Skip to main content

Integrated Bigdata Analysis Model for Industrial Anomaly Detection via Temporal Convolutional Network and Attention Mechanism

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2022)

Abstract

Bigdata analysis has been the key to the abnormal detection of industrial systems using the Industrial Internet of Things (IIoT). How to effectively detect anomalies using industrial spatial-temporal sensor data is a challenging issue. Deep learning-based anomaly detection methods have been widely used for abnormal detection and fault identification with limited success. Temporal Convolutional Network (TCN) has the advantages of parallel structure, larger receptive field and stable gradient. In this work, we propose a new industrial anomaly detection model based on TCN, called IAD-TCN. In order to highlight the features related to anomalies and improve the detection ability of the model, we also introduce attention mechanism into the model. The experimental results over real industrial datasets show that the IAD-TCN model outperforms the traditional TCN model, the long short-term memory network (LSTM) model, and the bidirectional long short-term memory network model (BiLSTM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, X., Ge, Z.: Local parameter optimization of LSSVM for industrial soft sensing with big data and cloud implementation. IEEE Trans. Industr. Inf. 16, 2917–2928 (2019)

    Article  Google Scholar 

  2. Wang, T., et al.: Big data cleaning based on mobile edge computing in industrial sensor-cloud. IEEE Trans. Ind. Inform. 16, 1321–1329 (2019)

    Article  Google Scholar 

  3. Siegel, B.: Industrial anomaly detection: a comparison of unsupervised neural network architectures. IEEE Sens. Lett. 4, 1–4 (2020)

    Article  Google Scholar 

  4. De Gooijer, J. G., Hyndman, R.J.: 25 Years of IIF time series forecasting: a selective review. Tinbergen Institute Discussion Papers (2005)

    Google Scholar 

  5. LSTM Learning With Bayesian and Gaussian Processing for Anomaly Detection in Industrial IoT (2020)

    Google Scholar 

  6. Shaikh, S.A., Kitagawa, H.: Efficient distance-based outlier detection on uncertain datasets of Gaussian distribution. World Wide Web 17(4), 511–538 (2014)

    Article  Google Scholar 

  7. Li, X., Gao, T., Chen, W.: Fuzzy dynamic Markov model for time series anomaly detection. In: 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC) IEEE (2021)

    Google Scholar 

  8. Xu, M., Han,, M.: Online prediction for multivariate time series by echo state network based on square-root cubature Kalman filter. In: Control Conference IEEE (2014)

    Google Scholar 

  9. Miljanovic, M.: Comparative analysis of recurrent and finite impulse response neural networks in time series prediction. Indian J. Comput. Sci. Eng. 3(1), 180–191 (2012)

    Google Scholar 

  10. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training Recurrent Neural Networks. JMLR.org (2012)

    Google Scholar 

  11. Nanduri, A., Sherry, L.: Anomaly detection in aircraft data using Recurrent Neural Networks (RNN). In: Integrated Communications Navigation & Surveillance IEEE (2016)

    Google Scholar 

  12. Sunny, M., Maswood, M., Alharbi, A.G.: Deep learning-based stock price prediction using LSTM and bi-directional LSTM model. In: 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES) (2020)

    Google Scholar 

  13. Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  14. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. Comput. Sci. (2014)

    Google Scholar 

  15. Zhao, Z., et al.: Research on time series anomaly detection algorithm and application. In: 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) IEEE (2019)

    Google Scholar 

  16. Knorr, E.M., Ng, R.T.: Finding intensional knowledge of distance-based outliers. Proc. VLDB 99, 211–222 (1999)

    Google Scholar 

  17. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LoF: Identifying density-based local outliers. SIGMOD Rec. 29(2), 93–104 (2000)

    Article  Google Scholar 

  18. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27(3), 832–837 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kumari, R., et al.: Anomaly detection in network traffic using K-mean clustering. In: 2016 3rd International Conference on Recent Advances in Information Technology (RAIT) IEEE (2016)

    Google Scholar 

  20. Liu, F.T., Ting, K. M., Zhou, Z.H.: Isolation forest. In: IEEE International Conference on Data Mining IEEE (2008)

    Google Scholar 

  21. Ren, H., El-Khamy, M., Lee, J.: Stereo disparity estimation via joint supervised, unsupervised, and weakly supervised learning. In: 2020 IEEE International Conference on Image Processing (ICIP) IEEE (2020)

    Google Scholar 

  22. Oord, A., et al.: WaveNet: a generative model for raw audio (2016)

    Google Scholar 

  23. Lea, C., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks: a unified approach to action segmentation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 47–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_7

    Chapter  Google Scholar 

  24. Yan, J., et al.: Temporal convolutional networks for the advance prediction of ENSO. Sci. Rep. 10(1), 8055 (2020)

    Article  Google Scholar 

  25. Lasswell, H.D.: The world attention survey. Public Opin. Q. 3, 456–462 (1941)

    Article  Google Scholar 

  26. kaggle.pumpsensor. www.kaggle.com/datasets/nphantawee/pump-sensor-data

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China, under Grant 62176122, 62001217; in part by A3 Foresight Program of NSFC, under Grant No. 62061146002; and in part by the Key Research and Development Program of Jiangsu Province, under Grant BE2019012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, C., Chen, B., Deng, H. (2023). Integrated Bigdata Analysis Model for Industrial Anomaly Detection via Temporal Convolutional Network and Attention Mechanism. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13421. Springer, Cham. https://doi.org/10.1007/978-3-031-25158-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25158-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25157-3

  • Online ISBN: 978-3-031-25158-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics