
Ck-continuous Spline Approximation with
TensorFlow Gradient Descent Optimizers?

Stefan Huber and Hannes Waclawek

Salzburg University of Applied Sciences, Salzburg, Austria
{stefan.huber, hannes.waclawek}@fh-salzburg.ac.at

Abstract. In this work we present an “out-of-the-box” application of
Machine Learning (ML) optimizers for an industrial optimization prob-
lem. We introduce a piecewise polynomial model (spline) for fitting of
Ck-continuos functions, which can be deployed in a cam approximation
setting. We then use the gradient descent optimization context provided
by the machine learning framework TensorFlow to optimize the model
parameters with respect to approximation quality and Ck-continuity and
evaluate available optimizers. Our experiments show that the problem
solution is feasible using TensorFlow gradient tapes and that AMSGrad
and SGD show the best results among available TensorFlow optimizers.
Furthermore, we introduce a novel regularization approach to improve
SGD convergence. Although experiments show that remaining disconti-
nuities after optimization are small, we can eliminate these errors using
a presented algorithm which has impact only on affected derivatives in
the local spline segment.

Keywords: Gradient Descent Optimization · TensorFlow · Polynomial
Approximation · Splines · Regression

1 Introduction

When discussing the potential application of Machine Learning (ML) to indus-
trial settings, we first of all have the application of various ML methods and
models per se in mind. These methods, from neural networks to simple linear
classifiers, are based on gradient descent optimization. This is why ML frame-
works come with a variety of gradient descent optimizers that perform well on
a diverse set of problems and in the past decades have received significant im-
provements in academia and practice.

Industry is full of classical numerical optimization and we can therefore, in-
stead of using the entire framework in an industrial context, harness modern

? Stefan Huber and Hannes Waclawek are supported by the European Interreg
Österreich-Bayern project AB292 KI-Net and the Christian Doppler Research As-
sociation. This preprint has not undergone peer review or any post-submission im-
provements or corrections. The Version of Record of this contribution is published
in Computer Aided Systems Theory – EUROCAST 2022 and is available online at
https://doi.org/10.1007/978-3-031-25312-6_68.

ar
X

iv
:2

30
3.

12
45

4v
1

 [
cs

.L
G

]
 2

2
M

ar
 2

02
3

https://doi.org/10.1007/978-3-031-25312-6_68

2 S. Huber, H. Waclawek

optimizers that lie at the heart of modern ML methods directly and apply them
to industrial numerical optimization tasks. One of these optimization tasks is cam
approximation, which is the task of fitting a continuous function to a number of
input points with properties favorable for cam design. One way to achieve these
favorable properties is via gradient based approaches, where an objective func-
tion allows to minimize user-definable losses. Servo drives like B&R Industrial
Automation’s ACOPOS series process cam profiles as a piecewise polynomial
function (spline). This is why, with the goal of using the findings of this paper
as a basis for cam approximation in future works, we want to lay the ground for
performing polynomial approximation with a Ck-continuous piecewise polyno-
mial spline model using gradient descent optimization provided by the machine
learning framework TensorFlow. The continuity class Ck denotes the set of k-
times continuously differentiable functions R → R. Continuity is important in
cam design concerning forces that are only constrained by the mechanical con-
struction of machine parts. This leads to excessive wear and vibrations which
we ought to prevent. Although our approach is motivated by cam design, it is
generically applicable.

The contribution of this work is manifold:

1. “Out-of-the-box” application of ML-optimizers for an industrial setting.
2. A Ck-spline approximation method with novel gradient regularization.
3. Evaluation of TensorFlow optimizer performance for a well-known problem.
4. Non-convergence of optimizers using exponential moving averages, like Adam,

is documented in literature [2]. We confirm with our experiments that this
non-convergence extends to the presented optimization setting.

5. Algorithm to strictly establish continuity with impact only on affected deriva-
tives in the local spline segment.

The Python libraries and Jupyter Notebooks used to perform our experi-
ments are available under an MIT license at [5].

Prior work There is a lot of prior work on neural networks for function ap-
proximation [1] or the use of gradient descent optimizers for B-spline curves [3].
There are also non-scientific texts on gradient descent optimization for poly-
nomial regression. However, to the best of our knowledge, there is no thorough
evaluation of gradient descent optimizers for Ck-continuous piecewise polynomial
spline approximation.

2 Gradient descent optimization

TensorFlow provides a mechanism for automatic gradient computation using a
so-called gradient tape. This mechanism allows to directly make use of the di-
verse range of gradient based optimizers offered by the framework and implement
custom training loops. We implemented our own training loop in which we (i)
obtain the gradients for a loss expression `, (ii) optionally apply some regular-
ization on the gradients and (iii) supply the optimizer with the gradients. This

Spline Approximation with TensorFlow Gradient Descent Optimizers 3

ξ0 ξ2

p1

p2

ξ1

δ1,j

{

y

x

Fig. 1: Spline model derivative j consisting of two polynomial segments.

requires a computation of ` that allows the gradient tape to track the operations
applied to the model parameters in form of TensorFlow variables.

2.1 Spline model

Many servo drives used in industrial applications, like B&R Industrial Au-
tomation’s ACOPOS series, use piecewise polynomial functions (splines) as a
base model for cam follower displacement curves. This requires the introduc-
tion of an according spline model in TensorFlow. Let us consider n samples at
x1 ≤ · · · ≤ xn ∈ R with respective values yi ∈ R. We ask for a spline f : I → R
on the interval I = [x1, xn] that approximates the samples well and fulfills some
additional domain-specific properties, like Ck-continuity or Ck-cyclicity1. Let
us denote by ξ0 ≤ · · · ≤ ξm the polynomial boundaries of f , where ξ0 = x1
and ξm = xn. With Ii = [ξi−1, ξi], the spline f is modeled by m polynomials
pi : I → R that agree with f on Ii for 1 ≤ i ≤ m. Each polynomial

pi =

d∑
j=0

αi,jx
j (1)

is determined by its coefficients αi,j , where d denotes the degree of the spline
and its polynomials. That is, the αi,j are the to be trained model parameters of
the spline ML model. We investigate the convergence of these model parameters
αi,j of this spline model with respect to different loss functions, specifically for
L2-approximation error and Ck-continuity, by means of different TensorFlow
optimizers (see details below). Figure 1 depicts the principles of the presented
spline model.

1 By Ck-cyclicity we mean that the derivative f (i) matches on x1 and xn for 1 ≤ i ≤ k.
If it additionally matches for i = 0 then we have Ck-periodicity.

4 S. Huber, H. Waclawek

2.2 Loss Function

In order to establish Ck-continuity, cyclicity, periodicity and allow for curve
fitting via least squares approximation, we introduce the cost function

` = λ`2 + (1− λ)`CK. (2)

By adjusting the value of λ in equation (2) we can put more weight to either
the approximation quality or Ck-continuity optimization target. The approxima-
tion error `2 is the least-square error and made invariant to the number of data
points and number of polynomial segments by the following definition:

`2 =
m

n

∑
i

|f(xi)− yi|2. (3)

We assign a value `CK to the amount of discontinuity in our spline function
by summing up discontinuities at all ξi across relevant derivatives as

`CK =
1

m− 1

m−1∑
i=1

k∑
j=0

δ2i,j with δi,j = p
(j)
i+1(ξi)− p(j)i (ξi). (4)

We make `CK in equation (4) invariant to the number of polynomial segments
by applying an equilibration factor 1

m−1 , where m−1 is the number of boundary

points excluding ξ0 and ξm. This loss `CK can be naturally extended to Ck-
cyclicity/periodicity for cam profiles.2

2.3 TensorFlow Training Loop

The gradient tape environment of TensorFlow offers automatic differentiation
of our loss function defined in equation (2). This requires a computation of
` that allows for tracking the operations applied to αi,j through the usage of
TensorFlow variables and arithmetic operations, see Listing 1.1.

In this training loop, we first calculate the loss according to equation (2) in
a gradient tape context in lines 5 and 6 and then obtain the gradients according
to that loss result in line 7 via the gradient tape environment automatic differ-
entiation mechanism. We then apply regularization in line 8 that later will be
introduced in section 3.1 and supply the optimizer with the gradients in line 9.

2 In (4), change m− 1 to m and generalize δi,j = p
(j)

1+(i mod m)(ξi mod m)− p(j)i (ξi). For
cyclicity we ignore the case j = 0 when i = m, but not for periodicity.

Spline Approximation with TensorFlow Gradient Descent Optimizers 5

1 for e in range(epochs):

2 with tf.GradientTape(persistent=True) as tape:

3 loss_l2 = calculate_l2_loss ()

4 loss_ck = calculate_ck_loss ()

5 loss = tf.add(tf.multiply(loss_l2 , lambd),

6 tf.multiply(loss_ck , 1.0-lambd))

7 gradients = tape.gradient(loss , coeffs)

8 gradients = apply_regularization ()

9 optimizer.apply_gradients(zip(gradients , coeffs))

Listing 1.1: Gradient descent optimization loop in TensorFlow.

3 Improving spline model performance

In order to improve convergence behavior using the model defined in section 2.1,
we introduce a novel regularization approach and investigate effects of input data
scaling and shifting of polynomial centers. In a cam design context, discontinu-
ities remaining after the optimization procedure lead to forces and vibrations
that are only constrained by the cam-follower system’s mechanical design. To
prevent such discontinuities, we propose an algorithm to strictly establish con-
tinuity after optimization.

3.1 A degree-based regularization

With the polynomial model described in equation (1), terms of higher order
have greater impact on the result. This leads to gradients having greater impact
on terms of higher order, which impairs convergence behavior. This effect is
also confirmed by our experiments. We propose a degree-based regularization
approach, that mitigates this impact by effectively causing a shift of optimization
of higher-degree coefficients to later epochs. We do this by introducing a gradient
regularization vector R = (r0, . . . , rd), where

rj =
r′j∑d
k=0 r

′
k

with r′j =
1

1 + j
. (5)

The regularization is then applied by multiplying each gradient value ∂`
∂αi,j

with

rj . Since the entries rj of R sum up to 1, this effectively acts as an equilibration
of all gradients per polynomial pi.

This approach effectively makes the sum of gradients degree-independent.
Experiments show that this allows for higher learning rates using non-adaptive
optimizers like SGD and enables the use of SGD with Nesterov momentum,
which does not converge without our proposed regularization approach. This

6 S. Huber, H. Waclawek

brings faster convergence rates and lower remaining losses for non-adaptive op-
timizers. At a higher number of epochs, the advantage of the regularization is
becoming less. Also, the advantage of the regularization is higher for polynomials
of higher degree, say, d ≥ 4.

3.2 Practical considerations

Experiments show that, using the training parameters outlined in chapter 4,
SGD optimization has a certain radius of convergence with respect to the x-axis
around the polynomial center. Shifting of polynomial centers to the mean of the
respective segment allows segments with higher x-value ranges to converge. We
can implement this by extending the polynomial model defined in equation (1)
as

pi =

d∑
j=0

αi,j(x− µi)j , where µi =
ξi−1 + ξi

2
. (6)

If input data is scaled such that every polynomial segment is in the range
[0, 1], in all our experiments for all 0 ≤ λ ≤ 1, SGD optimization is able to
converge using this approach. With regards to scaling, as an example, for a
spline consisting of 8 polynomial segments, we scale the input data such that
I = [0, 8]. We skip the back-transformation as we would do in production code.

3.3 Strictly establishing continuity after optimization

In order to strictly establish Ck-continuity after optimization, i.e., to eliminate
possible remaining `CK, we apply corrective polynomials that enforce δ(ξi) = 0
at all ξi. The following method requires a spline degree d ≥ 2k + 1. Let

mi,j =
p
(j)
i (ξi) + p

(j)
i+1(ξi)

2
(7)

denote the mean j-th derivative of pi and pi+1 at ξi for all 0 ≤ j ≤ k. Then
there is a unique polynomial ci of degree 2k + 1 that has a j-th derivative of

0 at ξi−1 and mj − p(j)i (ξi) at ξi for all 0 ≤ j ≤ k. Likewise, there is a unique

polynomial ci+1 with j-th derivative given by mj − p(j)i+1(ξi) at ξi and 0 at ξi+1.
The corrected polynomials p∗i = pi + ci and p∗i+1 = pi+1 + ci+1 then possess
identical derivatives mj at ξi for all 0 ≤ j ≤ k, yet, the derivatives at ξi−1 and
ξi+1 have not been altered. This allows us to apply the corrections at each ξi
independently as they have only local impact. This is a nice property in contrast
to natural splines or methods using B-Splines as discussed in [3].

Spline Approximation with TensorFlow Gradient Descent Optimizers 7

4 Experimental Results

In a first step, we investigated mean squared error loss by setting λ = 1 in our loss
function defined in equation (2) for a single polynomial, which revealed a learning
rate of 0.1 as a reasonable setting. We then ran tests with available TensorFlow
optimizers listed in [4] and compared their outcomes. We found that SGD with
momentum, Adam, Adamax as well as AMSgrad show the lowest losses, with
a declining tendency even after 5000 epochs. However, the training curves of
Adamax and Adam exhibit recurring phases of instability every ∼ 500 epochs.
Non-convergence of these optimizers is documented in literature [2] and we can
confirm with our experiments that it also extends to our optimization setting.
Using the AMSGrad variant of Adam eliminates this behavior with comparable
remaining loss levels. With these results in mind, we chose SGD with Nesterov
momentum as non-adaptive and AMSGrad as adaptive optimizer for all further
experiments, in order to work with optimizers from both paradigms.

The AMSGrad optimizer performs better on the λ = 1 optimization target,
however, SGD is competitive. The loss curves of these optimizer candidates, as
well as instabilities in the Adam loss curve are shown in figure 2. An overview
of all evaluated optimizers is given in our GitHub repository at [5].

0 1000 2000 3000 4000 5000
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 sgd-momentum
with grad. reg.
without

0 1000 2000 3000 4000 5000
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 sgd-momentum-nesterov
with grad. reg.
without

0 1000 2000 3000 4000 5000
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 adam

with grad. reg.
without

0 1000 2000 3000 4000 5000
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 adam-amsgrad
with grad. reg.
without

Fig. 2: Overview of optimizer loss curves for one polynomial with λ = 1.

With our degree-based regularization approach introduced in section 3.1,
SGD with momentum is able to converge quicker and we are able to use Nesterov

8 S. Huber, H. Waclawek

momentum, which was not possible otherwise. We achieved best results with an
SGD momentum setting of 0.95 and AMSGrad β1 = 0.9, β2=0.999 and ε = 10−7.
On that basis, we investigated our general spline model, by we sweeping λ from
1 to 0. Experiments show that both optimizers are able to generate near C2-
continuos results across the observed λ-range while at the same time delivering
favorable approximation results. The remaining continuity correction errors for
the algorithm introduced in section 3.3 to process are small.

Using C2-splines of degree 5, again, AMSGrad has a better performance com-
pared to SGD. For all tested 0 < λ < 1, SGD and AMSGrad manage to produce
splines of low loss within 10 000 epochs: SGD reaches ` ≈ 10−4 and AMSGrad
reaches ` ≈ 10−6. Given an application-specific tolerance, we may already stop
after a few hundred epochs.

5 Conclusion and Outlook

We have presented an “out-of-the-box” application of ML optimizers for the
industrial optimization problem of cam approximation. The model introduced
in section 2.1 and extended by practical considerations in section 3.2 allows for
fitting of Ck-continuos splines, which can be deployed in a cam approximation
setting. Our experiments documented in section 4 show that the problem solu-
tion is feasible using TensorFlow gradient tapes and that AMSGrad and SGD
show the best results among available TensorFlow optimizers. Our gradient reg-
ularization approach introduced in section 3.1 improves SGD convergence and
allows usage of SGD with Nesterov momentum. Although experiments show
that remaining discontinuities after optimization are small, we can eliminate
these errors using the algorithm introduced in section 3.3, which has impact
only on affected derivatives in the local spline segment.

Additional terms in ` can accommodate for further domain-specific goals.
For instance, we can reduce oscillations in f by penalizing the strain energy

`strain =

∫
I

f ′′(x)2 dx .

In our experiments outlined in the previous section, we started with all poly-
nomial coefficients initialized to zero to investigate convergence. To improve con-
vergence speed in future experiments, we can start with the `2-optimal spline
and let our method minimize the overall goal `.

Flexibility of our method with regards to the underlying polynomial model
allows for usage of different function types. In this way, as an example, an or-
thogonal basis using Chebyshev polynomials could improve convergence behavior
compared to classical monomials.

Spline Approximation with TensorFlow Gradient Descent Optimizers 9

References

1. Adcock, B., Dexter, N.: The gap between theory and practice in function approxi-
mation with deep neural networks. SIAM Journal on Mathematics of Data Science
3(2), 624–655 (2021). https://doi.org/10.1137/20M131309X

2. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. CoRR
abs/1904.09237 (2019). https://doi.org/10.48550/arXiv.1904.09237

3. Sandgren, E., West, R.L.: Shape optimization of cam profiles using a b-spline
representation. Journal of Mechanisms, Transmissions, and Automation in Design
111(2), 195–201 (06 1989). https://doi.org/10.1115/1.3258983

4. TensorFlow: Built-in optimizer classes. https://www.tensorflow.org/api_docs/

python/tf/keras/optimizers (2022), accessed: 2022-02-28
5. Waclawek, H., Huber, S.: Spline approximation with tensorflow gradient de-

scent optimizers for use in cam approximation. https://github.com/hawaclawek/
tf-for-splineapprox (2022), accessed: 2022-05-31

https://doi.org/10.1137/20M131309X
https://doi.org/10.48550/arXiv.1904.09237
https://doi.org/10.1115/1.3258983
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers
https://github.com/hawaclawek/tf-for-splineapprox
https://github.com/hawaclawek/tf-for-splineapprox

	 Ck-continuous Spline Approximation with TensorFlow Gradient Descent Optimizers

