti-
mate the pose, Chen et al. [2] proposed a method based on canonical shape space
(CASS). Tian et al. [3T] learned category-specific shape priors from an autoen-
coder, and demonstrated its power for pose estimation and shape completion.
6D-ViT [48] and ACR-Pose [§] extended this idea by utilizing pyramid visual
transformer (PVT) and generative adversarial network (GAN) [10] respectively.
Structure-guided prior adaptation (SGPA) [3] utilized a transformer architecture
for a dynamic shape prior adaptation. Other than learning a dense correspon-
dence, FS-Net [0] regressed the pose parameters directly, and it proposed to learn
two orthogonal axes for 3D orientation. Also, it contributed to an efficient data
augmentation process for depth-only approaches. GPV-Pose [7] further improved
FS-Net by adding a geometric consistency loss between 3D bounding boxes, re-
construction, and pose. Also with depth as the only input, category-level point
pair feature (CPPF) [42] could reduce the sim-to-real gap by learning deep point
pairs features. DualPoseNet [20] benefited from rotation-invariant embedding for
category-level pose estimation. Differing from other works using segmentation
networks to crop image patches as the first stage, CenterSnap [13] presented a
single-stage approach for the prediction of 3D shape, 6D pose, and size.

Compared with opaque objects, we find the main challenge to perceive trans-
parent objects is the poor quality of input depth. Thus, the proposed TransNet
takes inspiration from the above category-level pose estimation works regarding
feature embedding and architecture design. More specifically, TransNet leverages
both Pointformer from PVT and the pose decoder from FS-Net and GPV-Pose.
In the following section, the TransNet architecture is described, focusing on how
to integrate the single-view depth completion module and utilize imperfect depth
predictions to learn pose estimates of transparent objects.
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Fig. 3. Architecture for TransNet. TransNet is a two-stage deep neural network for
category-level transparent object pose estimation. The first stage uses an object in-
stance segmentation (from Mask R-CNN [I1], which is not included in the diagram)
to generate patches of RGB-D then used as input to a depth completion and a sur-
face normal estimation network (RGB only). The second stage uses randomly sampled
pixels within the objects’ segmentation mask to generate a generalized point cloud
formed as the per-pixel concatenation of ray direction, RGB, surface normal, and com-
pleted depth features. Pointformer [48], a transformer-based point cloud embedding
architecture, transforms the generalized point cloud into high-dimensional features.
A concatenation of embedding features, global features, and a one-hot category label
(from Mask R-CNN) is provided for the pose estimation module. The pose estimation
module is composed of four decoders, one each for translation, z-axis, z-axis, and scale
regression respectively. Finally, the estimated object pose is recovered and returned as
output.

Given an input RGB-D pair (Z, D), our goal is to predict objects’ 6D rigid
body transformations [R|t] and 3D scales s in the camera coordinate frame,
where R € SO(3),t € R? and s € R%.. In this problem, inaccurate/invalid depth
readings exist within the image region corresponding to transparent objects (rep-
resented as a binary mask M;). To approach the category-level pose estimation
problem along with inaccurate depth input, we propose a novel two-stage deep
neural network pipeline, called TransNet.

3.1 Architecture Overview

Following recent work in object pose estimation [345l[7], we first apply a pre-
trained instance segmentation module (Mask R-CNN [11]) that has been fine-
tuned on the pose estimation dataset to extract the objects’ bounding box
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patches, masks, and category labels to separate the objects of interest from
the entire image.

The first stage of TransNet takes the patches as input and attempts to correct
the inaccurate depth posed by transparent objects. Depth completion (TransCG
[9]) and surface normal estimation (U-Net [28]) are applied on RGB-D patches
to obtain estimated depth-normal pairs. The estimated depth-normal pairs, to-
gether with RGB and ray direction patches, are concatenated to feature patches,
followed by a random sampling strategy within the instance masks to generate
generalized point cloud features.

In the second stage of TransNet, the generalized point cloud is processed
through Pointformer [48], a transformer-based point cloud embedding module,
to produce concatenated feature vectors. The pose is then separately estimated in
four decoder modules for object translation, z-axis, z-axis, and scale respectively.
The estimated rotation matrix can be recovered using the estimated two axes.
Each component is discussed in more detail in the following sections.

3.2 Object Instance Segmentation

Similar to other categorical pose estimation work [7], we train a Mask R-CNN
[11] model on the same dataset used for pose estimation to obtain the object’s
bounding box B, mask M and category label H.. Patches of ray direction Rz,
RGB Zp and raw depth Dg are extracted from the original data source following
bounding box B, before inputting to the first stage of TransNet.

3.3 Transparent object depth completion

Due to light reflection and refraction on transparent material, the depth of trans-
parent objects is very noisy. Therefore, depth completion is necessary to reduce
the sensor noise. Given the raw RGB-D patch (Zg, Dg) pair and transparent
mask M; (a intersection of transparent objects’ masks within bounding box
B), transparent object depth completion Fp is applied to obtain the completed
depth of the transparent region {’ZA)(i’j)|(i7j) € M}

Inspired by one state-of-the-art depth completion method, TransCG [9], we
incorporate a similar multi-scale depth completion architecture into TransNet.

Dp = Fp (Is, Ds) (1)
We use the same training loss as TransCG:

L= Ed + )\smoothﬁs
2

- ;ppeﬂ;ns O @)
L= NL Z (1 — cos <N(15p),N(D;)>>

P pem,NB
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where D* is the ground truth depth image patch, p € M, () B represents the
transparent region in the patch, (-, -) denotes the dot product operator and
N () denotes the operator to calculate surface normal from depth. L4 is Lo dis-
tance between estimated and ground truth depth within the transparency mask.
L is the cosine similarity between surface normal calculated from estimated and
ground truth depth. Ag00tn is the weight between the two losses.

3.4 Transparent object surface normal estimation

Surface normal estimation Fgy estimates surface normal S from RGB image
Zp. Although previous category-level pose estimation works [7I5] show that depth
is enough to obtain opaque objects’ pose, experiments in Section [.3] demon-
strate that surface normal is not a redundant input for transparent object pose
estimation. Here, we slightly modify U-Net [28] to perform the surface normal
estimation.

Sg = Fsn (Ip) (3)

We use the cosine similarity loss:

1 5 *
L= sz (1—cos <Sp,8p>> (4)
peEB
where p € B means the loss is applied for all pixels in the bounding box B5.

3.5 Generalized point cloud

As input to the second stage, generalized point cloud P € RV*4 is a stack of

d-dimensional features from the first stage taken at N sample points, inspired
from [38]. To be more specific, d = 10 in our work. Given the completed depth
Dj and predicted surface normal Sg from Equation (T), (3), together with RGB
patch Zp and ray direction patch R, a concatenated feature patch is given as

T5,Dg,Sp, Ri| € REXWx*10_ Here the ray direction R represents the direction

from camera origin to each pixel in the camera frame. For each pixel (u,v):

p= [u v 1]T
_ K 1p (5)
1K= p||*

where p is the homogeneous UV coordinate in the image plane and K is the
camera intrinsic. The UV mapping itself is an important cue when estimating
poses from patches [I4], as it provides information about the relative position
and size of the patches within the overall image. We use ray direction instead of
UV mapping because it also contains camera intrinsic information.

We randomly sample N pixels within the transparent mask of the feature
patch to obtain the generalized point cloud P € RV*19 A more detailed exper-
iment in Section [£.3] explores the best choice of the generalized point cloud.
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3.6 Transformer Feature embedding

Given generalized point cloud P, we apply an encoder and multi-head decoder
strategy to get objects’ poses and scales. We use Pointformer [48], a multi-stage
transformer-based point cloud embedding method:

Pemb - ]:PF (7)) (6)

where P,y € RN*demv ig a high-dimensional feature embedding. During

our experiments, we considered other common point cloud embedding methods
such as 3D-GCN [2I] demonstrating their power in many category-level pose
estimation methods [5l7]. During feature aggregation for each point, they use
the nearest neighbor algorithm to search nearby points within coordinate space,
then calculate new features as a weighted sum of the features within surrounding
points. Due to the noisy input D from Equation , the nearest neighbor may
become unreliable by producing noisy feature embeddings. On the other hand,
Pointformer aggregates feature by a transformer-based method. The gradient
back-propagates through the whole point cloud. More comparisons and discus-
sions in Section demonstrate that transformer-based embedding methods
are more stable than nearest neighbor-based methods when both are trained on
noisy depth data.

Then we use a Point Pooling layer (a multilayer perceptron (MLP) plus
max-pooling) to extract the global feature Pgiopq1, and concatenate it with local
feature Pe,p and the one-hot category H. label from instance segmentation for
the decoder:

Pgiobar = MaxPool (MLP (Peyp))

7
Pconcat = [Pembvpglobala %c] ( )

3.7 Pose and Scale Estimation

After we extract the feature embeddings from multi-modal input, we apply four
separate decoders for translation, z-axis, z-axis, and scale estimation.
Translation Residual Estimation As demonstrated in [5], residual estimation
achieves better performance than direct regression by learning the distribution
of the residual between the prior and actual value. The translation decoder F;
learns a 3D translation residual from the object translation prior ¢, calculated
as the average of predicted 3D coordinate over the sampled pixels in P. To be
more specific:

1 .
tprior = F Z Kil [Up Up 1}T'Dp
P pen (8)

tA: tprior + ]:t ([Pconcat7 P])

Where K is the camera intrinsic and u,, v, are the 2D pixel coordinate for the
selected pixel. We also use the L loss between the ground truth and estimated
position:

Lo=i—r| )



TransNet: Category-Level Transparent Object Pose Estimation 9

Pose Estimation Similar to [5], rather than directly regress the rotation matrix
R, it is more effective to decouple it into two orthogonal axes and estimate them
separately. As shown in Figure [3] we decouple R into the z-axis a, (red axis)
and z-axis a, (green axis). Following the strategy of confidence learning in [7],
the network learns confidence values to deal with the problem that the regressed
two axes are not orthogonal:

[a‘iv Ci} =F (Pconcat) , 1€ {557 Z}
Cy e
= ara (o-3) (10)

c T
- 0-3)
et 2

where ¢,, c, denote the confidence for the learned axes. 6 represents the angle
between a, and a,. 0,, 0, are obtained by solving an optimization problem and
then used to rotate the a, and a, within their common plane. More details can
be found in [7]. For the training loss, first, we use L; loss and cosine similarity
loss for axis estimation:

Ly, =la; —af|+1—{a;,a}), i € {z,z} (11)

Then to constrain the perpendicular relationship between two axes, we add
the angular loss:

La = <&xadz> (12)

To learn the axis confidence, we add the confidence loss, which is the L,
distance between estimated confidence and exponential Ly distance between the
ground truth and estimated axis:

Leon, = |ci —exp (arflai — aglly)|, i € {x, 2} (13)

where « is a constant to scale the distance.
Thus the overall loss for the second stage is:

L=NLo+NLo+ A, Lo 4+ A Lo+

(14)
)\Ta Ea + )\con&E Econm + /\conz 'Cconz

To deal with object symmetry, we apply specific treatments for different
symmetry types. For axial symmetric objects (those that remain the same shape
when rotating around one axis), we ignore the loss for the z-axis, i.e., Lcon, , Lr, -
For planar symmetric objects (those that remain the same shape when mirrored
about one or more planes), we generate all candidate z-axis rotations. For exam-
ple, for an object symmetric about the x — z plane and y — z plane, rotating the
x-axis about the z-axis by 7 radians will not affect the object’s shape. The new
x-axis is denoted as a,, and the loss for the x-axis is defined as the minimum
loss of both candidates:

L, =min (L;(az), Lz(az)) (15)
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Scale Residual Estimation Similar to the translation decoder, we define the
scale prior sprior as the average of scales of all object 3D CAD models within
each category. Then the scale of a given instance is calculated as follows:

5= Sprior + Fs (Pconcat) (16)

The loss function is defined as the L; loss between the ground truth scale
and estimated scale:

Lo =1]5—s" (17)

4 Experiments

Dataset We evaluated TransNet and baseline models on the Clearpose Dataset
[6] for categorical transparent object pose estimation. The Clearpose Dataset
contains over 350K real-world labeled RGB-D frames in 51 scenes, 9 sets, and
around 5M instance annotations covering 63 household objects. We selected 47
objects and categorize them into 6 categories, bottle, bowl, container, tableware,
water cup, wine cup. We used all the scenes in set2, set4, setb, and set6 for
training and scenes in set3 and set7 for validation and testing. The division
guaranteed that there were some unseen objects for testing within each category.
Overall, we used 190K images for training and 6K for testing. For training depth
completion and surface normal estimation, we used the same dataset split.
Implementation Details Our model was trained in several stages. For all the
experiments in this paper, we were using the ground truth instance segmentation
as input, which could also be obtained by Mask R-CNN [IT]. The image patches
were generated from object bounding boxes and re-scaled to a fixed shape of
256 x 256 pixels. For TransCG, we used AdamW optimizer [25] for training with
Asmooth = 0.001 and the overall learning rate is 0.001 to train the model till
converge. For U-Net, we used the Adam optimizer [I7] with a learning rate of
le™* to train the model until convergence. For both surface normal estimation
and depth completion, the batch size was set to 24 images. The surface normal
estimation and depth completion model were frozen during the training of the
second stage.

