Skip to main content

Robust Clustered Federated Learning with Bootstrap Median-of-Means

  • Conference paper
  • First Online:
Book cover Web and Big Data (APWeb-WAIM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13421))

  • 901 Accesses

Abstract

Federated learning (FL) is a new machine learning paradigm to collaboratively learn an intelligent model across many clients without uploading local data to the server. Non-IID data across clients is a major challenge for the FL system because its inherited distributed machine learning framework is designed for the scenario of IID data across clients. Clustered FL is a type of FL method to solve non-IID challenges using a client clustering method in the FL context. However, existing clustered FL methods suffer the challenge of processing client-wise outliers which could be produced by minority clients with abnormal behaviour patterns or be derived from malicious clients. This paper is to propose a novel Federated learning framework with Robust Clustering (FedRoC) to tackle client-wise outliers in the FL system. Specifically, we will develop a robust federated aggregation operator using a bootstrap median-of-means mechanism that can produce a higher breakdown point to tolerate a larger proportion of outliers. We formulate the proposed FL framework into a bi-level optimization problem, and then a stochastic expectation-maximization method is adopted to solve the optimization problem in an alternative updating manner by considering EM steps and distributed computing simultaneously. The experiments on three benchmark datasets have demonstrated the effectiveness of the proposed method that outperforms other baseline methods in terms of evaluation criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.nist.gov/itl/products-and-services/emnist-dataset.

  2. 2.

    http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

References

  1. Ana, L.F., Jain, A.K.: Robust data clustering. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings, vol. 2, p. II. IEEE (2003)

    Google Scholar 

  2. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. Tech. rep, Stanford (2006)

    Google Scholar 

  3. Bhagoji, A.N., Chakraborty, S., Mittal, P., Calo, S.: Analyzing federated learning through an adversarial lens. In: International Conference on Machine Learning, pp. 634–643. PMLR (2019)

    Google Scholar 

  4. Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J.: Machine learning with adversaries: Byzantine tolerant gradient descent. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  5. Brunet-Saumard, C., Genetay, E., Saumard, A.: K-bMOM: A robust Lloyd-type clustering algorithm based on bootstrap median-of-means. Comput. Stat. Data Anal. 167, 107370 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caldas, S., et al.: Leaf: a benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018)

  7. Chen, F., Long, G., Wu, Z., Zhou, T., Jiang, J.: Personalized federated learning with graph. arXiv preprint arXiv:2203.00829 (2022)

  8. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: EMNIST: extending MNIST to handwritten letters. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2921–2926. IEEE (2017)

    Google Scholar 

  9. Davé, R.N., Krishnapuram, R.: Robust clustering methods: a unified view. IEEE Trans. Fuzzy Syst. 5(2), 270–293 (1997)

    Article  Google Scholar 

  10. Deshpande, A., Kacham, P., Pratap, R.: Robust \(k\)-means++. In: Conference on Uncertainty in Artificial Intelligence, pp. 799–808. PMLR (2020)

    Google Scholar 

  11. Dinh, C.T., Tran, N.H., Nguyen, T.D.: Personalized federated learning with moreau envelopes. arXiv preprint arXiv:2006.08848 (2020)

  12. García-Escudero, L.A., Gordaliza, A., Matrán, C., Mayo-Iscar, A.: A general trimming approach to robust cluster analysis. Ann. Stat. 36(3), 1324–1345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. García-Escudero, L.A., Gordaliza, A., Matrán, C., Mayo-Iscar, A.: A review of robust clustering methods. Adv. Data Anal. Classif. 4(2), 89–109 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ge, Y.F., Cao, J., Wang, H., Chen, Z., Zhang, Y.: Set-based adaptive distributed differential evolution for anonymity-driven database fragmentation. Data Sci. Eng. 6(4), 380–391 (2021)

    Article  Google Scholar 

  15. Ghosh, A., Chung, J., Yin, D., Ramchandran, K.: An efficient framework for clustered federated learning. arXiv preprint arXiv:2006.04088 (2020)

  16. Ghosh, A., Hong, J., Yin, D., Ramchandran, K.: Robust federated learning in a heterogeneous environment. arXiv preprint arXiv:1906.06629 (2019)

  17. Guha, S., Rastogi, R., Shim, K.: Rock: a robust clustering algorithm for categorical attributes. Inf. Syst. 25(5), 345–366 (2000)

    Article  Google Scholar 

  18. Huang, Y., et al.: Personalized cross-silo federated learning on Non-IID data. In: AAAI, pp. 7865–7873 (2021)

    Google Scholar 

  19. Kairouz, P., McMahan, H.B., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

  20. Kumagai, A., Iwata, T., Fujiwara, Y.: Transfer metric learning for unseen domains. Data Sci. Eng. 5(2), 140–151 (2020)

    Article  Google Scholar 

  21. Li, T., Sanjabi, M., Smith, V.: Fair resource allocation in federated learning. CoRR abs/1905.10497 (2019). http://arxiv.org/abs/1905.10497

  22. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE ICCV, pp. 3730–3738 (2015)

    Google Scholar 

  23. Long, G., Shen, T., Tan, Y., Gerrard, L., Clarke, A., Jiang, J.: Federated learning for privacy-preserving open innovation future on digital health. In: Chen, F., Zhou, J. (eds.) Humanity Driven AI, pp. 113–133. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-72188-6_6

    Chapter  Google Scholar 

  24. Long, G., Tan, Y., Jiang, J., Zhang, C.: Federated learning for open banking. In: Yang, Q., Fan, L., Yu, H. (eds.) Federated Learning. LNCS (LNAI), vol. 12500, pp. 240–254. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63076-8_17

    Chapter  Google Scholar 

  25. Luo, J., et al.: Real-world image datasets for federated learning. arXiv preprint arXiv:1910.11089 (2019)

  26. Ma, J., Long, G., Zhou, T., Jiang, J., Zhang, C.: On the convergence of clustered federated learning. arXiv preprint arXiv:2202.06187 (2022)

  27. Mansour, Y., Mohri, M., Ro, J., Suresh, A.T.: Three approaches for personalization with applications to federated learning. arXiv preprint arXiv:2002.10619 (2020)

  28. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  29. Paul, D., Chakraborty, S., Das, S.: Robust principal component analysis: a median of means approach. arXiv preprint arXiv:2102.03403 (2021)

  30. Sattler, F., Müller, K.R., Samek, W.: Clustered federated learning: Model-agnostic distributed multi-task optimization under privacy constraints. arXiv preprint arXiv:1910.01991 (2019)

  31. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.S.: Federated multi-task learning. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  32. Tan, Y., et al.: Fedproto: federated prototype learning across heterogeneous clients. In: AAAI Conference on Artificial Intelligence, vol. 1, p. 3 (2022)

    Google Scholar 

  33. Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=BkluqlSFDS

  34. Wang, Z., Zhou, T., Long, G., Han, B., Jiang, J.: FedNoiL: a simple two-level sampling method for federated learning with noisy labels. arXiv preprint arXiv:2205.10110 (2022)

  35. Xie, M., et al.: Multi-center federated learning. arXiv preprint arXiv:2108.08647 (2021)

  36. Yang, M.S., Lai, C.Y., Lin, C.Y.: A robust EM clustering algorithm for gaussian mixture models. Pattern Recogn. 45(11), 3950–3961 (2012)

    Article  MATH  Google Scholar 

  37. Yang, M.S., Wu, K.L.: A similarity-based robust clustering method. IEEE Trans. Pattern Anal. Mach. Intell. 26(4), 434–448 (2004)

    Article  Google Scholar 

  38. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 12 (2019)

    Google Scholar 

  39. Yin, D., Chen, Y., Kannan, R., Bartlett, P.: Defending against saddle point attack in byzantine-robust distributed learning. In: International Conference on Machine Learning, pp. 7074–7084. PMLR (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Long .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, M., MA, J., Long, G., Zhang, C. (2023). Robust Clustered Federated Learning with Bootstrap Median-of-Means. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13421. Springer, Cham. https://doi.org/10.1007/978-3-031-25158-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25158-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25157-3

  • Online ISBN: 978-3-031-25158-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics