
What Can Database Query Processing Do for
Instance-Spanning Constraints?

Heba Aamer1[0000−0003−0460−8534], Marco Montali2[0000−0002−8021−3430], and
Jan Van den Bussche1[0000−0003−0072−3252]

1 Hasselt University, Belgium
{heba.mohamed,jan.vandenbussche}@uhasselt.be

2 Free University of Bozen-Bolzano, Italy
montali@inf.unibz.it

Abstract. In the last decade, the term instance-spanning constraint has
been introduced in the process mining field to refer to constraints that
span multiple process instances of one or several processes. Of particular
relevance, in this setting, is checking whether process executions comply
with constraints of interest, which at runtime calls for suitable monitor-
ing techniques. Even though event data are often stored in some sort of
database, there is a lack of database-oriented approaches to tackle com-
pliance checking and monitoring of (instance-spanning) constraints. In
this paper, we fill this gap by showing how well-established technology
from database query processing can be effectively used for this purpose.
We propose to define an instance-spanning constraint through an en-
semble of four database queries that retrieve the satisfying, violating,
pending-satisfying, and pending-violating cases of the constraint. In this
context, the problem of compliance monitoring then becomes an appli-
cation of techniques for incremental view maintenance, which is well-
developed in database query processing. In this paper, we argue for our
approach in detail, and, as a proof of concept, present an experimental
validation using the DBToaster incremental database query engine.

Keywords: Compliance monitoring · SQL · Databases.

Q: What’s in a constraint?
A: Two (or four) database queries!

1 Introduction

“Paying for something purchased online cannot happen after receiving it”, “The
average time for a package to be delivered after purchase is between two and
five days”, and “The same shipping car can be used for delivering packages at
most seven times per day” are various examples of constraints that are posed
over business processes. These constraints can be very general and can refer
to a variety of requirements [25]. Non-compliance of certain constraints can be

ar
X

iv
:2

20
6.

00
14

0v
1

 [
cs

.D
B

]
 3

1
M

ay
 2

02
2

2 Aamer et al.

very costly and risky, so compliance checking3 and monitoring are of utmost
importance to the enterprise [35].

Constraints can be very simple in terms of their scope, i.e., the process in-
stances they involve, and the conditions they impose such as “Conducting a pa-
tient’s surgery must be preceded by examining the patient” or “Paying for some-
thing purchased online cannot happen after receiving it”. Those are examples of
constraints to be enforced on activity instances belonging to the same process
instance. This type of constraint is often referred to as intra-instance [34,35]. On
the other hand, there are constraints that can be much more complex, both in
their scope and in the conditions they impose. Specifically, constraints where the
scope spans multiple process instances, or combinations of entities involved in
multiple process instance, have been referred to as inter-instance [34,28], or, more
recently, instance-spanning constraint (ISC) [14,31]. “The same shipping car can
be used for delivering packages at most seven times per day” and “Packages that
are delivered to the same neighbourhood on the same day must be delivered by
the same shipping car” are examples of ISC.

It should be noted, however, that whether a constraint is intra-instance or
instance-spanning is a relative matter; it depends on the design of the process
model. Indeed, in general, a single process may require sophisticated control-
flow structures involving iterations and multi-instance activities. Figures 1 and 2
give simple illustrations of the relative nature of “intra” versus “inter” instance.
Thus, while our focus is on studying ISC, similar features would be required
when checking intra-instance constraints on such complex processes. In what
follows, we will hence just talk about (process) constraints in general.

Constraints must be checked against execution logs, which are files or databases
holding data about past and current executions of all process instances in the
enterprise. Two types of compliance checking are commonly distinguished:

Post-mortem checking targets only full (completed) executions on a histori-
cal log.

Compliance monitoring checks the execution of the currently running pro-
cess instances, for a live log.4

There is a striking similarity between the problem of compliance monitoring
and the problem of incremental view maintenance, a well-researched problem in

3 One should differentiate between the problems of verification and compliance check-
ing. Our focus is on compliance checking: checking properties of execution logs. On
the other hand, in verification, one seeks to determine whether all possible executions
of some given process model satisfy some property. The kind of constraints we are
dealing with in this paper are typically quite expressive, so that verification would
be undecidable and one needs to resort to compliance checking. There is also a third
problem, conformance checking [1], where we check that a given execution follows
a given process model. This problem is outside the scope of this paper, although,
formally speaking, conformance checking could be viewed as a kind of compliance
checking.

4 Of course, in principle, post mortem checking can also be performed within a live
log.

Query Processing for ISC 3

(a) (b)

Fig. 1: Consider the process PAB in Figure 1a. “There can be at most three orders
per customer” is an example of an ISC when posed against multiple instances of
PAB . On the other hand, when the same constraint is posed against the iterative
model in Figure 1b, then it would be an intra-instance constraint. Note that R
added in Figure 1b would resemble a receive order activity.

(a) (b)

Fig. 2: Consider the two separate processes PAB and PC in Figure 2a. “For every
instance of PAB, an instance of PC must be instantiated for the same customer”
is an example of ISC that relates instances of the two processes based on a
common attribute. On the other hand, when the two processes are subprocesses
of a single process as in Figure 2b, the constraint would be an intra-instance
constraint.

4 Aamer et al.

databases [20,19,18,9,23,24]. There, a view is the materialized result of a (possi-
bly complex) query posed against a database. The problem of view maintenance
is then to keep the view consistent with its definition under changes to the
database. In general, these changes may be CRUD operations such as in partic-
ular insertions, deletions, or updates. This is perfectly in line with the execution
of a process, where events witness the execution of tasks that, in turn, are typ-
ically associated to CRUD operations used to persist relevant event data in an
underlying storage.

In this paper, we put forward the idea that incremental view maintenance
is applicable to do compliance monitoring. To do so, we need to answer three
questions: (1) what is the database? (2) What are the updates? (3) What is the
query?

The first two questions are easily answered: the log is the database, and
events trigger insertions to the log to leave a trace about their occurrence. In
this context, only insertion operations are thus used, to append the occurrence
to an event to those occurred before. Every insertion, triggered by the execution
of some activity instance, stores the corresponding event data in the database,
including the timestamp of the event and which data payload it carries.

What is then the query? To answer this question, we first need to indicate
which dimensions we want to tackle when expressing constraints. Given the na-
ture of ISC, we want to comprehensively tackle multi-perspective constraints
dealing with several cases and their control-flow, time, and data dimensions. In-
stead of defining a specific constraint language that can accommodate such dif-
ferent perspectives, we directly employ full-fledged SQL for the purpose. Hence,
a constraint is expressed as a query or, more precisely, an ensemble of queries,
the number of which depends on whether compliance has to be assessed post-
mortem or at runtime. In post-mortem checking, a constraint is expressed as a
pair (Qcase, Qviol) of two queries:

– Qcase defines the “scope” of the constraint – it returns the set of cases to
which the constraint applies;

– Qviol returns the subset of cases that violate the constraint.

At runtime, we take inspiration from previous works in monitoring processes and
temporal logic specifications [5,26,11], and consider that each constraint may be,
in principle, in one of four possible states: currently satisfied (resp., currently
violated), that is, satisfied (resp., violated) by the current event data, but with
a possible evolution of the system that will lead to violation (resp., satisfaction);
permanently satisfied (resp., permanently violated), that is, satisfied (resp., vi-
olated) by the current event data, and staying in that state no matter which
further events will occur in the future. For well-studied languages only tackling
the control-flow dimension, such as variants of linear temporal logics over finite
traces, such states can all be automatically characterized starting from a single
formula formalizing the constraint of interest [12]. This is not the case for richer
languages tackling also the data dimension, as in this setting reasoning on future
continuations is in general undecidable [13,7]. We therefore opt for a pragmatic
approach where constraint states are manually identified by the user through

Query Processing for ISC 5

dedicated queries, as in [28,8]. In particular, a monitored constraint comes with
an ensemble of four queries: (Qcase, Qviol−perm, Qviol−pending, Qsat−pending) , where:
– Qcase is as before;
– Qviol−pending and Qsat−pending return the “pending” cases that, respectively,

violate and satisfy the constraint at present, but for which upon acquisition
of new events, their status may change.

– Qviol−perm returns permanent violations, i.e., those cases that irrevocably
violate the constraint, that is, for which the constraint is currently violated
and will stay so no matter which further events are collected.
To monitor constraints, we have used the system DBToaster for incremental

query processing [23,24,33] in a proof-of-concept experiment. We monitor a num-
ber of realistic constraints on experimental data taken from the work by Winter
et al. [35]. We will present multiple examples demonstrating our approach in
Sections 2 and 3 of the paper.

Importantly, while we employ here the de-facto standard query language in
databases, SQL, any other general data model (capable of suitably representing
execution logs) with a sufficiently expressive declarative query language would
do as well. Examples are the RDF data model with SPARQL, or graph databases
with Cypher. It should be noted, however, that incremental query processing is
the most advanced for SQL. Indeed, relational database management systems
are still the most mature database technology in development since the 1970s.

The rest of the paper is organized as follows. In Section 2, we formalize our
approach, discuss some examples of constraints and express them as SQL queries.
In Section 3, we elaborate on the problem of compliance monitoring. In Section 4,
we present the experimental results. In Section 5, we discuss query language
extensions for sequences that can be useful for an approach. We conclude in
Section 6.

2 Post-mortem Analysis by Queries

We capture a constraint as a query that returns the set of cases incurring in a
violation.

Definition 1 (Constraint, Post-mortem Variant). A constraint C is a pair
(Qcase, Qviol) of queries where Qcase is a scoping query that returns all the cases
subject to the constraint C, while Qviol is a violation detection query that returns
the violating cases such that Qviol is always a subset of Qcase.

This definition settles our approach for post-mortem checking. It is simply an
application of query answering, where the queries are asked against a database
instance (representing the execution log) that consists only of completed process
instances. In that case, when a tuple t ∈ Qcase \ Qviol, then t represents a case
that satisfies the constraint (i.e., t ∈ Qsat).

Remark 1. Note that an equivalent approach is to represent the constraint as
the pair of queries (Qcase, Qsat) instead. The two approaches are interchangeable

6 Aamer et al.

since Qsat can be defined in SQL as follows (assuming that both Qcase and Qviol

are materialized):

(SELECT * FROM Q_case)

EXCEPT

(SELECT * FROM Q_viol);

Example 1. For an example of a constraint that its Qsat query is defined easier
than its Qviol query, consider the constraint “Activity B must be executed at least
once in any process instance.” that is imposed over the process model given
in Figure 3. In this example, defining Qviol is more complicated as it requires
negation. On the other hand, Qsat is a simple existentially quantified statement.

Fig. 3: A process model of an example process.

Guaranteeing that, for a constraint (Qcase, Qviol), query Qviol always returns
a subset of Qcase is under the responsibility of the modeler. One way to ensure
this is to write Qviol as a query that takes Qcase and extends it with a filter
to identify violations; however, alternative formulations may be preferred for
readability and/or performance needs.

2.1 Database Schema

We note that the structure of the database schema representing the data of
the execution log and how to get a database instance with the data are not
issues that we address in this paper. These problems are orthogonal to what we
discuss in this paper. In the work by de Murillas et al. [29], they showed how to
automatically extract, transform, and load the log’s data from scattered sources
into a database instance. In the same work, they devised a meta model that
structures the database into a specific schema that is easily queried.

Thus, in our work, we assume that we can have a suitable database schema
to work with. However, we will not be assuming the schema suggested by de
Murillas et al. as it is very comprehensive, also integrating issues such as ver-
sioning and provenance. For our purposes of giving illustrating examples, we will
assume the following two relations in our database:

– A main Log relation that has the following schema

(CaseId, EventId, ActivityLabel, Timestamp, Lifecycle)

Query Processing for ISC 7

The ActivityLabel and Timestamp attributes are mandatory when working
with (instance-spanning) constraints [35]. The Lifecycle attribute describes
the lifecycle transition of an event. This is useful when the events can span
a time interval which is typical in the constraints checking concurrent ex-
ecution of activities. All of those attributes are parts of the XES standard
extensions [21].

– An auxiliary EventData relation that contains the extra information of the
logged events. The attributes of this relation are not fixed and they (depend
on the application) change depending on the data, however, the key of this
relation is the pair (EventId, Lifecycle).

Remark 2. An alternative approach to define the schema of EventData relation
is by following a semi-structured approach. In that approach, the schema is fixed
to be (EventId, Lifecycle, Attribute, Value), where Attribute could be the
name of the attribute, while Value is its value for that event.

2.2 Examples

In the following examples, we assume that the relation EventData has the fol-
lowing schema (EventId, Lifecycle, PackageId, CarId). We also assume that
in our processes, we have two activities with the labels “purchase package” and
“deliver package”.

Example 2 (Same Shipping Car Constraint). Consider the constraint “The same
shipping car can be used for delivering packages at most seven times per day”. As
we have mentioned before, we have a great flexibility in defining what a violation
is (in other words, what is the scope of the constraint). One possibility is to define
the cases to be tuples (CarId, Day). Following this view, the constraint can be
represented by the following pair of queries:

−− Q case

SELECT e.CarId , DATE(l.Timestamp)

FROM Log l, EventData e

WHERE l.EventId=e.EventId AND

l.ActivityLabel=’deliver package ’ AND

l.Lifecycle=’complete ’ AND e.Lifecycle=’complete ’

GROUP BY e.CarId , DATE(l.Timestamp);

−− Q v i o l

SELECT e.CarId , DATE(l.Timestamp)

FROM Log l, EventData e

WHERE l.EventId=e.EventId AND

l.ActivityLabel=’deliver package ’ AND

l.Lifecycle=’complete ’ AND e.Lifecycle=’complete ’

GROUP BY e.CarId , DATE(l.Timestamp)

HAVING COUNT(e.PackageId) > 7;

8 Aamer et al.

A less fine-grained scope: only having CarId. An even more fine-grained
scope: having tuples of (CarId, Day, CountOfDeliveries) as our cases.

−− Q case

SELECT e.CarId , DATE(l.Timestamp), COUNT(e.PackageId)

FROM Log l, EventData e

WHERE l.EventId=e.EventId AND

l.ActivityLabel=’deliver package ’ AND

l.Lifecycle=’complete ’ AND e.Lifecycle=’complete ’

GROUP BY e.CarId , DATE(l.Timestamp);

−− Q v i o l

SELECT e.CarId , DATE(l.Timestamp), COUNT(e.PackageId)

FROM Log l, EventData e

WHERE l.EventId=e.EventId AND

l.ActivityLabel=’deliver package ’ AND

l.Lifecycle=’complete ’ AND e.Lifecycle=’complete ’

GROUP BY e.CarId , DATE(l.Timestamp)

HAVING COUNT(e.PackageId) > 7;

Example 2 demonstrates possible queries that define an instance-spanning
constraint. To show the uniformity of our approach, the following is an example
of an intra-instance constraint.

Example 3 (Average Shipping Time Constraint). Consider the constraint “The
average time for a package to be delivered after purchase is between two and five
days”. In what follows, we consider a case to be a package identifier.

−− Q case

SELECT e.PackageId

FROM Log l1, Log l2, EventData e

WHERE l1.TraceId=l2.TraceId AND l2.EventId=e.EventId AND

l1.ActivityLabel=’purchase package ’ AND

l2.ActivityLabel=’deliver package ’ AND

l1.Lifecycle=’complete ’ AND l2.Lifecycle=’complete ’ AND

e.Lifecycle=’complete ’;

−− Q v i o l

SELECT e.PackageId

FROM Log l1, Log l2, EventData e

WHERE l1.TraceId=l2.TraceId AND l2.EventId=e.EventId AND

l1.ActivityLabel=’purchase package ’ AND

l2.ActivityLabel=’deliver package ’ AND

l1.Lifecycle=’complete ’ AND l2.Lifecycle=’complete ’ AND

e.Lifecycle=’complete ’ AND

Query Processing for ISC 9

(

DATE(l2.Timestamp) - DATE(l1.Timestamp) < 2

OR

DATE(l2.Timestamp) - DATE(l1.Timestamp) > 5

);

3 Compliance Monitoring as Incremental View
Maintenance

Now, if we want to monitor a constraint dynamically, we will have to refine our
definition. The reason is that the database instance representing the execution
log is continuously progressing. Thus, the database instance will contain the data
of running (non-completed) process instances along with the completed process
instances. Hence, at any moment, any case that is subjected to some constraint
will be in one of four different states [5,26,11]: 1) a permanently violating state;
2) a permanently satisfying state; 3) a currently violating state that may later be
in a satisfying state as a result of the occurrences of new events; and 4) similarly,
a currently satisfying state that may later be in a violating state. We will refer
to the last two states as pending states. Figure 4 shows the different states and
how a case could change its state upon the occurrence of new events. Notice that
it depends on the constraint under study whether all such four states have to
be actually considered, or whether instead the constraint only requires a subset
thereof. Example 4 discusses a simple constraint such that we can have its cases
belonging to the different states.

Regardless of the formal tools, languages, approaches, there is always a
“methodology” to go from informal specifications to formal realization.

Fig. 4: A transition diagram of the different states that a case could be in with
respect to some constraint. The diagram shows the possible ways the state of a
case can change as time progresses. Not shown in the diagram is that a case can
also simply cease to be a case; furthermore, new cases appear.

10 Aamer et al.

Example 4 (Monitoring “Followed-By” Constraint). Consider a process that com-
prises three activities with the labels A,B, and C whose process model is shown
in Figure 5. Let the constraint that is imposed on this process be “Every in-
stance of activity A must be directly followed by an instance of activity B within
20 hours”. In Figure 6, we show five traces of that process which correspond
to five cases as the constraint is an intra-instance one. The states of those five
traces are distributed among the four different states.

Fig. 5: A process model of an example process.

Definition 2 (Constraint, Compliance monitoring Variant). A constraint
C is represented by four queries (Qcase, Qviol−perm, Qviol−pending, Qsat−pending),
where Qcase returns all the cases subjected to the constraint C, Qviol−perm re-
turns the permanently violating cases, Qviol−pending returns the violating cases
that later could be changed to non-violating cases, while Qsat−pending returns the
satisfying cases that later could be changed to violating cases. (The cases not
returned by none of these three queries, are then the ones defined by Qsat−perm.)
On any database instance, Qviol−perm, Qviol−pending, and Qsat−pending always
return three mutually exclusive subsets of Qcase.

Remark 3. Typically the query Qviol in the post-mortem checking variant cor-
responds to the union of the pair Qviol−perm and Qviol−pending in the compliance
monitoring variant. Similarly, the query Qsat corresponds to the pair Qsat−perm

and Qsat−pending.

Example 5 (Monitoring Same Shipping Car Constraint). Consider the same con-
straint as in Example 2. The queries representing this constraint can be defined
as follows (where, Qcase and Qviol−perm are defined as Qcase and Qviol of Exam-
ple 2; respectively.):

−− Q sat−pending

SELECT e.CarId , DATE(l.Timestamp)

FROM Log l, EventData e

WHERE l.EventId=e.EventId AND

l.ActivityLabel=’deliver package ’ AND

l.Lifecycle=’complete ’ AND e.Lifecycle=’complete ’ AND

DATE(l.Timestamp)=CURRENT_DATE

GROUP BY e.CarId , DATE(l.Timestamp)

HAVING COUNT(e.PackageId) <= 7;

Query Processing for ISC 11

Fig. 6: The plot contains five different traces of the process whose model is
shown in Figure 5. The x-axis represents 12-hour intervals. In a trace, double
arrows (⇒) (respectively, single arrows (→)) denote time intervals that are longer
(respectively, equal or shorter) than 20 hours. Each of the five traces is coloured
based on its state at the “now” point with regard to the constraint “Every
instance of activity A must be directly followed by an instance of activity B
within 20 hours”. For an example, the fifth trace is in a violating-permanent
state as the time span between the second execution of activities A and B is
greater than the 20-hour interval.

12 Aamer et al.

Note that Qviol−pending will always be empty for this constraint.

4 Experiments

DBToaster is a state-of-the-art incremental query processor [23,24,33]. As a
proof-of-concept of our approach, we tested DBToaster on some of the constraints
from the work of Winter et al. on automatic discovery of ISC [35]. Specifically,
we worked with the constraints ISC1, ISC2a, ISC2b, ISC3, and ISC4 from the
paper. We have also used the execution logs provided by these authors as sample
input data [10]. To manage our experiments, we performed some preprocessing
steps that are mentioned in the Appendix A. To assess the feasibility and us-
ability of our approach, we have designed some experiments that ran over the
mentioned five constraints. The results of these experiments are discussed in
Sections 4.2, 4.3, and 4.4. At the beginning, we give a brief demonstration on
the processes and the constraints used in the experiments in Section 4.1.

4.1 Experiment Data

The constraints used in the experiments are expressed over the three processes
whose models are shown in Figure 7. In the Figure, we have “Flyer Order”,
“Poster Order”, and “Bill” processes that are labelled as P1, P3, and P2, re-
spectively.

Fig. 7: A figure showing the three process models whose executions are used in
the experiments [35].

The “Flyer Order” process and “Poster Order” process are quite similar.
Both processes begin by the activity of receiving the order. This is followed by
designing the order activity, that is later followed by printing the order. In the
end, the printed order is delivered. The only difference between the two processes
is the extra activity of sending the design to the customer for confirmation before
the printing proceeds. This is only part of the “Flyer Order” process. The cus-
tomer either accepts the design, then the process proceeds as already mentioned.

Query Processing for ISC 13

Otherwise, if the customer rejects the design then the order is redesigned and the
same happens until the customer is satisfied with the flyer design. That explains
the loop appearing in P1. Any order whether it is for a flyer or a poster, has
a corresponding initiated “Bill” process. This process is quite simple, it begins
by the activity of writing the bill, then the bill is printed and later delivered.
Moreover, as you can see from the Figure, the printers are considered a shared
resource between all the processes.

The constraints used in the experiments are the following:

ISC1 There is exactly one delivery activity per day in which all the finished
orders/bills of that day so far are delivered to the post office simultaneously.

ISC2a All print jobs must be completed within 10 minutes in at least 95% of
all cases per month.

ISC2b Printer 1 may only print 10 times per day.
ISC3 If a flyer or poster order is received P2 (i.e., bill process) is started after-

wards. Moreover, the corresponding bill process must be started before the
order is delivered to the post office.

ISC4 Printing jobs that require different paper formats (i.e., A4 and Poster
formats) cannot be printed concurrently on one printer where concurrently
means that one job starts, and before it finishes, the other starts.

We slightly modified the original constraints [35] to better match with the log
data [10].

4.2 Running Time

The running time of three of the five monitored constraints is reported in Fig-
ure 8, which shows averages over 10 runs. The time is reported for every 300
insertions with total insertions 30636 (the number of events in the dataset).
This experiment was performed on a personal laptop running macOS 12.2.1
with RAM of 16 GB and processor speed of 2.6Hz.

The slope of each curve is indicative of the average time needed, per event,
to maintain the queries defining the constraint. We can see that this line is
significantly higher for the first constraint; indeed, this constraint requires rather
complex SQL queries (shown in Appendix B). For tested constraints ISC1 and
ISC3, the slopes of these lines are less than half a millisecond, respectively less
than 1/6th of a millisecond. For tested constraints ISC2a, ISCb and ISC4, the
slopes are less than 1% of a millisecond.

4.3 Sizes of Queries

The size (i.e., the number of cases) of each of the queries defining four of the five
monitored constraints is reported and plotted relative to time (i.e., the number
of insertions). This can show us how the cases are changing their status (pending
or permanent, violating or satisfying). A plot for each of the four constraints is
provided by Figure 9. The query size is reported every 500 insertions except
for ISC2a which is done every 100 insertions instead, as it displays a more fine-
grained behavior.

14 Aamer et al.

0 5000 10000 15000 20000 25000 30000
number of insertions

0

2000

4000

6000

8000

10000

12000
tim

e
ta
ke

n
(in

 m
illi

se
co

nd
s)

ISC1
ISC3
ISC4

Fig. 8: A plot of the running time (in milliseconds) taken to monitor the con-
straints ISC1, ISC3 and ISC4. The running time of the constraints ISC2a and
ISC2b are omitted since they are quite similar to ISC4.

0 5000 10000 15000 20000 25000 30000
number of insertions

0

20

40

60

80

100

of
 c
as
es

All Cases
Violating-Permanent
Satisfying-Pending
Violating-Pending

5000 7000 9000
0

1

(a) Plot of ISC1

0 5000 10000 15000 20000 25000 30000
number of insertions

0
1
2
3
4
5
6

of
 c
as
es

All Cases
Violating-Permanent
Satisfying-Pending
Violating-Pending

10300 11000
0

1

(b) Plot of ISC2a

0 5000 10000 15000 20000 25000 30000
number of insertions

0
250
500
750

1000
1250
1500
1750

of
 c
as
es

All Cases
Violating-Permanent
Violating-Pending

5000 5500 6000 6500 7000 7500 8000 8500 9000
0

1

2

3

4

5

(c) Plot of ISC3

0 5000 10000 15000 20000 25000 30000
number of insertions

0
200
400
600
800

1000
1200
1400
1600

of
 c
as
es

All Cases
Violating-Permanent

(d) Plot of ISC4

Fig. 9: Plots of the size of each of the queries of the tested constraints. ISC2b is
not shown as it has the same cases as ISC1 and has similar behavior to ISC3,
which are shown. Since our measurements consist of 600 data points (even 3000
for ISC2a), the plots are at rather high scale. To show more detail, we provide
insets that zoom in on selected regions (orange rectangles).

Query Processing for ISC 15

4.4 Tracing Cases

For ISC2a and ISC1, we show in Figures 10 and 11 the evolution in status of all
the individual cases over time. This illustrates that our approach is compatible
with monitoring on a very detailed level.

Fig. 10: A plot showing the different cases of ISC2a and how each of the cases is
changing its status through time. From the previous plots, we see that in total
we have six cases for this constraint. The cases according to this constraint are
months.

5 Sequence Data Extensions of Query Languages

We have mentioned before that any data model with a sufficiently expressive
query language can be used to express the constraints. Although, we chose to
work with the relational data model with SQL for the reasons we mentioned,
it is interesting to briefly discuss query languages for the relational data model
extended with sequences [4,32]. Indeed, a trace is a sequence of events. Hence,
representing the relative order of the events is quite natural in a sequence data
model. This level of abstraction, of viewing traces as sequences of abstract events,
is often assumed when working with temporal and dynamic logics [16,30,17].

Sequence Datalog [3,6,27] is an extension of the query language Datalog, to
work with sequences as first class citizens. We will briefly showcase this lan-
guage by considering a typical example of a constraint that is handled using the
temporal logic.

Example 6 (Strict Sequencing [16]). Let a and b be two activities. Consider that
we want to verify that the two activities are restricted by a strict sequencing
relation, which is one of the standard ordering relations [2]. There is a strict
sequencing relation between a and b if the log satisfies the following:

– there exists a trace where a is immediately followed by b; and

– there are not any traces where b is immediately followed by a.

16 Aamer et al.

Fig. 11: A plot showing the 101 different cases (days) of ISC1 and how each of
the cases is changing its status through time. Here the measurement consists of
30600 data points per case, so the plot is at a very high scale. The inset shows
more detail by zooming on the selected region (orange rectangle).

Query Processing for ISC 17

There are two possible violations of this constraint. The first is not having a
trace with b directly following a. The other is having a trace with a directly
following b.

For the purpose of expressing this constraint, assume we have the following
schema for the Log relation: (TraceId, Events), where Events are just a sequence
of labels of activities. Then, this constraint can be expressed by the following
Sequence Datalog program.

a_before_b ():- Log(@traceId , $pre.a.b.$post).

violation ():- +a_before_b ().

violation ():- Log(@traceId , $pre.b.a.$post).

This program illustrates a number of Sequence Datalog features:

– the dot is the concatenation operator.
– @traceId is an atomic variable (indicated by the @ symbol) representing

atomic values (in this case, trace identifiers).
– $pre and $post are sequence variables (indicated by the $ symbol) repre-

senting (possibly empty) sequences of atomic values.

The utility of using Sequence Datalog can be appreciated if we compare the
above program with the same query expressed in SQL.

(

SELECT 0

FROM Log l1 , Log l2

WHERE l1.TraceId=l2.TraceId AND l1.Timestamp < l2.Timestamp

AND

l1.ActivityLabel=’b’ AND l2.ActivityLabel=’a’ AND

NOT EXISTS

(

SELECT *

FROM Log l3

WHERE l1.TraceId=l3.TraceId AND

l1.Timestamp < l3.Timestamp AND

l3.Timestamp < l2.Timestamp

)

)

UNION

(

SELECT 0

WHERE NOT EXISTS

(

SELECT 0

FROM Log l1, Log l2

WHERE l1.TraceId=l2.TraceId AND l1.Timestamp < l2.

Timestamp AND

l1.ActivityLabel=’a’ AND l2.ActivityLabel=’b’ AND

NOT EXISTS

(

18 Aamer et al.

SELECT *

FROM Log l3

WHERE l1.TraceId=l3.TraceId AND

l1.Timestamp < l3.Timestamp AND

l3.Timestamp < l2.Timestamp

)

)

);

6 Discussion

In this paper, we have looked into the problems of post-mortem checking and
compliance monitoring of constraints over business processes. Specifically, we
focused on ISC as recently introduced in the process mining field, and caught
attention since it refers to complex constraints that span multiple process in-
stances. Although there have been extensive works on inventorying and catego-
rizing ISCs [31,35], a crisp definition of what is or is not an ISC, however, seems
to be elusive. Indeed, the notion of constraint is so broad that we propose to
define any constraint as two or four queries posed against the database instance
that represents a (partial) execution log. This approach gives us huge flexibility,
moreover, we gain a lot from advances in database technology as demonstrated
in the Experiments Section.

In using the DBToaster system for our experiments, we faced a few technical
issues. The main challenge was that the Scala version of DBToaster gets stuck
when retrieving snapshots over the course of the insertions. To overcome this
issue, to perform our measurements of counting cases over time, and how they
evolve their constraint satisfaction status, we only retrieved a snapshot after an
initial sequence of insertions. We then restart the measurement for one batch of
insertions longer. Another limitation is that SQL is not yet fully supported, al-
though complex queries can be expressed. This required us to sometimes rewrite
queries in equivalent form. Finally, some built-in functions (e.g., on strings or
dates) are missing from the Scala version. Thus, those experiments should be
seen more of a proof-of-concept of the feasibility of our approach.

In this discussion, we briefly touch upon the main difference between our
approach and the main approach that is used to monitor ISC. This approach is
based on the Event Calculus (EC) [25,28,22]. Most monitoring systems that are
based on EC are implemented using Prolog. Using EC to express a constraint
seems to be very procedural albeit being defined in logical programming lan-
guage. For example, to monitor a constraint such as ISC2b, in EC one would
define a rule that increments a counter every time a printing event occurs. At
the end, that counter value should be at most 10 as per the constraint. Since
this is done in Prolog, this will be asking the SAT solver if there exists an exten-
sion of the given sequence of events satisfying the specification of this counting
process. A similar approach was followed in the paper by Montali et al. [28] to
monitor business (intra-instance) constraint with the EC. Events come in time,

Query Processing for ISC 19

and Prolog rules that fire every new time instant, are used to check various
constraints dynamically. However, these incremental rules are manually imple-
mented. On the contrary, using an incremental query processor shifts the focus
on what the queries (or constraints) themselves are rather than what the rules
are that are responsible for this incremental maintenance. Hence, our approach
is more declarative.

At the end of this discussion, we mention a few points for further research.
Since there are some algorithms that are used to discover ISC from execution
logs [35], and these algorithms search for explicit patterns, one could define
a common language to report the results of those algorithms and use those
results to automatically write the SQL queries monitoring each of the reported
constraints. Thus, the whole process could be automated. Also, one could try to
rewrite the same queries differently and evaluate how the different formulations
affect the running times to incrementally maintain them.

Acknowledgments

We thank Stefanie Rinderle-Ma and Jürgen Mangler for initial discussions.

References

1. van der Aalst, W.M.P.: Process Mining: Overview and Opportunities. ACM Trans.
Manag. Inf. Syst. 3(2), 7:1–7:17 (2012). https://doi.org/10.1145/2229156.2229157

2. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004). https://doi.org/10.1109/TKDE.2004.47

3. Aamer, H., Hidders, J., Paredaens, J., Van den Bussche, J.: Expressiveness within
Sequence Datalog. In: Libkin, L., Pichler, R., Guagliardo, P. (eds.) PODS’21: Pro-
ceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, Virtual Event, China, June 20-25, 2021. pp. 70–81. ACM
(2021). https://doi.org/10.1145/3452021.3458327

4. Angles, R., Arenas, M., Barceló, P., Boncz, P.A., Fletcher, G.H.L., Gutiérrez, C.,
Lindaaker, T., Paradies, M., Plantikow, S., Sequeda, J.F., van Rest, O., Voigt,
H.: G-CORE: A Core for Future Graph Query Languages. In: Das, G., Jermaine,
C.M., Bernstein, P.A. (eds.) Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018. pp. 1421–1432. ACM (2018). https://doi.org/10.1145/3183713.3190654

5. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

6. Bonner, A., Mecca, G.: Sequences, Datalog, and Transducers. J. Comput. Syst.
Sci. 57, 234–259 (1998)

7. Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: Verification and monitor-
ing for first-order LTL with persistence-preserving quantification over finite and
infinite traces. In: Proceedings of the 31st International Conference on Artificial
Intelligence (IJCAI-ECAI 2022). AAAI Press (2022), to appear

8. Cardoso, E., Montali, M., Calvanese, D.: Representing and querying norm states
using temporal ontology-based data access. In: Proceedings of the 23rd IEEE In-
ternational Enterprise Distributed Object Computing Conference (EDOC 2019).
pp. 122–131. IEEE (2019)

https://doi.org/10.1145/2229156.2229157
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1145/3452021.3458327
https://doi.org/10.1145/3183713.3190654

20 Aamer et al.

9. Chirkova, R., Yang, J.: Materialized Views. Foundations and Trends® in
Databases 4(4), 295–405 (2012). https://doi.org/10.1561/1900000020

10. CRISP project at Universität Wien: Execution Logs Webpage. http://gruppe.

wst.univie.ac.at/projects/crisp/index.php?t=discovery, accessed: 2022-04-
29

11. De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: Monitoring
business metaconstraints based on LTL and LDL for finite traces. In: Sadiq, S.W.,
Soffer, P., Völzer, H. (eds.) Proceedings of the 12th International Conference on
Business Process Management (BPM 2014). Lecture Notes in Computer Science,
vol. 8659, pp. 1–17. Springer (2014)

12. De Giacomo, G., De Masellis, R., Maggi, F.M., Montali, M.: Monitoring constraints
and metaconstraints with temporal logics on finite traces. ACM Trans. Softw. Eng.
Methodol. (2022), to appear

13. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM
Trans. on Computational Logic 10(3) (2009)

14. Fdhila, W., Gall, M., Rinderle-Ma, S., Mangler, J., Indiono, C.: Classification and
Formalization of Instance-Spanning Constraints in Process-Driven Applications.
In: Rosa, M.L., Loos, P., Pastor, O. (eds.) Business Process Management - 14th
International Conference, BPM 2016, Rio de Janeiro, Brazil, September 18-22,
2016. Proceedings. Lecture Notes in Computer Science, vol. 9850, pp. 348–364.
Springer (2016). https://doi.org/10.1007/978-3-319-45348-4 20

15. Fraunhofer Institute for Applied Information Technology (FIT): PM4Py Website.
https://pm4py.fit.fraunhofer.de/, accessed: 2022-04-29

16. Giacomo, G.D., Felli, P., Montali, M., Perelli, G.: HyperLDLf: a Logic for Checking
Properties of Finite Traces Process Logs. In: Zhou, Z. (ed.) Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021,
Virtual Event / Montreal, Canada, 19-27 August 2021. pp. 1859–1865. ijcai.org
(2021). https://doi.org/10.24963/ijcai.2021/256

17. Giacomo, G.D., Masellis, R.D., Grasso, M., Maggi, F.M., Montali, M.: Monitoring
Business Metaconstraints Based on LTL and LDL for Finite Traces. In: Sadiq,
S.W., Soffer, P., Völzer, H. (eds.) Business Process Management - 12th Inter-
national Conference, BPM 2014, Haifa, Israel, September 7-11, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8659, pp. 1–17. Springer (2014).
https://doi.org/10.1007/978-3-319-10172-9 1

18. Gupta, A., Mumick, I.S. (eds.): Materialized Views: Techniques, Implementations,
and Applications. MIT Press, Cambridge, MA, USA (1999)

19. Gupta, A., Mumick, I.S.: Maintenance of Materialized Views: Problems, Tech-
niques, and Applications. IEEE Data Eng. Bull. 18(2), 3–18 (1995), http://sites.
computer.org/debull/95JUN-CD.pdf

20. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining Views Incrementally.
In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data, Washington, DC, USA, May 26-28,
1993. pp. 157–166. ACM Press (1993). https://doi.org/10.1145/170035.170066

21. IEEE XES Group: IEEE 1849-2016 XES Standard. https://www.xes-standard.
org/, accessed: 2022-05-11

22. Indiono, C., Mangler, J., Fdhila, W., Rinderle-Ma, S.: Rule-Based Runtime Mon-
itoring of Instance-Spanning Constraints in Process-Aware Information Systems.
In: Debruyne, C., Panetto, H., Meersman, R., Dillon, T.S., eva Kühn, O’Sullivan,
D., Ardagna, C.A. (eds.) On the Move to Meaningful Internet Systems: OTM
2016 Conferences - Confederated International Conferences: CoopIS, C&TC, and

https://doi.org/10.1561/1900000020
http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=discovery
http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=discovery
https://doi.org/10.1007/978-3-319-45348-4_20
https://pm4py.fit.fraunhofer.de/
https://doi.org/10.24963/ijcai.2021/256
https://doi.org/10.1007/978-3-319-10172-9_1
http://sites.computer.org/debull/95JUN-CD.pdf
http://sites.computer.org/debull/95JUN-CD.pdf
https://doi.org/10.1145/170035.170066
https://www.xes-standard.org/
https://www.xes-standard.org/

Query Processing for ISC 21

ODBASE 2016, Rhodes, Greece, October 24-28, 2016, Proceedings. Lecture Notes
in Computer Science, vol. 10033, pp. 381–399 (2016). https://doi.org/10.1007/978-
3-319-48472-3 22

23. Kennedy, O., Ahmad, Y., Koch, C.: DBToaster: Agile Views for a Dynamic Data
Management System. In: Fifth Biennial Conference on Innovative Data Systems
Research, CIDR 2011, Asilomar, CA, USA, January 9-12, 2011, Online Proceed-
ings. pp. 284–295. www.cidrdb.org (2011), http://cidrdb.org/cidr2011/Papers/
CIDR11_Paper38.pdf

24. Koch, C., Ahmad, Y., Kennedy, O., Nikolic, M., Nötzli, A., Lupei, D., Shaikhha, A.:
DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views.
VLDB J. 23(2), 253–278 (2014). https://doi.org/10.1007/s00778-013-0348-4

25. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Com-
pliance Monitoring in Business Processes: Functionalities, Application, and Tool-
Support. Inf. Syst. 54, 209–234 (2015). https://doi.org/10.1016/j.is.2015.02.007

26. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring
business constraints with linear temporal logic: An approach based on colored
automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) Proceedings of the 9th
International Conference on Business Process Management (BPM 2011). Lecture
Notes in Computer Science, vol. 6896, pp. 132–147. Springer (2011)

27. Mecca, G., Bonner, A.: Query Languages for Sequence Databases: Termination
and Complexity. IEEE Transactions on Knowledge and Data Engineering 13(3),
519–525 (2001)

28. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Mon-
itoring Business Constraints with the Event Calculus. ACM Trans. Intell. Syst.
Technol. 5(1), 17:1–17:30 (2013). https://doi.org/10.1145/2542182.2542199

29. de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P.: Connecting databases
with process mining: a meta model and toolset. Softw. Syst. Model. 18(2), 1209–
1247 (2019). https://doi.org/10.1007/s10270-018-0664-7

30. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Sup-
port for Loosely-Structured Processes. In: 11th IEEE International Enter-
prise Distributed Object Computing Conference (EDOC 2007), 15-19 October
2007, Annapolis, Maryland, USA. pp. 287–300. IEEE Computer Society (2007).
https://doi.org/10.1109/EDOC.2007.14

31. Rinderle-Ma, S., Gall, M., Fdhila, W., Mangler, J., Indiono, C.: Collecting Exam-
ples for Instance-Spanning Constraints. arXiv:1603.01523 (2018)

32. Shen, W., Doan, A., Naughton, J.F., Ramakrishnan, R.: Declarative Information
Extraction Using Datalog with Embedded Extraction Predicates. In: Koch, C.,
Gehrke, J., Garofalakis, M.N., Srivastava, D., Aberer, K., Deshpande, A., Florescu,
D., Chan, C.Y., Ganti, V., Kanne, C., Klas, W., Neuhold, E.J. (eds.) Proceedings of
the 33rd International Conference on Very Large Data Bases, University of Vienna,
Austria, September 23-27, 2007. pp. 1033–1044. ACM (2007)

33. The DBToaster Consortium: DBToaster Webpage. https://dbtoaster.github.
io/index.html, accessed: 2022-04-29

34. Warner, J., Atluri, V.: Inter-instance Authorization Constraints for Secure
Workflow Management. In: Ferraiolo, D.F., Ray, I. (eds.) 11th ACM Sym-
posium on Access Control Models and Technologies, SACMAT 2006, Lake
Tahoe, California, USA, June 7-9, 2006, Proceedings. pp. 190–199. ACM (2006).
https://doi.org/10.1145/1133058.1133085

35. Winter, K., Stertz, F., Rinderle-Ma, S.: Discovering Instance and Process Span-
ning Constraints from Process Execution Logs. Inf. Syst. 89, 101484 (2020).
https://doi.org/10.1016/j.is.2019.101484

https://doi.org/10.1007/978-3-319-48472-3_22
https://doi.org/10.1007/978-3-319-48472-3_22
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper38.pdf
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper38.pdf
https://doi.org/10.1007/s00778-013-0348-4
https://doi.org/10.1016/j.is.2015.02.007
https://doi.org/10.1145/2542182.2542199
https://doi.org/10.1007/s10270-018-0664-7
https://doi.org/10.1109/EDOC.2007.14
https://dbtoaster.github.io/index.html
https://dbtoaster.github.io/index.html
https://doi.org/10.1145/1133058.1133085
https://doi.org/10.1016/j.is.2019.101484

22 Aamer et al.

A Experiments Preprocessing

As mentioned in the main paper, we performed the following preprocessing steps
to manage our experiments:

1. The execution logs are given in XES format; we converted them to CSV using
the process mining python library PM4Py [15].

2. The events from the different processes are merged and sorted based on the
timestamp attribute. In this way, we simulate a stream of events suitable for
monitoring.

3. For each of the selected constraints, we formulated appropriate SQL queries
defining the cases, the violations, the pending violations, and the pending
satisfying cases, following our methodology described in Definition 2.

4. DBToaster takes these queries and produces an executable program (JAR file)
that allows to communicate with the queries while being incrementally main-
tained.

5. Lastly, we have implemented a Scala program for each of the constraints that
reads the CSV file and communicates with the incremental processor from
Step 4 by sending the events as insertions and asking for the intermediate
results of the queries.

B SQL Queries of Constraints

We begin this section by Table 1 that summarizes the SQL features used in the
monitored constraints. In our queries, we use a view Events which is defined by
the natural join of Log and EventData. Afterwards, we show these SQL queries.

Table 1: A table showing the SQL features used in the queries expressing each
of the monitored five constraints.

ISC Aggregation OR Existence Check Negation Double Negation

ISC1 no no yes yes yes

ISC2a yes no yes yes no

ISC2b yes no no yes no

ISC3 no yes yes yes no

ISC4 no no no yes no

B.1 Queries of ISC1

−− Q case
SELECT DISTINCT(DATE(Timestamp)) FROM Events;

Query Processing for ISC 23

−− Q v i o l
SELECT DATE(e.Timestamp)

FROM Events e, Events e4

WHERE e.Lifecycle = ’start’ AND e.ActivityLabel LIKE ’deliver

%’

AND DATE(e.Timestamp) = DATE(e4.Timestamp)

AND e.Timestamp < e4.Timestamp

AND (EXISTS

(SELECT *

FROM Events e2

WHERE DATE(e.Timestamp) = DATE(e2.Timestamp)

AND e2.Lifecycle = ’complete ’

AND e2.ActivityLabel LIKE ’print%’

AND e2.Timestamp < e.Timestamp

AND (NOT EXISTS

(SELECT *

FROM Events e3

WHERE e3.ProcessId = e2.ProcessId

AND e3.TraceId = e2.TraceId

AND e3.ActivityLabel LIKE ’

deliver%’

AND e3.Lifecycle = ’start’

AND e3.Timestamp = e.Timestamp

))));

−− Q sat−pending
SELECT DATE(c.Timestamp)

FROM CURR_DAY c

WHERE DATE(c.Timestamp) NOT IN

(SELECT DATE(e.Timestamp)

FROM Events e

WHERE e.Lifecycle = ’start’ AND e.ActivityLabel LIKE ’

deliver%’

AND ((EXISTS

(SELECT *

FROM Events e2

WHERE DATE(e.Timestamp) = DATE(e2.Timestamp)

AND e2.Lifecycle = ’complete ’

AND e2.ActivityLabel LIKE ’print%’

AND e2.Timestamp < e.Timestamp

AND (NOT EXISTS

(SELECT *

FROM Events e3

WHERE e3.ProcessId = e2.ProcessId

AND e3.TraceId = e2.TraceId

AND e3.ActivityLabel LIKE ’

deliver%’

AND e3.Lifecycle = ’start’

AND e3.Timestamp = e.

Timestamp

24 Aamer et al.

))))));

−− Q vio l −pending
SELECT DATE(c.Timestamp)

FROM CURR_DAY c, Events e

WHERE e.Lifecycle = ’start’ AND e.ActivityLabel LIKE ’deliver

%’

AND DATE(e.Timestamp) = DATE(c.Timestamp)

AND (EXISTS

(SELECT *

FROM Events e2

WHERE DATE(e.Timestamp) = DATE(e2.Timestamp)

AND e2.Lifecycle = ’complete ’

AND e2.ActivityLabel LIKE ’print%’

AND e2.Timestamp < e.Timestamp

AND (NOT EXISTS

(SELECT *

FROM Events e3

WHERE e3.ProcessId = e2.ProcessId

AND e3.TraceId = e2.TraceId

AND e3.ActivityLabel LIKE ’deliver%

’

AND e3.Lifecycle = ’start’

AND e3.Timestamp = e.Timestamp

))))

AND (NOT EXISTS

(SELECT *

FROM Events e4

WHERE DATE(e.Timestamp) = DATE(e4.Timestamp)

AND e.Timestamp < e4.Timestamp

));

B.2 Queries of ISC2a

In these queries, we use the terminology of e.Year, e.Month, e.Hour, and e.Minute
for some Event e. You can consider these as shortcuts for the following clauses,
receptively:

– EXTRACT(Year FROM e.Timestamp),
– EXTRACT(Month FROM e.Timestamp),
– EXTRACT(Hour FROM e.Timestamp), and
– EXTRACT(Minute FROM e.Timestamp).

−− Q case
SELECT m.Year , m.Month

FROM (

SELECT e1.Year , e1.Month , COUNT (*) AS NumberOfMonthCases ,

SUM(CASE WHEN ((((e2.Hour - e1.Hour) * 60) +

(e2.Minute - e1.Minute)) > 10)

THEN 0 ELSE 1 END) AS NumberOfMonthFastCases

Query Processing for ISC 25

FROM Events e1, Events e2

WHERE e1.ProcessId = e2.ProcessId AND e1.TraceId = e2.

TraceId AND

e1.Lifecycle = ’start ’ AND e2.Lifecycle = ’complete ’

AND

e1.ActivityLabel LIKE ’print%’ AND e2.ActivityLabel

LIKE ’print%’

GROUP BY e1.Year , e1.Month

) as m;

−− Q v i o l
SELECT m.Year , m.Month

FROM (

SELECT e1.Year , e1.Month , COUNT (*) AS NumberOfMonthCases ,

SUM(CASE WHEN ((((e2.Hour - e1.Hour) * 60) +

(e2.Minute - e1.Minute)) > 10)

THEN 0 ELSE 1 END) AS NumberOfMonthFastCases

FROM Events e1, Events e2

WHERE e1.ProcessId = e2.ProcessId AND e1.TraceId = e2.

TraceId AND

e1.Lifecycle = ’start ’ AND e2.Lifecycle = ’complete ’

AND

e1.ActivityLabel LIKE ’print%’ AND e2.ActivityLabel

LIKE ’print%’

GROUP BY e1.Year , e1.Month

) as m

WHERE (m.NumberOfMonthFastCases *100/m.NumberOfMonthCases) <=

95

AND NOT EXISTS

(SELECT * FROM CURR_MONTH c

WHERE c.Year = m.YEAR AND c.Month = m.Month);

−− Q sat−pending
SELECT m.Year , m.Month

FROM (

SELECT e1.Year , e1.Month , COUNT (*) AS NumberOfMonthCases ,

SUM(CASE WHEN ((((e2.Hour - e1.Hour) * 60) +

(e2.Minute - e1.Minute)) > 10)

THEN 0 ELSE 1 END) AS NumberOfMonthFastCases

FROM Events e1, Events e2

WHERE e1.ProcessId = e2.ProcessId AND e1.TraceId = e2.

TraceId AND

e1.Lifecycle = ’start ’ AND e2.Lifecycle = ’complete ’

AND

e1.ActivityLabel LIKE ’print%’ AND e2.ActivityLabel

LIKE ’print%’

GROUP BY e1.Year , e1.Month

) as m

WHERE (m.NumberOfMonthFastCases *100/m.NumberOfMonthCases) >

95

26 Aamer et al.

AND EXISTS

(SELECT * FROM CURR_MONTH c

WHERE c.Year = m.Year AND c.Month = m.Month);

−− Q vio l −pending
SELECT m.Year , m.Month

FROM (

SELECT e1.Year , e1.Month , COUNT (*) AS NumberOfMonthCases ,

SUM(CASE WHEN ((((e2.Hour - e1.Hour) * 60) +

(e2.Minute - e1.Minute)) > 10)

THEN 0 ELSE 1 END) AS NumberOfMonthFastCases

FROM Events e1, Events e2

WHERE e1.ProcessId = e2.ProcessId AND e1.TraceId = e2.

TraceId AND

e1.Lifecycle = ’start ’ AND e2.Lifecycle = ’complete ’

AND

e1.ActivityLabel LIKE ’print%’ AND e2.ActivityLabel

LIKE ’print%’

GROUP BY e1.Year , e1.Month

) as m

WHERE (m.NumberOfMonthFastCases *100/m.NumberOfMonthCases) <=

95

AND EXISTS

(SELECT * FROM CURR_MONTH c

WHERE c.Year = m.Year AND c.Month = m.Month);

B.3 Queries of ISC2b

−− Q case
SELECT DISTINCT(DATE(Timestamp)) FROM Events;

−− Q v i o l
SELECT DATE(t.Timestamp)

FROM (

SELECT DATE(e.Timestamp), COUNT(e.TraceId) AS Uses

FROM Events e

WHERE e.Lifecycle = ’complete ’ AND e.ActivityLabel LIKE ’

print%’

AND e.Resource = ’printer1 ’

GROUP BY DATE(e.Timestamp)

) AS t

WHERE t.Uses > 10;

−− Q sat−pending
SELECT DATE(c.Timestamp)

FROM CURR_DAY c

WHERE c.Date NOT IN (

SELECT DATE(t.Timestamp)

Query Processing for ISC 27

FROM (

SELECT DATE(e.Timestamp), COUNT(e.TraceId) AS Uses

FROM Events e

WHERE e.Lifecycle = ’complete ’ AND e.ActivityLabel LIKE ’

print%’

AND e.Resource = ’printer1 ’

GROUP BY DATE(e.Timestamp)

) AS t

WHERE t.Uses > 10

);

B.4 Queries of ISC3

−− Q case
SELECT ProcessId , TraceId FROM Events

WHERE ActivityLabel LIKE ’receive %’;

−− Q v i o l
SELECT e1.ProcessId , e1.TraceId

FROM Events e1

WHERE e1.ActivityLabel LIKE ’receive %’ AND e1.Lifecycle = ’

start’ AND

(

(

(EXISTS (SELECT * FROM Events e2

WHERE e1.ProcessId = e2.ProcessId

AND e1.TraceId = e2.TraceId

AND e2.ActivityLabel LIKE ’deliver %’

AND e2.Lifecycle = ’complete ’))

AND

(NOT EXISTS (SELECT * FROM Events e3

WHERE e3.ActivityLabel LIKE ’write bill’

AND e3.CustomerId = e1.CustomerId)

)

) −− P2 i s not y e t s t a r t e d b u t t h e order i s d e l i v e r e d
OR

(EXISTS (SELECT * FROM Events e4

WHERE e4.ActivityLabel LIKE ’write bill’

AND e4.CustomerId = e1.CustomerId

AND e4.Timestamp < e1.Timestamp)

) −− P2 i s s t a r t e d b e f o r e t h e order b e i n g r e c e i v e d
);

−− Q vio l −pending
SELECT e1.ProcessId , e1.TraceId

FROM Events e1

WHERE e1.ActivityLabel LIKE ’receive %’ AND e1.Lifecycle = ’

start’

AND

(NOT EXISTS (

28 Aamer et al.

SELECT * FROM Events e2

WHERE e1.ProcessId = e2.ProcessId AND e1.TraceId

= e2.TraceId

AND e2.ActivityLabel LIKE ’deliver %’

AND e2.Lifecycle = ’complete ’))

AND

(NOT EXISTS (

SELECT * FROM Events e3

WHERE e3.ActivityLabel LIKE ’write bill’

AND e3.CustomerId = e1.CustomerId)

);

B.5 Queries of ISC4

−− Q case
SELECT e1.ProcessId , e1.TraceId , e3.ProcessId , e3.TraceId

FROM Events e1, Events e3

WHERE e1.ActivityLabel LIKE ’print%’ AND e3.ActivityLabel

LIKE ’print%’

AND e1.Lifecycle = ’start’AND e3.Lifecycle = ’start’

AND DATE(e1.Timestamp) = DATE(e3.Timestamp)

AND e1.Timestamp < e3.Timestamp

AND (

NOT EXISTS (

SELECT * FROM Events e2

WHERE e1.ProcessId = e2.ProcessId AND e1.TraceId

= e2.TraceId

AND e2.ActivityLabel LIKE ’print%’

AND e2.Lifecycle = ’complete ’

AND e1.Timestamp < e2.Timestamp

AND e2.Timestamp < e3.Timestamp

));

−− Q v i o l
SELECT e1.ProcessId , e1.TraceId , e3.ProcessId , e3.TraceId

FROM Events e1, Events e3

WHERE e1.ActivityLabel LIKE ’print%’ AND e3.ActivityLabel

LIKE ’print%’

AND e1.Lifecycle = ’start’ AND e3.Lifecycle = ’start’

AND DATE(e1.Timestamp) = DATE(e3.Timestamp)

AND e1.Timestamp < e3.Timestamp

AND (

NOT EXISTS (

SELECT * FROM Events e2

WHERE e1.ProcessId = e2.ProcessId AND e1.TraceId

= e2.TraceId

AND e2.ActivityLabel LIKE ’print%’

AND e2.Lifecycle = ’complete ’

AND e1.Timestamp < e2.Timestamp

AND e2.Timestamp < e3.Timestamp

Query Processing for ISC 29

))

AND e1.Format <> e3.Format AND e1.Resource = e3.

Resource;

	What Can Database Query Processing Do for Instance-Spanning Constraints?

