Skip to main content

When Self-attention and Topological Structure Make a Difference: Trajectory Modeling in Road Networks

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13423))

  • 664 Accesses

Abstract

The ubiquitous GPS-enabled devices (e.g., vehicles and mobile phones) have led to the unexpected growth in trajectory data that can be well utilized for intelligent city management, such as traffic monitoring and diversion. As a building block of the smart-mobility initiative, trajectory modeling has received increasing attention recently. Despite the great contributions made by existing studies, they still suffer from the following problems. (1) The topological structure of a road network is underutilized. (2) The existing methods cannot characterize the stopping probability of a trajectory. To this end, we develop a novel model entitled TMRN (Trajectory Modeling in Road Networks), which is composed of the following three modules. (1) Road2Vec: the module is developed to learn the representations of road segments by fully utilizing the topology information of a road network. (2) LWA: the lightweight attention-based module is designed to capture the long-term regularity of trajectories. (3) MOP: a novel matching operation is proposed to calculate the transition probability of the next segment for the current path. The extensive experiments conducted on two real-world datasets demonstrate the superiority of TMRN compared with state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: CVPR, pp. 961–971 (2016)

    Google Scholar 

  2. Ardakani, I., Hashimoto, K., Yoda, K.: Understanding animal behavior using their trajectories - a case study of gender specific trajectory trends. In: Streitz, N.A., Konomi, S. (eds.) HCI, pp. 3–22 (2018)

    Google Scholar 

  3. Banovic, N., Buzali, T., Chevalier, F., Mankoff, J., Dey, A.K.: Modeling and understanding human routine behavior. In: CHI, pp. 248–260 (2016)

    Google Scholar 

  4. Chen, M., Yu, X., Liu, Y.: Mining moving patterns for predicting next location. Inf. Syst. 54, 156–168 (2015)

    Article  Google Scholar 

  5. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  6. Fu, T., Lee, W.: Trembr: exploring road networks for trajectory representation learning. Trans. Intell. Syst. Technol. 11(1), 1–25 (2020)

    Article  Google Scholar 

  7. Georgiou, H.V., Pelekis, N., Sideridis, S., Scarlatti, D., Theodoridis, Y.: Semantic-aware aircraft trajectory prediction using flight plans. Int. J. Data Sci. Anal. 9(2), 215–228 (2020)

    Article  Google Scholar 

  8. Groves, W., Nunes, E., Gini, M.L.: A framework for predicting trajectories using global and local information. In: Computing Frontiers Conference, pp. 37:1–37:10 (2014)

    Google Scholar 

  9. Kafsi, M., Grossglauser, M., Thiran, P.: Traveling salesman in reverse: conditional Markov entropy for trajectory segmentation. In: ICDM, pp. 201–210 (2015)

    Google Scholar 

  10. Li, B., et al.: T-PORP: a trusted parallel route planning model on dynamic road networks. IEEE Trans. Intell. Transp. Syst. (2022)

    Google Scholar 

  11. Li, M., Ahmed, A., Smola, A.J.: Inferring movement trajectories from GPS snippets. In: WSDM, pp. 325–334 (2015)

    Google Scholar 

  12. Liang, C., Berant, J., Le, Q.V., Forbus, K.D., Lao, N.: Neural symbolic machines: learning semantic parsers on freebase with weak supervision. In: ACL, pp. 23–33 (2017)

    Google Scholar 

  13. Liang, Y., Ouyang, K., Yan, H., Wang, Y., Tong, Z., Zimmermann, R.: Modeling trajectories with neural ordinary differential equations. In: IJCAI, pp. 1498–1504 (2021)

    Google Scholar 

  14. Nascimento, J.C., Figueiredo, M.A.T., Marques, J.S.: Trajectory classification using switched dynamical hidden Markov models. Trans. Image Process. 19(5), 1338–1348 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. O’Keeffe, K., Santi, P., Ratti, C.: Modeling vehicular mobility patterns using recurrent neural networks. CoRR abs/1910.11851 (2019)

    Google Scholar 

  16. Pecher, P., Hunter, M., Fujimoto, R.: Data-driven vehicle trajectory prediction. In: SIGSIM-PADS, pp. 13–22 (2016)

    Google Scholar 

  17. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics. Wiley, Hoboken (1994)

    Google Scholar 

  18. Qian, C., Jiang, R., Long, Y., Zhang, Q., Li, M., Zhang, L.: Vehicle trajectory modelling with consideration of distant neighbouring dependencies for destination prediction. Int. J. Geogr. Inf. Sci. 33(10), 2011–2032 (2019)

    Article  Google Scholar 

  19. Qiao, Y., Si, Z., Zhang, Y., Abdesslem, F.B., Zhang, X., Yang, J.: A hybrid Markov-based model for human mobility prediction. Neurocomputing 278, 99–109 (2018)

    Article  Google Scholar 

  20. Sakuma, T., et al.: Efficient learning algorithm for sparse subsequence pattern-based classification and applications to comparative animal trajectory data analysis. Adv. Robot. 33(3–4), 134–152 (2019)

    Article  Google Scholar 

  21. Song, X., Zhang, Q., Sekimoto, Y., Horanont, T., Ueyama, S., Shibasaki, R.: Modeling and probabilistic reasoning of population evacuation during large-scale disaster. In: KDD, pp. 1231–1239 (2013)

    Google Scholar 

  22. Stecz, W., Gromada, K.: Determining UAV flight trajectory for target recognition using EO/IR and SAR. Sensors 20(19), 5712 (2020)

    Article  Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  24. Wang, D., Tan, P.: JOHAN: a joint online hurricane trajectory and intensity forecasting framework. In: KDD, pp. 1677–1685 (2021)

    Google Scholar 

  25. Wu, H., Chen, Z., Sun, W., Zheng, B., Wang, W.: Modeling trajectories with recurrent neural networks. In: IJCAI, pp. 3083–3090 (2017)

    Google Scholar 

  26. Xue, A.Y., Zhang, R., Zheng, Y., Xie, X., Huang, J., Xu, Z.: Destination prediction by sub-trajectory synthesis and privacy protection against such prediction. In: ICDE, pp. 254–265 (2013)

    Google Scholar 

  27. Xue, A.Y., Zhang, R., Zheng, Y., Xie, X., Yu, J., Tang, Y.: Desteller: a system for destination prediction based on trajectories with privacy protection. Proc. VLDB Endow. 6(12), 1198–1201 (2013)

    Article  Google Scholar 

  28. Yang, D., Fankhauser, B., Rosso, P., Cudré-Mauroux, P.: Location prediction over sparse user mobility traces using RNNs: flashback in hidden states. In: Bessiere, C. (ed.) IJCAI, pp. 2184–2190 (2020)

    Google Scholar 

  29. Yuan, J., et al.: T-drive: driving directions based on taxi trajectories. In: GIS, pp. 99–108 (2010)

    Google Scholar 

  30. Zheng, J., Ni, L.M.: Modeling heterogeneous routing decisions in trajectories for driving experience learning. In: UbiComp, pp. 951–961 (2014)

    Google Scholar 

  31. Ziebart, B.D., Maas, A.L., Dey, A.K., Bagnell, J.A.: Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior. In: UbiComps, vol. 344, pp. 322–331 (2008)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grant No. 61902270, and the Major Program of the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant No. 19KJA610002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, G., Sang, Y., Chen, W., Zhao, L. (2023). When Self-attention and Topological Structure Make a Difference: Trajectory Modeling in Road Networks. In: Li, B., Yue, L., Tao, C., Han, X., Calvanese, D., Amagasa, T. (eds) Web and Big Data. APWeb-WAIM 2022. Lecture Notes in Computer Science, vol 13423. Springer, Cham. https://doi.org/10.1007/978-3-031-25201-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25201-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25200-6

  • Online ISBN: 978-3-031-25201-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics