Skip to main content

The Charge Transfer Network Model for Arbitrary Proteins Complexes

  • Conference paper
  • First Online:
Biomedical and Computational Biology (BECB 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13637))

Included in the following conference series:

  • 403 Accesses

Abstract

Due to the highly complex chemical structure of biomolecules, the extensive understanding of the electronic information for proteomics can be challenging. Here, we construct a charge transfer database at residue level derived from tens of thousands of electronic structure calculations among 20 × 20 possible amino acid side-chains combinations, which are extracted from available high-quality structures of thousands of protein complexes. Then, we propose the data driven network (D2Net) procedure to quickly identify the critical residue or residue groups for any possible protein structure. As an initial evaluation, we apply this model to scrutinize the charge transfer networks for randomly selected a protein which is associated with signal transduction. This D2Net model highlights the global view of the charge transfer topology in representative proteins, for which the most critical residues show the largest number of degrees acting as network hubs. This work provides us a promising tool for efficiently understanding the electronic information in the growing number of high-quality experimental proteins structures, with minor computational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleming, G.R., Martin, J.L., Breton, J.: Rates of primary electron transfer in photosynthetic reaction centres and their mechanistic implications. Nature 333, 190 (1988)

    CAS  Google Scholar 

  2. Hervás, M., Navarro, J.A., De la Rosa, M.A.: Electron transfer between membrane complexes and soluble proteins in photosynthesis. Acc. Chem. Res. 36(10), 798–805 (2003)

    PubMed  Google Scholar 

  3. Mora, S.J., Odella, E., Moore, G.F., Gust, D., Moore, T.A., Moore, A.L.: Proton-coupled electron transfer in artificial photosynthetic systems. Acc. Chem. Res. 51(2), 445–453 (2018)

    CAS  PubMed  Google Scholar 

  4. Schindelin, H., Kisker, C., Schlessman, J.L., Howard, J.B., Rees, D.C.: Structure of ADP·AIF4–stabilized nitrogenase complex and its implications for signal transduction. Nature 387(6631), 370–376 (1997)

    CAS  PubMed  Google Scholar 

  5. Gasper, R., Wittinghofer, F.: The Ras switch in structural and historical perspective. Biol. Chem. 401(1), 143–163 (2020)

    CAS  Google Scholar 

  6. Saura, P., Kaila, V.R.I.: Energetics and dynamics of proton-coupled electron transfer in the NADH/FMN site of respiratory complex I. J. Am. Chem. Soc. 141(14), 5710–5719 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Moughal Shahi, A.R., Domratcheva, T.: Challenges in computing electron-transfer energies of DNA repair using hybrid QM/MM models. J. Chem. Theory Comput. 9(10), 4644–4652 (2013)

    CAS  PubMed  Google Scholar 

  8. Chen, X., et al.: Water promoting electron hole transport between tyrosine and cysteine in proteins via a special mechanism: double proton coupled electron transfer. J. Am. Chem. Soc. 136(12), 4515–4524 (2014)

    CAS  PubMed  Google Scholar 

  9. Stubbe, J., Nocera, D.G., Yee, C.S., Chang, M.C.Y.: Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem. Rev. 103(6), 2167–2202 (2003)

    CAS  PubMed  Google Scholar 

  10. Gray, H.B., Winkler, J.R.: Electron transfer in proteins. Annu. Rev. Biochem. 65(1), 537–561 (1996)

    CAS  PubMed  Google Scholar 

  11. Kopka, B., et al.: Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Sci. Rep. 7(1), 13346 (2017)

    PubMed  PubMed Central  Google Scholar 

  12. Roitberg, A.E., Holden, M.J., Mayhew, M.P., Kurnikov, I.V., Beratan, D.N., Vilker, V.L.: Binding and electron transfer between putidaredoxin and cytochrome P450cam. Theory and experiments. J. Am. Chem. Soc. 120(35), 8927–8932 (1998)

