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Universum-inspired Supervised Contrastive
Learning

Aiyang Han, Chuanxing Geng, Songcan Chen†

Abstract—As an effective data augmentation method, Mixup
synthesizes an extra amount of samples through linear interpo-
lations. Despite its theoretical dependency on data properties,
Mixup reportedly performs well as a regularizer and calibrator
contributing reliable robustness and generalization to deep model
training. In this paper, inspired by Universum Learning which
uses out-of-class samples to assist the target tasks, we investigate
Mixup from a largely under-explored perspective - the potential
to generate in-domain samples that belong to none of the target
classes, that is, universum. We find that in the framework
of supervised contrastive learning, Mixup-induced universum
can serve as surprisingly high-quality hard negatives, greatly
relieving the need for large batch sizes in contrastive learning.
With these findings, we propose Universum-inspired supervised
Contrastive learning (UniCon), which incorporates Mixup strat-
egy to generate Mixup-induced universum as universum negatives
and pushes them apart from anchor samples of the target
classes. We extend our method to the unsupervised setting,
proposing Unsupervised Universum-inspired contrastive model
(Un-Uni). Our approach not only improves Mixup with hard
labels, but also innovates a novel measure to generate universum
data. With a linear classifier on the learned representations,
UniCon shows state-of-the-art performance on various datasets.
Specially, UniCon achieves 81.7% top-1 accuracy on CIFAR-100,
surpassing the state of art by a significant margin of 5.2% with
a much smaller batch size, typically, 256 in UniCon vs. 1024
in SupCon [1] using ResNet-50. Un-Uni also outperforms SOTA
methods on CIFAR-100. The code of this paper is released on
https://github.com/hannaiiyanggit/UniCon.

Index Terms—Contrastive Learning, Supervised Learning,
Universum, Mixup.

I. INTRODUCTION

AS a strong augmentation technique in supervised learn-
ing, Mixup has empirically and theoretically been proved

to boost the performance of neural networks with its reg-
ularization power [2]–[4]. Besides its reliable performance,
Mixup is also reported to strengthen deep models with better
calibration [5], robustness [6], [7] and generalization [6],
thus being widely used in adversarial training [4], domain
adaptation [8], imbalance problems [9] and so on. However,
as Mixup-style training depends heavily on data properties
[10], on certain cases, chances are that traditional Mixup
labels cannot correctly describe the augmented data. These
labels, when taken as the ground truth, may provide unreliable
supervision for learners.

A. Han, C. Geng and S. Chen are with Nanjing University of Aeronautics
and Astronautics.†Corresponding author: s.chen@nuaa.edu.cn

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes a
supplemental essay on the details of the experiments as well as the algorithm.
Contact s.chen@nuaa.edu.cn for further questions about this work.

To solve the problem of unreliable labelling, Universum
learning allows us to see Mixup in a new light. Introduced
by [11], [12], universum is referred to as in-domain samples
that belong to none of the target classes in classification. In
the scenario of universum learning, usually a new dataset
of universum is introduced to assist classification of the
target dataset (e.g. hand-written letters are introduced to help
classify hand-written digits) [13]–[15]. Although universum
data cannot be assigned to the classes in question, they still
can be constructed into a regularization term so as to improve
the model performance with their domain knowledge and
negativity [12]. From the perspective of universum learning,
here comes a natural question: instead of using the linear
interpolations of original labels, why don’t we assign Mixup
samples to a generalized negative class? Just as humans may
perceive, if an animal is half dog and half cat, it is actually
of neither species. The conventional methods of Mixup treat
Mixup data from various Mixup (or combined) coefficients
equally, while, in reality, different coefficients could make data
of different characteristics. This paper intends to argue that
there exist some special values of coefficient λ, especially
λ = 0.5, that generate a bundle of Mixup data which can
be hardly related to any of the semantics of the original
images so as to possess some characteristics of universum data.
Therefore, these Mixup data are denoted as Mixup-induced
universum.

As is shown in Fig. 1(a), Mixup-induced universum (the
Mixup image) is regarded as neither dog nor cat, but rather
an universum data point. With this approach, models can be
free from the concern of unreliable ground truth labels in
Mixup. What’s more, the combination of universum learning
and Mixup also introduces a new way to acquire universum
data, which extends universum learning to fully-supervised
setting. Compared with foreign samples such as hand-written
letters in the classification of hand-written digits, universum
data produced by Mixup are semantically closer to target data,
which may provide better regularization effects in training.

The naı̈ve way of assigning Mixup-induced universum to a
newly defined category may result into imbalanced data when
Mixup data far outweigh original data in amount. Therefore,
to benefit more from large amounts of universum data, a
contrastive framework is adopted in this paper. Recently, con-
trastive learning has greatly boosted deep learning via pulling
together positive sample pairs and separating negative pairs in
the embedding space [1], [16]–[19]. Early contrastive models
only take augmentations of the same image as positive pairs,
while treating all other sample pairs as negative pairs [16],
[17]. Specially, SupCon model extended contrastive learning
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Fig. 1: The intuition behind our model. (a): When processing Mixup labels, traditional method uses the mixture of original
labels, but universum-style method regards Mixup data points as belonging to neither of the original classes, thus assigning
the new points to a generalized negative class which is compulsorily limited to some desired region. (b): In the framework
of supervised contrastive learning, universum-style Mixup images can serve as negative samples for all anchor samples of the
target classes. By pushing these Mixup-induced universum (universum negatives) apart from other data points, the model can
better separate images from different classes.

to the fully-supervised setting by including samples from the
same class into positives for each anchor sample [1].

Although contrastive learning and Mixup both improve the
performance of supervised learning, the combination of the
two can be especially difficult due to their opposite ways of
organizing data. While Mixup softly assigns augmented data to
multiple classes [20], contrastive learning requires hard labels
to compute the contrastive loss. A few attempts have been
made to conjoin contrastive learning and Mixup either by
designing a Mixup version of InfoNCE loss [21] or by using
the naı̈ve addition of the InfoNCE loss and the Mixup-style
cross entropy loss [22]. A better exploration might be MoCHi
[23], which applies Mixup only to the hard negatives in the
memory bank so as to acquire more and harder negatives.
However, these methods pay more attention to softening the
contrastive learning rather than innovating Mixup strategy,
ignoring the innate potential of Mixup to produce negative
samples.

In this paper, inspired by universum learning, we introduce
a novel measure to combine contrastive learning and Mixup
with the simple idea that Mixup samples could be hard
negatives. Unlike [23] that selects and mixes hard negatives,
our method randomly mixes two images from different classes
and assumes that these Mixup data are hard due to their visual

ambiguity. Following the framework of supervised contrastive
learning, we go a step further to include Mixup images into the
contrastive loss by viewing them as Mixup-induced universum
- universum data which are negative to the global dataset -
in contrast with traditional negatives that are negative for a
limited group of anchor samples. As is shown in Fig. 1(b), we
incorporates Mixup to generate Mixup-induced universum and
pushes them apart from anchor samples of the target classes.
For each anchor sample, a contrast sample is chosen from
other classes to synthesize a universum data point, which
helps establish clearer margins among different instances as
well as different classes. Since traditional Mixup strategy
that samples the Mixup parameter from Beta distribution [2]
may generate samples semantically close to a target class, we
fix the Mixup parameter to a constant, thereby driving the
synthesized universum data out of the regions of target classes
in the data space. Although the idea is simple, there is no
prior knowledge on how to contrast these universum negatives
with anchor samples. We design two loss functions based on
the intuitions mentioned above, and empirically show that an
entirely universum-based loss achieves better performance on
datasets. In such a universum-based framework, universum
data are adopted both for contrast with negatives and derivation
of class centers. Despite the coarse design of this loss function,
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it is especially effective with universum data used in all stages
to help construct more robust and representative features. Our
use of universum data spares us the efforts for hard negative
mining, as Mixup samples naturally become hard negatives
with their visual ambiguity.

Our work provides an effective method for fully-supervised
learning. We validate the performance of UniCon on a range
of datasets. On ResNet-50 [24], UniCon achieves 81.7% top-1
accuracy on CIFAR-100 and 97.4% on CIFAR-10 [25], which
surpasses the state of art [1] by 5.2% and 1.4% respectively.
Our method can be applied to other contrastive learning
methods in need of large amounts of negatives. This paper
is based on our APWeb-WAIM paper [26] and extended in
several aspects:

i) We theoretically and empirically prove that our proposed
loss function can benefit from hard universum nega-
tives, while contributing to large margins among different
classes.

ii) We test UniCon on CIFAR-100-C and TinyImageNet-
C to prove its robustness. Our proposed method greatly
strengthens model robustness in the face of various cor-
ruptions.

iii) We conduct a comprehensive experiment to explore the
performance of SOTA models combining augmentations
and two mixture methods (Mixup [2] and CutMix [20]).
It is shown that UniCon outperforms other models even
when applied with the exactly same tricks.

iv) We newly propose the unsupervised version of our model,
which, on the basis of UniCon, is achieved by simply
using data points’ indices in a batch for their pseudo-
labels.

Our main contributions are as follows:

• We investigate Mixup from the perspective of universum
learning, thus unearthing Mixup’s potential of generating
samples that lie in the same domain as the target data yet
belong to none of the target classes. We dig out Mixup as
a novel measure to acquire universum data from a fully
supervised dataset.

• We introduce Universum-inspired supervised Contrastive
learning (UniCon), which incorporates Mixup to generate
Mixup-induced universum as negatives and pushes them
apart from anchor samples of the target classes. Different
from other contrastive models where the negativity of
samples varies with anchors, such universum negatives
in our model are negative to the global dataset. To our
best knowledge, this is the first time that Mixup is used
to produce a generalized negative class.

• We find that in the framework of supervised contrastive
learning, Mixup samples can work surprisingly good as
hard negatives.

• We show that our model can achieve outstanding perfor-
mance on a range of datasets with a relatively small-scale
neural network as well as a smaller batch size.

• In the unsupervised setting, our proposed Unsupervised
Universum-inspired contrastive model (Un-Uni) also
achieves state-of-the-art performance.

II. RELATED WORKS

In this section, we will give a brief introduction of Mixup,
universum learning and contrastive learning, as well as their
relation to our method.

A. Mixup

Since Mixup was proposed by [2], it has been widely
accepted as an effective and efficient measure for deep training
[3], [4]. Despite Mixup’s outstanding performance, recently
the foundations of Mixup have also been scrutinized in theory.
[3] theoretically proves that Mixup is a strong regularizer and
equals to a standard empirical risk minimization estimator in
the face of noises. [5] focuses on Mixup’s effects of improving
calibration and predictive uncertainty. [6] gives a theoretical
explanation on how Mixup contributes to robustness and
generalization of deep models. While Mixup is empirically and
theoretically proved a reliable method, [10] demonstrates its
data dependency by computing a closed form for the Mixup-
optimal classification, and thereby providing a failure case
of Mixup. This failure case indicates that Mixup could also
be misleading as the synthesized data points are still softly
connected with the original labels. Our method intends to
disconnect the Mixup data from all known classes so that
the additional domain knowledge could be learned without
misleading information.

B. Universum Learning

Universum was introduced by Vapnik as “an alternative
capacity concept to the large margin approach”, which in-
dicates a group of samples that cannot be assigned to any
target class in classification [11]. Universum learning is mostly
explored as a new research scenario where a relevant dataset
is introduced to assist the tasks on the target dataset. [12]
has theoretically proved that the use of universum data could
benefit Support Vector Machines (SVM) with regularization
effects. Various research has extended Universum Learning
to metric learning [27], canonical correlation analysis [28],
transductive learning [29] and so on. By using unlabeled data
as universum data, [30] theoretically and empirically proves
the efficiency of such universum prescription. Inspired by
universum learning, our model, instead of importing a dataset,
generates a group of universum samples from the target dataset
to assist classification.

C. Contrastive Learning

Contrastive learning learns deep representations through
contrasting positive sample pairs against negative ones. The
definition of positive and negative pairs varies with different
contrastive models. SimCLR [16], [31] and MoCo [17], [32]
only admit augmentations of the same image as positive pairs,
while cluster-based methods like SupCon [1] and SwAV [18]
also give in-class positives a pass. While classical contrastive
models use the InfoNCE loss [33], more contrastive losses
have flourished [34]–[36]. For example, Barlow Twins [19]
aims to reduce data redundancy with a cross-correlation ma-
trix, while BYOL [37] strengthens the consistency among
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views by predicting the second view from the first one. For
further details on contrastive learning, we refer our readers to
[38].

Several attempts have been made to construct Mixup-style
contrastive models [21]–[23], [39]–[41]. Mixco [21] pulls
Mixup data towards their original images in a Mixup way,
while MoCHi [23] uses Mixup only on the hard negatives to
capture the hardest negatives. Similarly, [41] provides a semi-
supervised version of MoCHi. In the unsupervised setting, Un-
Mix [39] only mixes the images, closing the distance among
the Mixup image and an augmented version of Mixup data.
Different from them, UniCon does not combine Mixup and
contrastive learning in a naı̈ve way. Instead, we delve into the
nature of hard negatives, adopting Mixup as a way of hard
negative generation. In this way, we not only train a more
effective model, but also relieve the need for a large batch size
in contrastive learning as is shown in the latter experimental
results.

III. METHOD

This section begins with a brief introduction of self-
supervised and supervised contrastive losses, after which we
present universum-style Mixup method. Then, with the Mixup-
induced universum, small-scale and large-scale UniCon losses
are proposed, while the latter is empirically proved to be a
better one.

Following the framework of [1], our approach is in nature a
representation learning method. A deep encoder f is adopted
to learn the representations of target samples through minimiz-
ing a proposed loss. With N being the batch size, each data
point and its label are denoted by xk and yk (k = 1, 2, .., N),
while the corresponding augmented sample and its label is
denoted by x̃k and ỹk (k = 1, 2, .., 2N). Note that x̃2k−1

and x̃2k are two transformed augmentations derived from xk,
thus ỹ2k−1 = ỹ2k = yk. Since most of our operations are
performed on the augmented set, we will refer to this set of
2N samples as “a training batch” in the following part. The
framework of UniCon is depicted in Fig. 2.

A. Contrastive Loss

Our proposed method is based on contrastive learning.
As the most used contrastive loss, InfoNCE loss [33] draws
positive pairs close to each other while separating the negative
ones. InfoNCE loss is defined in this form:

Lcontrast = − 1

2N

2N∑

i=1

log
exp(zi · zp(i)/τ)∑
k ̸=i exp(zi · zk/τ)

, (1)

where zi = f(x̃i) represents the normalized deep embedding
for each data point, τ is a temperature parameter, and p(i)
indicates a positive for anchor i while the rest indices are
negatives.

Considering that Eq. 1 does not encode the label infor-
mation, SupCon loss [1] involves in-class samples into the
positives:

Fig. 2: An overview of UniCon. First a random batch is put
through universum-style Mixup module to produce a batch
of universum. Then both the original batch and universum
data are encoded into deep representations, while universum
representations are further utilized to generate class centers.
After that, the model maximizes the similarity between an-
chors and their corresponding class centers while minimizing
the similarity between anchors and all universum data points.

Lsup =

2N∑

i=1

−1

|Di|
∑

d∈Di

log
exp(zi · zd/τ)∑
k ̸=i exp(zi · zk/τ)

, (2)

where Di ≡ {k|k ∈ {1, 2, .., 2N}, k ̸= i, ỹk = ỹi} is a set of
indices that refer to samples in the same class with i, and |Di|
denotes the capacity of the set. Both two losses pay limited
attention to negative pairs, simply recycling the non-positive
sample pairs.

B. Universum-style Mixup

Motivated by universum learning, universum-style Mixup
intends to provide a set of additional negatives to boost the
performance of contrastive learning. It is assumed that by
rejecting visual ambiguity, classes can be better separated
with margins among them. Just like traditional Mixup method,
Universum-style Mixup convexly combine each anchor sample
x̃i in a training batch, and its out-of-class negative x̃q(i) to
generate a universum negative ui. Different from traditional
Mixup strategy, in our approach the Mixup parameter λ is set
to a certain number rather than randomly sampled from Beta
distribution. With this approach, we minimize the possibility
of the universum data falling into the regions of target classes
in the data space, thereby ensuring the negativity of Mixup-
induced universum in a more principled way. The universum
is acquired through the following process:

ui = λ · x̃i + (1− λ) · x̃q(i), i = 1, 2, .., 2N, (3)

where q(i) is randomly chosen from ∪k ̸=iDk and λ is the
Mixup parameter. In the remainder of this paper, ui will be
referred to as a “g-negative” and x̃i will be referred to as its
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“anchor”. Please note that universum-style Mixup does not
mix the labels, and therefore the synthesized samples should
belong to, if any, a generalized negative class. By doing so,
our method completely drops the effect of label smoothing in
Mixup [3], in return earning a group of samples with hard
labels. Furthermore, since the mixed data point is randomly
sampled from out-of-class data, such Mixup can serve as an
instance adaptive way [42] to generate mildly adversarial data
[43] that contribute to the robustness of our model.

The expectation of ui is the mixture of x̃i and all of its
out-of-class negatives.

E(ui) = λx̃i + (1− λ)E(x̃q(i)) (4)

= λx̃i + (1− λ)

∑
k/∈Di

x̃k

2N − |Di|
(5)

Therefore, ui can be viewed as sampled from the classification
boundaries in all directions with respect to x̃i. Compared to
traditional Mixup data which are regarded as pseudo images
with soft labels, universum-style Mixup images can be better
interpreted as true data that belong to a generalized negative
class so as to provide guidance for training with more relia-
bility.

C. Universum-inspired Supervised Contrastive Learning

In this paper, our approach introduces a set of universum
data uk

2N
k=1 (which has been elaborated in Eq. 3) into the

contrastive loss. The normalized encoded representation of ul

is denoted as zuk = f(uk). As Fig. 2 shows, our proposed
method intends to draw anchor samples close to the center
of their class while pushing them from negatives. Here two
solutions (Ladd and LUniCon) are presented in the following
parts.

Universum data as additional negatives. A straightfor-
ward way of combining supervised contrastive learning and
Mixup-induced universum is to use universum data as addi-
tional negatives.

Ladd =
2N∑

i=1

−1

|Di|
∑

d∈Di

log
exp(zi · zd/τ)

∑
k ̸=i exp(zi · zk/τ) +

∑2N
k=1

exp(zi · zuk/τ)
(6)

Ladd generally adopts the original form of Eq. 2, yet
further contrasting anchor samples with universum negatives.
This loss function aims to use large amounts of universum
negatives to alleviate the need for large amounts of negative
samples in contrastive learning [1], [16]. However, as Table
VIII demonstrates, this loss function is not very effective on
CIFAR-100 dataset. To justify such a result, here are two
possible causes. On the one hand, it is deduced that the
problem of “manifold intrusion” in Mixup (e.g. an image
of number “1” and image of number “4” are mixed into a
image that somewhat looks like number “4”) may also appear
in our universum-style Mixup, leading to poor results [44].
On the other hand, Ladd may overemphasize negatives, which
produces undesirable disequilibrium.

These possible causes indicate that Ladd pays too much
attention to universum negatives which possess too many
noises, while the in-class positives are too clean to handle
them. Therefore, comes up a natural idea that universum
data should also be introduced into contrast with positives to

maintain a balance between positives and negatives. Based
on this idea, this paper proposes an entirely universum-based
method.

An entirely universum-based method. Here is the main
loss function we use in this paper. This strategy is entirely
based on universum data, both for contrast with negatives and
derivation of class centers in the embedding space. It is worth
noticing that since universum images are the equal mixture of
two images from different classes, their features will naturally
fall into the margin between two clusters. Eq. 5 has shown that
these universum data are sampled from the decision boundaries
in all directions. Therefore, as Fig. 3 illustrates, universum data
points that are close to the cluster of zi are very likely to girdle
the in-class space so their mean may serve as a better cluster
center than the mean of in-class positives. According to these
intuitions, our model pushes the anchors close to universum-
based class centers rather than positives. The loss function is
in the following form.

LUniCon = −
2N∑

i=1

log
exp(zi ·mi/τ)∑

k ̸=i exp(zi · zuk/τ)
(7)

where mi = (
∑

d∈Di
zud)/|Di| is the mean of the repre-

sentations of universum data points around the cluster of zi.
According to Eq. 7, LUniCon drives in-class data points close
to class center mi, which is derived from universum data.
Meanwhile, LUniCon only adopts universum data as negatives,
dropping out negatives in the conventional sense, which further
improves model robustness. Still, it should be admitted that
this strategy is coarse and primary, yet the experimental results
show that it is especially effective.

Table. VIII empirically demonstrates that LUniCon works
better than Ladd. The performance of Ladd is even worse
than the loss without the extra universum negatives, which
implies that an entirely universum-based framework is crucial
for utilizing the universum data. Based on these findings, we
deduce that our method generalizes better to the test set for
the following reasons:

Noise injection. In the aforementioned situation, our
method injects noises to the training data (e.g. anchors in class
“4” regard number“4” synthesized by “1” and “4” as a negative
sample). On the one hand, such technique is widely used in
adversarial training as well as contrastive learning to learn a
more robust model [44]–[46]. On the other hand, since Mixup-
induced universum are used in both contrast with negatives and
class centers, these two kinds of contrast are in a restrictive
relation with each other. Noises in universum negatives can
help derive a more accurate class center, and vice versa.

A different approach of contrast Our method does not
directly contrast anchors with conventional out-of-class neg-
atives in [1]. However, UniCon still uses universum data as
negatives, which differentiates itself from absolutely contrast-
free methods like [37]. By contrasting with universum nega-
tives and benefiting from their data diversity, UniCon not only
avoids contrastive models’ dependency on large batch sizes,
but also allows a balanced network design easier to optimize.
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Fig. 3: The illustration of using the mean of universum data
points for a class center. Here the universum data points are
synthesized from the positives of the class in question. Since
these universum data are expected to be distributed in the
margin space girdling the in-class space, their mean may better
describe the class especially when the positive samples are not
evenly distributed in a minibatch.

D. Unsupervised Universum-inspired Contrastive Model

Our method could also be applied to the unsupervised
setting. Considering the specific situation of the task, the loss
function is adapted to the following form:

LUn−Uni = Lcontrast + LUni (8)

Here Lcontrast is the SimCLR loss which can be computed
through Eq.1. In this setting, we sum up LUni and an original
contrastive loss for the ultimate Un-Uni loss function. The
unsupervised version of LUniCon is derived by simply setting
the labels of a minibatch to [0, 1, .., N-1]. In this way, the
loss function becomes the following form.

LUni = −
2N∑

i=1

log
exp[zi · 1

2 (zui + zup(i))/τ ]∑
k ̸=i exp(zi · zuk/τ)

(9)

where p(i) represents the index of the only corresponding posi-
tive for each anchor (i.e. the counterpart in a [i, i+N] pair (i=1,
2, .., N)). Similarly, the anchors are drawn close to an instance
center derived from the mean of related universum pseudo-
positives. Please note that the term Lcontrast is necessary since
each instance center is derived from only two data points and
therefore could be easily influenced by noises.

E. Theoretical Analysis

With analysis on gradients, we intend to show that UniCon
loss not only has the effect of hard negative mining, but
also helps maintain large margins among different classes.
Since the theoretical foundations of the contrastive framework
abounds, we would focus on the effectiveness of our universum
images.

Hard negative mining. Following [1], we calculate the
gradients of LUniCon,i with respective to zi. The gradient can
be written in the following form:

∂LUniCon,i

∂zi
=

1

τ


−mi +

∑

k ̸=i

zukPUk +G


 (10)

where we define,

PUk =
exp(zi · zuk/τ)∑
j ̸=i exp(zi · zuj/τ)

(11)

G =
zi
∑

k ̸=i exp(zi · zuk/τ)
∂zuk

∂zi∑
k ̸=i exp(zi · zuk/τ)

(12)

The gradient can be divided into three parts: the representa-
tion of the class center, gradient of universum negatives, and
universum gradient G. Obviously, the optimization process is
always influenced by the class center mi. In line with [1],
UniCon loss also inherits the inner ability of hard negative
mining. Here we show it with gradient of universum nega-
tives. When a universum negative representation zuk is hard,
zi · zuk ≈ 1, otherwise zi · zuk ≈ 0. Apparently, the harder
zuk is, the larger Pn becomes, and therewith the greater its
influence towards the optimization. The details can be found
in the supplementary material.

Large margin maintenance. By further calculating the
gradients of zuk with respect to x̃i, we derive the following
form of G:

G =
(1− λ)zi
f ′(x̃i)

∑

k∈Qi

f
′
(uk)PUk (13)

where we denote Qi = {k|q(k) = i} and f is the deep
encoder. It is worth noticing that G increases with f

′
(uk).

Since uk is the mean of two images of different classes,
f(uk) would naturally fall into the margin between these two
clusters. We conjecture that when f

′
(uk) is large, the gradients

on the universum data points are sharp and changing quickly
due to the reason that the margins among different classes
are narrow in the deep embedding space. In contrast, small
f

′
(uk) suggests gentle gradients and wide margins. Our model

is expected to benefit from G in the former situation and
draw clearer decision boundaries by converging to the latter
situation.

TABLE I: Dataset settings.

Dataset Images Classes Input Size

CIFAR-10 60,000 10 32× 32

CIFAR-100 60,000 100 32× 32

TinyImageNet 100,000 200 32× 32

ImageNet-100 130,000 100 64× 64

IV. EXPERIMENTS

A. Setup

We evaluate our model on several widely used benchmarks
including CIFAR-10, CIFAR-100 [25], TinyImageNet [47],
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TABLE II: Classification results (%) on Imagenet-100 with
ResNet-18 as the backbone.

ImageNet-100 Xent SimCLR SupCon UniCon

Top-1 Accuracy 72.9 50.8 69.8 77.3

and a 100-category subset (ImageNet-100) of ImageNet [48].
For ImageNet-100, we choose the first 100 categories with
smallest category numbers in 1k classes. Detailed information
of dataset settings can be viewed in Table. I. Here input size
refers to the transformed size of neural network input. Without
special statement, the encoder network is trained for 1000
epochs with a batch size of 256. As for hyperparameters,
temperature τ and Mixup parameter λ are respectively fixed
to 0.1 and 0.5. We set the learning rate to 0.05 with 10
epochs of warm-up. As the purpose of this paper is to show
how universum improves contrastive learning rather than to
explore the effects of different augmentation techniques on
our model, we empirically use a set of augmentations that
was chosen by [1] through AutoAugment [49]. The details of
our augmentations are written in the supplemental material.
In the evaluation period, a classifier of batch size 512 is
trained for 100 epochs with the deep representations extracted
by the encoder while the encoder itself is frozen. Compared
to the prior version, we separate the representations and
the contrastive features and implement classification on the
learned representations, which further improves the results. On
both stages, we use SGD optimizer with cosine annealing for
weight decay. Our experiments are implemented in PyTorch
framework on at most four Nvidia Tesla V100 GPUs in an
online computing center.

B. Classification Accuracy

We compare UniCon with a cross-entropy classifier, Sim-
CLR [16], and SupCon [1] on their top-1 accuracy on CIFAR-
10, CIFAR-100 and TinyImageNet. Although these methods
have all be proposed for a few years, so far they are the
mainstream methods for fully-supervised learning. Follow-up
methods either focus on a specific application scenario or adapt
the aforementioned models to other settings, failing to propose
a better model on fully-supervised learning. Therefore, we still
adopt these three old but effective models as our baselines.
We re-implement all the baseline models while also showing
the published numbers of SupCon. As is shown in Table.
III, UniCon outperforms other models on all datasets, while
adopting smaller batch sizes and encoder backbones. Our
model achieves 97.4%, and 81.7% on CIFAR-10 and CIFAR-
100, respectively, which surpasses the state of art (published
numbers) by a significant margin of 1.4% and 5.2% with only
one fourth the batch size. Even with a backbone of ResNet-18
and batch size 256, UniCon outperforms its counterparts with
ResNet-50 and batch size 1024. UniCon also achieves 65.0%
top-1 accuracy on TinyImageNet. Please note that we input
images into the neural network as 32 × 32 patches, which is
way smaller than the input sizes (e.g. 224 × 224) of other
models [21] that report better performance of cross-entropy

classifiers. In this sense, our performance gain over the cross-
entropy classifier is also significant on TinyImageNet.

To further verify the model performance, we also evaluate
UniCon, Xent, SimCLR and SupCon on ImageNet-100 with
ResNet-18 being the backbones. The training batchsize is 256
for UniCon and 1024 for others. As is shown in Table II, Uni-
Con greatly outperforms other models by 7.5%, which proves
UniCon’s ability of handling large datasets in a nutshell.

In Table. IV UniCon is compared with Xent and SupCon
assisted with MixUp, CutMix and Augment. Here ”Augment”
refers to exactly same set of augmentations we use for our
model. This augmentation method is also adopted by SupCon
as the best augmentation strategy chosen by AutoAugment.
When the cross-entropy classifiers are implemented with Aug-
ment, they not only use Augment to modify the input images
but also double the size of the training data in the same way
as contrastive models do. We also incorporate MixUp and
CutMix with Xent, SupCon and UniCon. For Xent, we com-
bine the baseline algorithm of MixUp and CutMix with our
own implementations. For SupCon, since a naı̈ve application
of Mixup may result into unclear labels hard to handle in
contrastive learning, we use the idea of Un-Mix [39] to realize
a non-universum Mixup-boosted supervised contrastive model.
The details of this implementation can be found in the supple-
mentary material. We did not implement the combination of
SupCon and MoCHi [23] for the reason that our comparisons
do not include memory-bank-based methods. All models are
implemented with ResNet-18 as their backbones, while the
batch size varies. We empirically find that for models with
Mixup or CutMix perform better with a smaller batch size of
256, while other models benefit from a larger batch size of
1024. As is shown in the table, Xent boosted with Augment
and CutMix greatly outperforms SupCon, while out model still
surpasses it by 0.7%. We also attempt to replace Mixup with
CutMix in UniCon and the results show that Mixup performs
better than CutMix in combination with UniCon. We deduce
there are two reasons: (i) in CutMix, it is hard to set the Mixup
parameter λ to exact 0.5 (in our implementation, we accept
0.45 < λ < 0.55), while λ = 0.5 is crucial to UniCon as is
shown in Section IV-F; (ii) our model may benefit from ”the
confusion when choosing cues for recognition” in Mixup as
[20] argues.

C. Visualization Analysis

We use t-SNE [50] with the features extracted from Xent,
SupCon and UniCon on CIFAR-10 test data to acquire 2-
dimension visualizations. The first row of Fig. 4 shows the
distributions of the features of training data points, while the
second row adds the distributions of the features of manually
synthesized universum negatives. For the visualization, we
specially synthesize 10,000 universum data from the test
data with Mixup parameter 0.5 and use them for all three
models. Compared with Xent and SupCon, our model better
separates different clusters with large margins among them
in the embedding space. Please note that the distribution
of universum negatives with three models varies: for Xent,
universum negatives disperse all over the space; for SupCon,
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TABLE III: Top-1 classification accuracy (in percentage %) on various datasets. We compare our model (UniCon) with a deep
classifier using cross-entropy loss, SimCLR [16], and SupCon [1]. We re-implement the results for baseline models while
showing the published numbers of SupCon. We use bold to indicate the best results, and underline the second best ones. Also
please note that the batch size of our model is only 256, which is much smaller than that of the baseline models.

Method Architecture Batch size CIFAR-10 CIFAR-100 TinyImageNet
Cross-Entropy ResNet-50 1024 94.6 77.2 58.3

SimCLR ResNet-50 1024 91.8 68.4 51.2
SupCon(baseline) ResNet-50 1024 96.0 76.5 -
SupCon(our impl.) ResNet-50 1024 95.9 75.4 58.3

UniCon(ours)
ResNet-18 256 96.4 79.2 59.3
ResNet-50 256 97.4 81.7 65.0

TABLE IV: Comparison with other models assisted with Mixup/CutMix/Augment. ”Augment” here refers to the same
augmentation techniques we exert on our model. We implement all models on CIFAR-100 with ResNet-18 as their backbones. In
this comparison, UniCon outperforms the cross-entropy classifier even when the CE classifier is boosted by both augmentations
and MixUp. †: Details of our implementation can be found in the supplementary material.

Method Augment Mixture Top-1 Top-5

Cross-Entropy - 74.9 90.5

Cross-Entropy + Augment ✓ - 76.8 90.9

Cross-Entropy + Mixup MixUp

Cross-Entropy + CutMix CutMix

Cross-Entropy + Augment + Mixup ✓ MixUp 78.1 92.6

Cross-Entropy + Augment + Cutmix ✓ CutMix 78.5 93.1

SupCon ✓ - 72.3 90.7

SupCon + Un-Mix † ✓ MixUp 75.1 92.7

SupCon + Un-Mix (universum-style) ✓ MixUp 78.4 94.5

UniCon(ours) + CutMix ✓ CutMix 72.9 91.2

UniCon(ours) ✓ MixUp 79.2 94.6

TABLE V: Universum-style Mixup improves the robustness of supervised contrastive learning. (Left:) Here the robustness of
various supervised models are measured with Error Rate on the clean dataset (Err.), Mean Corruption Error (mCE) and Relative
Mean Corruption Error (rel. mCE) (lower is better for all metrics) on CIFAR-100-C dataset and TinyImageNet-C dataset. All
models are only trained on the clean datasets. (Right:) Top-1 Accuracy with different corruption severity (higher is better).

(a)

Model Architecture
CIFAR-100-C TinyImageNet-C

Err.(↓) mCE(↓) rel.mCE(↓) Err.(↓) mCE(↓) rel.mCE(↓)

Cross Entropy
AlexNet 42.9 100.0 100.0 62.1 100.0 100.0

ResNet-50 22.8 79.0 83.7 41.7 89.9 86.5

SupCon ResNet-50 24.6 84.3 55.5 41.7 84.8 80.0

UniCon(ours)
ResNet-18 20.8 73.4 78.0 40.7 83.2 77.8

ResNet-50 18.3 70.6 75.7 35.0 76.4 68.8

(b)
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(a) Xent without universum negatives (b) SupCon without universum negatives (c) UniCon(ours) without universum negatives

(d) Xent with universum negatives (e) SupCon with universum negatives (f) UniCon(ours) with universum negatives

Fig. 4: T-SNE visualizations of Xent, SupCon and UniCon with and without universum negatives on CIFAR-10. Specially
the embeddings of universum data are colored lime. In the embedding space of both Xent and SupCon, manually synthesized
universum negatives are mostly distributed nearby images, while UniCon places a large number universum negatives in the
margin among different clusters.

(a) (b) (c) (d)

Fig. 5: Top-1 Accuracy of UniCon with varying backbones, batch sizes, learning rates and temperature parameter. The
experiments are conducted on CIFAR-100, and except for the backbone analysis, Resnet-18 is adopted for model encoders.

they distribute alongside the original data points; for UniCon,
a large number of universum data are placed in the margins
among different clusters. As is assumed in Section I, univer-
sum negatives are hard in that Xent and SupCon tend to assign
them to a known class rather than place them in the margins.
Although the universum negatives are mixed from two images
of different classes, in Fig. 4(e) they are apparently assigned
to one of the two classes, which reveals an undesirable twist
of the manifold space that the decision boundaries might be
skewed to one of the classes. By driving universum data into
the margin space, different classes are better separated and
clearer decision boundaries are drawn.

D. Robustness

One of our assumptions is that like traditional Mixup
method, Universum-style Mixup should also make our model
more robust. CIFAR-100-C dataset and TinyImageNet dataset
are two neural network robustness benchmark datasets derived
from CIFAR-100 and TinyImageNet with deliberate corrup-
tions including Gaussian noise, frost, elastic transform, jpeg
compression, etc., the severity of which varies from 1 to 5 [51].
The performance of AlexNet, Xent-50, SupCon-50, UniCon-
18 and UniCon-50 are measured in the aforementioned ap-
proach. Except for AlexNet, the weights of all other models
are the same with the ones reported in Table. III. AlexNet is
specially implemented for normalizing mCE and relative mCE
as is required by [51]. Since the classical implementation of
AlexNet cannot handle images as small as 32×32, we slightly
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modify its convolutional kernels to train it on benchmark
datasets. All models are only trained on the clean datasets.

As is shown in Table V(left), UniCon’s mCE is the lowest
on both corrupt datasets, and its relative mCE outperforms
other models on TinyImageNet-C. Although UniCon’s relative
mCE on CIFAR-100-C is higher than other models, we deduce
it is a by-product of its outstanding performance on clean
CIFAR-100, which shadows its robustness from a relative
perspective. Still, it is worth noting that UniCon outperforms
other models on most metrics even with a backbone of ResNet-
18. Table V (right) illustrates that UniCon deteriorate less with
higher corruption severity. As is analyzed by [52], though
the robustness of deep models can be partly improved by
convolutional layers and augmentations, it remains a problem
for researchers to handle with better network design, which,
in this paper, is partly solved with Mixup-induced universum.
Further details can be found in the supplemental material.

Fig. 6: Performance of UniCon with different pretraining
epochs.

E. Hyper-parameter Analysis

Fig. 5 illustrates UniCon’s stability to different hyper-
parameters on CIFAR-100. We modify the backbone networks,
batch sizes, learning rates and temperature parameter one
at a time to observe whether our model is sensitive to the
punctuation of hyper-parameters. Generally speaking, UniCon
shows promising performance even in the worst situation.

We evaluate our model with a backbone of Resnet-18,
Resnet-34, Resnet-50, and Resnet-101, respectively. In the
aspect of model sizes, a deeper network would always im-
prove the performance. Specially, UniCon achieves 83.02%
on CIFAR-101. We deduce that stronger networks like PreAct
ResNet [53], WideResNet [54] and DenseNet [55] can further
boost the performance of our model, which is beyond the scope
of this paper.

It is worth noting that our model may not always perform
better with a larger batch size, as its top-1 accuracy on batch
size 512 and 1024 is lower than that on batch size 256. Since
a lot of papers have shown that large batch sizes benefit the
training of contrastive models [1], [16], [17], such results can
be intriguing. We conjecture that our model, with additional

hard negatives generated by Mixup, is a beneficiary of frequent
gradient descents. For training epochs of a fixed number, large
batches inevitably lead to a decline in optimization times,
thereby resulting into worse performance. It is necessary to
make a trade-off between large batch sizes and optimization
frequencies. As is shown in Fig. 5(b), we find that 256 is the
optimal batch size for most cases.

Fig. 6 shows the convergence of UniCon for 2000 epochs.
Since cosine annealing we use for learning rate decay is
sensitive with different training epochs, for reproductivity
we divide the training period into first 1000 epochs and
second 1000 epochs, each with a complete process of cosine
annealing.

TABLE VI: CIFAR-100 classification accuracy for different
Mixup Settings. We set λ to a constant.

λ Top-1 Accuracy
0.3 74.7
0.4 76.6
0.5 79.2
0.6 77.0
0.7 73.7

TABLE VII: Sensitivity of γ on CIFAR-100.

CIFAR-100
γ in Beta sampling

1.0 0.8 0.5
Acc.(%) 77.2 77.3 77.0

F. Mixup strategies
We test different strategies of choosing λ in Mixup. We

either fix λ to 0.3, 0.4, 0.5, 0.6 and 0.7, respectively, or
assume that λ is a random number subject to Beta(γ, γ) (γ is
chosen from 0.5, 0.8 and 1.0), following [2]. As Table. VI and
Table. VII demonstrates, the model achieves best performance
when two images are equally mixed to produce a universum
negative. This result is in line with our intuition that the Mixup
image is farthest from its original images in semantics when
two images make equal contributions to their mixture. In fact,
our model benefits from semantically ambiguous images as
they make better universum.

Here we present a brief analysis to justify the necessity of
setting λ to 0.5. From the perspective of Mixup, the label
of a Mixup data point with Mixup parameter λ should be
y = {0, ..., λ, ...1 − λ, ...0}, where the positions of λ and
1− λ accord with corresponding mixture data. Therefore, the
information entropy of y can be calculated.

H(y) = λlog(λ) + (1− λ)log(1− λ) (14)

To find out the maximal value of H(y), the gradient of H(y)
with respect to λ is derived.

∂H(y)

∂λ
= log

λ

1− λ
(15)

Apparently, ∂H(y)
∂λ = 0 when λ = 0.5. At this point, H(y)

takes the maximum value, while the label vector y has the
highest uncertainty. Consequently, Mixup-induced universum
data can be best described as negatives for all when λ = 0.5.
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TABLE VIII: Ablation study. The loss functions are examined
on what data are regarded as negatives for contrast and whether
universum data are used for class center derivation.

Loss Negatives for contrast Class centers Top-1
function Universum Out-of-class from universum data Accuracy
LUniCon ! % ! 79.2

! ! ! 78.3
% ! ! 4.3

Lsup % ! % 71.5
Ladd ! ! % 68.7

G. Ablation study

To further understand the effectiveness of each designed
component of our model, an ablation study is conducted. We
examine what data are regarded as negatives for contrast and
whether universum data are used for class center derivation
for each loss. As Table VIII demonstrates, it is crucial that
universum data are utilized to derive the class centers. The
use of additional universum negatives does harm to the model
performance, while the mere use of universum for class
center derivation will result into deteriorated performance.
However, when universum negatives are used in combination
with universum-derived class centers, the model acquires the
best performance.

H. Performance in the unsupervised setting

We evaluate the performance of Un-Uni (the unsuper-
vised version of UniCon) on CIFAR-100 with a ResNet-
18 backbone. Despite the loss function computation, the
implementation details of Un-Uni are the same as UniCon.
Un-Uni is compared with SimCLR, Moco-v2 [32] and three
unsupervised Mixup-boosted contrastive models, that is, Un-
Mix [39], MoCHi [23] and Mixco [21].

As is shown in Table. IX, Un-Uni outperforms other coun-
terparts by a small margin. Considering that Un-Uni is only
a simple application of UniCon in the unsupervised setting,
such performance has proved the potential of our proposed
method.

TABLE IX: Top-1 classification accuracy (%) on CIFAR-100
in the unsupervised setting. Our unsupervised model (Un-Uni)
is compared with SimCLR [16], Mixco [21], Un-Mix [39],
Moco-v2 [32] and MoCHi [23]. We use bold to indicate the
best result.

Method Classifier Batch size Memory size Acc
SimCLR Linear 1024 - 61.7
Mixco Linear 256 - 62.6

Un-Mix Linear 256 - 64.2
Moco-v2 KNN 512 4096 62.9
MoCHi KNN 512 4096 60.8

Un-Uni(ours) Linear 256 - 64.5

V. CONCLUSION

This paper explores Mixup from the perspective of Univer-
sum Learning, thus proposing to assign synthesized samples

into a generalized negative class in the framework of super-
vised contrastive learning. Our model achieves state-of-the-art
performance on CIFAR-10, CIFAR-100 and TinyImageNet.
The results of our experiments reveal the potential of Mixup
to generate hard negative samples, which may open a new
window for further studies.
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DETAILS FOR THEORETICAL ANALYSIS

A. Theoretical analysis

In Section III-E, we analyze the gradients of UniCon loss to show that it can perform hard negative mining and draw clear
margins among different classes in the embedding space. LUniCon,i is defined in the following form.

LUniCon,i = −zi
τ

·mi + log
∑

k ̸=i

exp(zi · zuk/τ) (1)

As is shown above, the gradients of LUniCon,i with respect to zi is calculated.

∂LUniCon,i

∂zi
=

1

τ


−mi +

∑

k ̸=i

zukPUk +G


 (2)

where we define,

PUk =
exp(zi · zuk/τ)∑
j ̸=i exp(zi · zuj/τ)

(3)

G =
zi
∑

k ̸=i exp(zi · zuk/τ)
∂zuk

∂zi∑
k ̸=i exp(zi · zuk/τ)

(4)

Apparently, as the representation of a class, mi always has an influence in the optimization process. Moreover, similar to
[?], UniCon loss also has the ability of hard sample mining. Considering the second term of Eq.2, when zuk is a hard negative,
we have zi · zuk ≈ 1. Therefore,

PUk ≈ exp(1/τ)

Z
(5)

which greatly benefits the encoder. In the equations, we define:

Z =
∑

j ̸=i

exp(zi · zuj/τ) (6)

Otherwise, when zuk is an easy negative, we have zi · zuk ≈ 0. Therefore,

PUk ≈ 1

Z
(7)

which narrowly influences the encoder.
Different from PUk that generally fit into the framework of [?], as a core part of UniCon loss, universum gradient G is

unique in forcing large margins among different classes. First we derive a better form of ∂zui

∂zi
.

∂zui

∂zi
=

∂zui

∂x̃i
· ∂x̃i

∂zi
(8)

=
∂zui

∂ui
· ∂ui

∂x̃i
· ∂x̃i

∂zi
(9)

=
∂f(ui)

∂ui
· ∂(λx̃i + (1− λ)x̃q(i))

∂x̃i
· ∂x̃i

∂f(x̃i)
(10)

=
λf

′
(ui)

f ′(x̃i)
(11)

Similarly, we derive a better form of ∂zuk

∂zi
.

ar
X

iv
:2

20
4.

10
69

5v
3 

 [
cs

.L
G

] 
 3

1 
O

ct
 2

02
3



2

∂zuk

∂zi
=

{
(1−λ)f

′
(uk)

f ′ (x̃i)
, q(k) = i,

0, otherwise.
(12)

With newly formed ∂zui

∂zi
and ∂zuk

∂zi
, we rewrite universum gradient G in the following form.

G = zi
∑

k ̸=i

PUk · ∂zuk

∂zi
(13)

= zi ·
∑

k∈Qi

(1− λ)f
′
(uk)

f ′(x̃i)
PUk (14)

=
zi

f ′(x̃i)

∑

k∈Qi

(1− λ)f
′
(uk)PUk (15)

where we denote Qi = {k|q(k) = i}. The subsequent analysis can be found in Section III-E.

IMPLEMENTATION DETAILS

B. Implementation of SupCon + Un-Mix

To further evaluate the performance of SupCon in combination with Mixup, we propose a hybrid model of SupCon and
Un-Mix. Following [?], we mix one branch of a batch of training data with the reverse version of itself while maintaining
the other branch unchanged. In line with the denotations in Section III, we use x̃2k−1 as the Mixup branch and x̃2k as the
unchanged branch, where k = 1, 2, .., N . Therefore, the mixed data is acquired through the following equation:

xmix,k = λ · x̃2k−1 + (1− λ) · x̃2(N+1−k)−1, k = 1, 2, .., N, (16)

where λ is the Mixup parameter sampled from Beta distribution. Unlike [?] that uses both Mixup and CutMix with a probability
parameter, our implementation only uses Mixup. For clearance, in the following part, we rewrite Lsup as Lsup(X, X̃, Y ), where
X and X̃ are two branches of data of the same batch size and Y is their corresponding label (two branches share the same
label).

Lsup(X, X̃, Y ) =
N∑

i=1

−1

2|Di|+ 1
{
∑

d∈Di

[
log

exp(zi · zd/τ)
S

+ log
exp(zi · z̃d/τ)

S

]
(17)

+ log
exp(zi · z̃i/τ)

S
} (18)

where S =
∑

k ̸=i exp(zi · zk/τ) +
∑

k exp(zi · z̃k/τ), Di ≡ {k|k ∈ {1, 2, .., N}, k ̸= i, Yk = Yi} a set of indices that refer
to samples in the same class with i in each branch, and zi = f(Xi) and z̃i = f(X̃i) are the embeddings of X and X̃ . With
Equation 17, we derive the loss of the combination of SupCon and Un-Mix.

LSupMix = λ · Lsup(Xmix(↓), X̃, Y )︸ ︷︷ ︸
normal order of mixtures

+(1− λ) · Lsup(Xmix(↑), X̃, Y )︸ ︷︷ ︸
reverse order of mixtures

(19)

where λ is the Mixup parameter, Xmix is the set of {xmix,k}k=1,2,...,N , X̃ is the set of {x̃2k}k=1,2,...,N , and Y is the
label set of {ỹ2k}k=1,2,...,N . Different from [?], LSupMix does not include the original SupCon loss, yet the result is still
promising and outperforms SupCon. Although this model is not the main part of this paper, to the best of our knowledge, this
is also the first time that traditional Mixup method is combined with supervised contrastive learning. In the implementation,
we empirically adopt the same hyper-parameters as we have for our own model. On CIFAR-100, we test the batch size of 256
and 1024, and observes that just like UniCon, SupMix also benefits from a small batch size of 256 due to the same reason as
we have analyzed in Section IV-E.

C. Augment

For augmentations of our model, we sequentially exert a random cropping, resizing (to input size 32 × 32), a random
horizontal flip, a random application of color jittering, and a random application of gray scale conversion. The probabilities of
application of horizontal flip, color jittering and gray scale conversion are 0.5, 0.8 and 0.2, respectively. In color jittering, the
parameters for brightness, contrast, saturation and hue are set to 0.4, 0.4, 0.4 and 0.1, respectively. The augmented images are
normalized. When Augment is applied, it is used twice to double the size of the training data no matter whether the model is
contrastive.
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Algorithm 1: Python-like pseudocode for universum-style Mixup
1 # N: batch size of the training data
2 # images: an augmented batch of 2N images, the first N images being the first branch and the second N

images being the second branch
3 # labels: the ground truth labels of size N, shared by both branches of the images
4 # lam: Mixup parameter, set to 0.5 in most cases
5
6 def mix_universum(images, labels, lam, N):
7 # synthesize the universum negatives from a minibatch
8 cls_idx = [[np.where(labels != i)[0]] for i in range(max(labels)+1)]
9 chosen_data = [images[random.choice(cls_idx[labels[i % N]])] for i in range(N * 2)]

10 mix_data = torch.stack(chosen_data, dim=0)
11 universum = lam * images + (1 - lam) * mix_data
12 return universum

D. A Python-like Code for Universum-style Mixup

Algorithm 1 presents a Python-like pseudocode of our universum-style Mixup. Unlike the conventional implementation of
Mixup and Cutmix that use k-permutations to rearrange the whole batch of data, we choose our Mixup data in a Bootstrapping
way. On the one hand, each data point will be used as the anchor for once in each mixture; and on the other hand, the
data points can be chosen as a g-negative for more than once or they may not be chosen at all. This strategy allows more
randomness. From a statistical perspective, our way can better appropriate the distribution of out-of-class data points, so as to
reduce the influence of unbalanced distribution of different classes in a minibatch.

(a) (b)

Fig. 1: Histogram of the hardness of out-of-class negatives and universum negatives.

EXPERIMENTAL RESULTS

E. Hardness of Negatives

The dot product of the anchor feature zi and its negative feature zn or universum negative feature zuk reveals the hardness
of negatives. As is analyzed in Section III-D, like most contrastive losses, the loss function of UniCon benefits more from
hard negatives. Therefore, it is possible to use hardness to value the contributions of negatives and universum negatives in the
process of optimization. Here we denote hardness H as the dot product of an anchor and a negative:

H = zi · zn (20)
H = zi · zuk (21)

with which the hardness of negatives and universum negatives is unified. In the experiment, the features of first 10000 images
and their corresponding 10000 universum data points are recorded in epoch [1, 10, 50, 100, 200, 500, 1000] with ResNet-18
on CIFAR-100. We calculate the dot products of each anchor with all of its negatives and universum negatives, drawing a
mean value of dot products for each negative data point to denote its hardness. In Fig. 1, the histograms reveal the hardness of
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traditional out-of-class negatives and universum negatives for different training epochs. Please note that although conventional
out-of-class negatives are not directly contrasted in our loss function, the model still automatically recognizes them as negatives.
At the beginning of the training, there is little difference between these two kinds of negatives. The hardness of both decreases
with training epochs, while the hardness of universum negatives are more concentrated with a higher peak in the middle
phase of training. In the middle phase, universum negatives are slightly harder than out-of-class negatives. At the last phase
of training, universum negatives become easy, indicating that our assumption of universum data belonging to a generalized
negative class which is distinguishable from other classes.

TABLE I: Error on clean datasets, mCE and Corruption Error for different corruptions and models on TinyImageNet-C and
CIFAR-100-C. Lower is better for all metrics. The table form and evaluation method is from [?]. With this table, we intend
to show the robustness of our model in the face of different corruptions.

TinyImageNet-C

Noise Blur Weather Digital

Network Err. mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

AlexNet 62.1 100.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Xent-50 41.7 89.9 92 89 93 92 92 91 90 90 89 93 88 97 87 84 82

SupCon-50 41.7 84.9 86 84 88 92 91 90 90 80 74 89 75 84 88 82 80

UniCon-18 40.7 83.2 91 88 91 91 89 88 89 75 69 81 73 80 86 79 78

UniCon-50 35.0 76.4 87 83 88 85 84 81 82 68 60 71 65 73 78 70 69

CIFAR-100-C

Noise Blur Weather Digital

Network Err. mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

AlexNet 42.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Xent-50 22.8 79.0 92 88 79 88 72 91 98 67 73 65 57 71 75 90 79

SupCon-50 24.6 84.3 106 101 91 65 141 88 69 84 80 66 54 50 80 99 90

UniCon-18 20.8 73.4 106 103 99 56 117 67 61 59 62 51 46 36 69 81 87

UniCon-50 18.3 70.6 107 105 96 51 124 62 56 54 57 43 41 31 62 84 86

F. Robustness with Different Corruptions

In Table I, error on clean datasets, mCE and Corruption Error for different corruptions and models on TinyImageNet-C and
CIFAR-100-C are shown. According to [?], the corruptions can be roughly divided into four categories: noise, blur, weather and
digital. On TinyImageNet-C, our models with both ResNet-18 and ResNet-50 backbones significantly outperform counterparts
in almost all aspects. On CIFAR-100-C, contrastive models do not perform well in the face of Gaussian noise, shot noise and
especially glass blur. Generally, our model can better handle corruptions in the field of blur, weather and digital, while failing
to greatly improve the results with noise. Although augmentation techniques inevitably play a role in standing corruptions,
our proposed Universum-induced Mixup also helps make the model more robust as UniCon surpasses SupCon with the same
augmentations by a great margin on mCE.