For the second stage, the training hyperparameters for Pointformer followed
those used in [48]. We used data augmentation for RGB features and instance
mask for sampling generalized point cloud. A batch size of 18 was used. To bal-
ance sampling distribution across categories, 3 instance samples were selected
randomly for each of 6 categories. We followed GPV-Pose [7] on training hyper-
parameters. The learning rate for all loss terms were kept the same during train-
ing, {Ar,s Ar.y Ary s Aty Asy Acony s Acon. } = {8,8,4,8,8,1,1} x 0.0001. We used the
Ranger optimizer [22/4T43] and used a linear warm-up for the first 1000 iter-
ations, then used a cosine annealing method at the 0.72 anneal point. All the
experiments for pose estimation were trained on a 16G RTX3080 GPU for 30
epochs with 6000 iterations each. All the categories were trained on the same
model, instead of one model per category.



TransNet: Category-Level Transparent Object Pose Estimation 11

Evaluation metrics For category-level pose estimation, we followed [7l5] using
3D intersection over union (IoU) between the ground truth and estimated 3D
bounding box (we used the estimated scale and pose to draw an estimated 3D
bounding box) at 25%, 50% and 75% thresholds. Additionally, we used 5°2cm,
5°5cm, 10°5em, 10°10ecm as metrics. The numbers in the metrics represent the
percentage of the estimations with errors under such degree and distance. For
section [£.4] we also used separated translation and rotation metrics: 2cm, 5em,
10cm, 5°, 10° that calculate percentage with respect to one factor.

For depth completion evaluation, we calculated the root of mean squared
error (RMSE), absolute relative error (REL) and mean absolute error (MAE),
and used 6105, 01.10, 01.25 as metrics, while J,, was calculated as:

1 D, D;
Op = — I max PP <n 18
g S (o (35 <) "

p p

where I(+) represents the indicator function. D, and Dj mean estimated and
ground truth depth for each pixel p.

For surface normal estimation, we calculated RMSE and MAE errors and
used 11.25°, 22.5°, and 30° as thresholds. Here 11.25° represents the percentage
of estimates with an angular distance less than 11.25° from ground truth surface
normal.

4.1 Comparison with Baseline

Table 1. Comparison with the baseline on the Clearpose Dataset.

Method [3D251 3Ds01 3D7571 5°2cm? 5°5ecm? 10°5¢mt 10°10cmt
GPV-Pose| 93.7 58.3 10.5 0.4 1.5 7.4 9.1
TransNet | 90.3 67.4 22.1 2.4 7.5 23.6 27.6

‘We chose one state-of-the-art categorical opaque object pose estimation model
(GPV-Pose [7]) as a baseline, which was trained with estimated depth from Tran-
sCG [9] for a fair comparison. From Table TransNet outperformed the baseline
in most of the metrics on the Clearpose dataset. 3Do5 is very easy to learn, so
there is no huge difference between them. For the rest of the metrics, TransNet
achieved around 2x the percentage on 3D5g, 3x on 10°5cm, 10°10cm and 5x
on 5°5¢m, 5°2cm over the baseline. Qualitative results are shown in Figure [ for
TransNet.

4.2 Embedding method analysis

In Table |2, we compared the embedding method between 3D-GCN [21I] and
Pointformer [48] on TransNet. Modalities for generalized point cloud were depth,
RGB and ray direction (without surface normal) for all the trials. The only dif-
ferences between them were depth type and embedding methods. With ground
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truth input, 3D-GCN and Pointformer achieved similar results. For some met-
rics, i.e. 5°bem, 3D-GCN was even better. But when the ground truth depth was
changed to estimated depth (modeling the change from opaque to transparent
setting), Pointformer retained much more accuracy than 3D-GCN. Here is our
explanation. Like many point cloud embedding methods, 3D-GCN propagates
information between nearest neighbors. It is a very efficient method given a point
cloud with low noise. But given the completed depth, high noise makes it unsta-
ble to pass data among neighbors. While for Pointformer, information is passed
through the whole point cloud, no matter how large the noise is. Therefore,
given depth information with large uncertainty, the transformer-based embed-
ding method might be more powerful than embedding methods using nearest
neighbors.

Table 2. Comparison between different embedding methods

Depth type |Embedding|3Da251 3Ds501 3D751 5°2cm? 5°5¢cm? 10°5¢mt 10°10cm T
3D-GCN |90.0 84.1 43.0 21.4 48.0 61.8 64.7

Pointformer| 90.0 81.8 56.5 24.1 39.3 59.0 60.7
3D-GCN |88.8 59.8 10.4 0.9 3.4 12.3 15.4

Pointformer| 88.5 62.2 17.6 1.6 5.0 17.4 20.9

Ground truth

Estimation

4.3 Ablation study of generalized point cloud

We explored different combinations of feature inputs for the generalized point
cloud to find the one most suitable for TransNet. Results are shown in Table [l
For trials 1 and 2, we compared the effect of adding estimated surface normal
to the generalized point cloud. All the metrics demonstrated that the inclusion
of surface normal does improve the resulting pose estimation accuracy.

Table 3. Ablation study for a different combination of the generalized point cloud.
For both trials, we also use RGB as an input feature for the generalized point cloud.

Trial|depth normal ray-direction|3D251 3Ds0t 3D757 5°2em?t 5°5emt 10°5emt 10°10emt
1 v v 88.5 62.2 17.6 1.6 5.0 174 20.9
2 v v v 90.3 67.4 22.1 2.4 7.5 23.6 27.6

4.4 Depth and surface normal exploration on TransNet

We explored the combination of depth and surface normal with different accu-
racy. Results in Table [4 and Table [5] show performance for TransCG and U-Net
separately. “GT” and “EST” in Table [6] represent ground truth and estimated
input for depth and surface normal respectively. From the comparison of results
among trials 1 - 3, accurate depth is more essential than surface normal for
category-level transparent object pose estimation. For instance, as the ground
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Table 4. Accuracy for depth completion on Clearpose dataset. All the metrics are
calculated within the transparent mask.

Metric RMSEJ, RELi MAEJ, 51_05T 51,101\ 51,251\
Value| 0.055 0.044 0.041 68.93 89.40 98.93

Table 5. Accuracy for surface normal estimation on Clearpose dataset.

Metric RMSE| MAE] 11.25°%1 22.5°% 30°1
Value | 0.1915 0.1334 56.75 88.45 96.64

Table 6. Evaluation for depth and surface normal accuracy on TransNet.

TrialDepth Normal|3 D251 3D5s01 3D757 5°2em® 5°5emt 10°5em 1 10°10em?t 5° 1 10° 1 2em 1 5em 1+ 10em +
1 GT GT |95.1 87.7 66.7 31.8 48.4 66.5 66.7 47.3 66.3 63.3 97.9 99.9
GT EST | 909 821 56.3 234 36.5 58.0 59.6 37.3 59.6 53.6 97.2 999
EST GT 94.0 83.8 34.3 8.1 29.9 47.8 60.3 37.3 61.8 222 771 974
EST EST | 90.3 674 22.1 2.4 7.5 23.6 27.6 8.8 281 166 774 96.8

- W

truth depth changes to the estimated depth from trial 1 to trial 3, 5°2cm de-
creases by 23.7. Compared with surface normal estimation, 5°2c¢m only decreases
by 8.4 between trial 1 and trial 2. More specifically, from decoupled rotation and
translation metrics, we can see that 2cm decreases by 41.1 between trial 1 and
trial 3 compared to 9.7 between trial 1 and trial 2, meaning that depth accu-
racy is more important for translation estimation. Focusing on 2¢m, 5em, 10cm
between trial 1 and trial 4, the first metric decreases by 46.7 but the latter two
lose much less (20.5 for 5em and 3.1 for 10cm). This can be explained by the
result of depth completion accuracy shown in Table 4| (MAE = 0.041m, between
2em and 5em). From the comparison of trial 1-4 on metrics 5° and 10°, we can
see that either accurate surface normal or accurate depth can support good per-
formance in rotation metrics (for either trial 2 or trial 3, 5° decreases by 10.0
and 10° decreased by around 7). Once we use the estimation version of both, 5°
decreases by 38.5 and 10° decreases by 38.2.

5 Conclusions

In this paper, we proposed TransNet, a two-stage pipeline for category-level
transparent object pose estimation. TransNet outperformed a baseline by taking
advantage of both state-of-the-art depth completion and opaque object category
pose estimation. Ablation studies about multi-modal input and feature embed-
ding modules were performed to guide deeper explorations. In the future, we
plan to explore how category information can be used earlier in the network for
better accuracy, improve depth completion potentially using additional consis-
tency losses, and extend the model to be category-level across both transparent
and opaque instances.
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Fig. 4. Qualitative results of category-level pose estimates from TransNet. The left
column is the original RGB image within our test set and the right column is the pose
estimation results. The white bounding box is the ground truth and the colored one is
the estimation result. Different colors represent different categories. For axial symmetric
objects, because we only care about the scale and z-axis, we use the ground truth x-
axis and estimated z-axis to calculate the estimated x-axis, for better visualization. In
the figure, there is a pitcher without either ground truth or estimated bounding box
because it is not within any of the defined categories, so we ignore it for both training
and testing.
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