    CAS  Google Scholar 

  13. Gilbert Gatty, M., Kahnt, A., Esdaile, L.J., Hutin, M., Anderson, H.L., Albinsson, B.: Hopping versus tunneling mechanism for long-range electron transfer in porphyrin oligomer bridged donor–acceptor systems. J. Phys. Chem. B 119(24), 7598–7611 (2015)

    CAS  PubMed  Google Scholar 

  14. Voityuk, A.A.: Long-range electron transfer in biomolecules. Tunneling or hopping? J. Phys. Chem. B 115(42), 12202–12207 (2011)

    CAS  PubMed  Google Scholar 

  15. Rossi, R.A., Pierini, A.B., Peñéñory, A.B.: Nucleophilic substitution reactions by electron transfer. Chem. Rev. 103(1), 71–168 (2003)

    CAS  PubMed  Google Scholar 

  16. Prytkova, T.R., Kurnikov, I.V., Beratan, D.N.: Coupling coherence distinguishes structure sensitivity in protein electron transfer. Science 315(5812), 622 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Saen-Oon, S., Lucas, M.F., Guallar, V.: Electron transfer in proteins: theory, applications and future perspectives. Phys. Chem. Chem. Phys. 15(37), 15271–15285 (2013)

    CAS  PubMed  Google Scholar 

  18. Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Baxevanis, A.D., Bateman, A.: The importance of biological databases in biological discovery. Curr. Protoc. Bioinform. 50(1), 111–118 (2015)

    Google Scholar 

  20. Zou, D., Ma, L., Yu, J., Zhang, Z.: Biological databases for human research. Genom. Proteom. Bioinform. 13(1), 55–63 (2015)

    Google Scholar 

  21. Zhang, Q., et al.: Biological databases for hematology research. Genom. Proteom. Bioinform. 14(6), 333–337 (2016)

    Google Scholar 

  22. Rezende, P.M., Xavier, J.S., Ascher, D.B., Fernandes, G.R., Pires, D.E.V.: Evaluating hierarchical machine learning approaches to classify biological databases. Brief. Bioinform. 23(4), bbac216 (2022)

    PubMed  PubMed Central  Google Scholar 

  23. Daniel Navarro, J., Niranjan, V., Peri, S., Kiran Jonnalagadda, C., Pandey, A.: From biological databases to platforms for biomedical discovery. Trends Biotechnol. 21(6), 263–268 (2003)

    CAS  PubMed  Google Scholar 

  24. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824 (2002)

    CAS  PubMed  Google Scholar 

  25. Bock, J.R., Gough, D.A.: Whole-proteome interaction mining. Bioinformatics 19(1), 125–134 (2003)

    CAS  PubMed  Google Scholar 

  26. Yu, J., et al.: Hierarchical porous biochar from shrimp shell for persulfate activation: a two-electron transfer path and key impact factors. Appl. Catal. B Environ. 260, 118160 (2020)

    CAS  Google Scholar 

  27. Dempsey, J.L., Winkler, J.R., Gray, H.B.: Proton-coupled electron flow in protein redox machines. Chem. Rev. 110(12), 7024–7039 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cordes, M., Giese, B.: Electron transfer in peptides and proteins. Chem. Soc. Rev. 38(4), 892–901 (2009)

    CAS  PubMed  Google Scholar 

  29. Teo, R.D., Wang, R., Smithwick, E.R., Migliore, A., Therien, M.J., Beratan, D.N.: Mapping hole hopping escape routes in proteins. Proc. Natl. Acad. Sci. USA 116(32), 15811–15816 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Song, X., Zhang, F., Bu, Y.: Dynamic relaying properties of a β-turn peptide in long-range electron transfer. J. Comput. Chem. 40(9), 988–996 (2019)

    CAS  PubMed  Google Scholar 

  31. Dral, P.O.: Quantum chemistry in the age of machine learning. J. Phys. Chem. Lett. 11(6), 2336–2347 (2020)

    CAS  PubMed  Google Scholar 

  32. Wang, H., Liu, F., Dong, T., Du, L., Zhang, D., Gao, J.: Charge-transfer knowledge graph among amino acids derived from high-throughput electronic structure calculations for protein database. ACS Omega 3(4), 4094–4104 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cui, P., Wu, J., Zhang, G., Liu, C.: Hole polarons in poly(G)-poly(C) and poly(A)-poly(T) DNA molecules. Sci. China Ser. B Chem. 51(12), 1182–1186 (2008)

    CAS  Google Scholar 

  34. Vehoff, T., Chung, Y.S., Johnston, K., Troisi, A., Yoon, D.Y., Andrienko, D.: Charge transport in self-assembled semiconducting organic layers: role of dynamic and static disorder. J. Phys. Chem. C 114(23), 10592–10597 (2010)

    CAS  Google Scholar 

  35. Baumeier, B., Stenzel, O., Poelking, C., Andrienko, D., Schmidt, V.: Stochastic modeling of molecular charge transport networks. Phys. Rev. B 86(18), 184202 (2012)

    Google Scholar 

  36. Savoie, B.M., et al.: Mesoscale molecular network formation in amorphous organic materials. Proc. Natl. Acad. Sci. USA 111(28), 10055–10060 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jackson, N.E., Chen, L.X., Ratner, M.A.: Charge transport network dynamics in molecular aggregates. Proc. Natl. Acad. Sci. USA 113(31), 8595–8600 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, F., Du, L., Zhang, D., Gao, J.: Direct learning hidden excited state interaction patterns from ab initio dynamics and its implication as alternative molecular mechanism models. Sci. Rep. 7(1), 8737 (2017)

    PubMed  PubMed Central  Google Scholar 

  39. Liu, F., Du, L., Lan, Z., Gao, J.: Hydrogen bond dynamics governs the effective photoprotection mechanism of plant phenolic sunscreens. Photochem. Photobiol. Sci. 16(2), 211–219 (2017). https://doi.org/10.1039/c6pp00367b

    Article  CAS  PubMed  Google Scholar 

  40. Apra, E., et al.: NWChem: past, present, and future. J. Chem. Phys. 152(152), 184102 (2020)

    CAS  PubMed  Google Scholar 

  41. Banerjee, R., Sen, M., Bhattacharya, D., Saha, P.: The jigsaw puzzle model: search for conformational specificity in protein interiors. J. Mol. Biol. 333(1), 211–226 (2003)

    CAS  PubMed  Google Scholar 

  42. Chakrabarti, P., Bhattacharyya, R.: Geometry of nonbonded interactions involving planar groups in proteins. Prog. Biophys. Mol. Biol. 95(1), 83–137 (2007)

    CAS  PubMed  Google Scholar 

  43. Amdursky, N.: Electron transfer across helical peptides. ChemPlusChem 80(7), 1075–1095 (2015)

    CAS  PubMed  Google Scholar 

  44. Paquete, C.M., Louro, R.O.: Unveiling the details of electron transfer in multicenter redox proteins. Acc. Chem. Res. 47(1), 56–65 (2014)

    CAS  PubMed  Google Scholar 

  45. Dogrusoz, U., Giral, E., Cetintas, A., Civril, A., Demir, E.: A layout algorithm for undirected compound graphs. Inf. Sci. 179(7), 980–994 (2009)

    Google Scholar 

  46. Banaji, M., Baigent, S.: Electron transfer networks. J. Math. Chem. 43(4), 1355–1370 (2008)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Binzhou University (No. 2019Y13). The calculations are partially performed on the Aliyun Elastic Compute Service. The authors also thanks professor Jun Gao for his earlier support for this work. This work also receives free supported by Xiazkey Company for technological optimizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Likai Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, F., Du, L. (2023). The Charge Transfer Network Model for Arbitrary Proteins Complexes. In: Wen, S., Yang, C. (eds) Biomedical and Computational Biology. BECB 2022. Lecture Notes in Computer Science(), vol 13637. Springer, Cham. https://doi.org/10.1007/978-3-031-25191-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25191-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25190-0

  • Online ISBN: 978-3-031-25191-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics