Skip to main content

A Precision Cybersecurity Workflow for Cyber-physical Systems: The IoT Healthcare Use Case

  • Conference paper
  • First Online:
Computer Security. ESORICS 2022 International Workshops (ESORICS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13785))

Included in the following conference series:

Abstract

The IoT paradigm revolves around a tight interaction between the IT side (i.e., the thing and the software therein) and the human counterpart. From a security standpoint, both these aspects should be taken into consideration when building up reliable and effective security solutions. We argue that traditional static approaches to securing IoT fail to deal with such a complexity, as they do not take into account the dynamic nature of human beings that keep evolving while interacting with IoT device. To overcome this limitation, in this paper we put forward the idea of precision cybersecurity that complements the traditional security model by allowing for the definition of mechanisms and security policies which can be dynamically tailored around individuals. To this aim, we provide the first modeling of a precision cybersecurity workflow (PCW), and we implement it in a tool. Then, we apply it to a both security and safety critical IoT deployment, namely an IoT Medical-Healthcare real scenario, to prove the viability of the proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.enisa.europa.eu/topics/critical-information-infrastructures-and-services/health/.

  2. 2.

    https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7650.

  3. 3.

    https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11063.

  4. 4.

    https://github.com/fusesource/mqtt-client.

  5. 5.

    https://www.hivemq.com/public-mqtt-broker/.

  6. 6.

    https://gitlab.com/fspegni/mqtt-stateful-firewall.

References

  1. Amaraweera, S.P., Halgamuge, M.N.: Internet of things in the healthcare sector: overview of security and privacy issues. Secur. Priv. Trust Iot Environ. 153–179 (2019)

    Google Scholar 

  2. Arseni, S.C., Chifor, B.C., Coca, M., Medvei, M., Bica, I., Matei, I.: RESFIT: a reputation and security monitoring platform for IoT applications. Electron. (Switz.) 10(15), 1840 (2021)

    Google Scholar 

  3. Barrett, M.: Framework for improving critical infrastructure cybersecurity version 1.1 (2018). https://doi.org/10.6028/NIST.CSWP.04162018

  4. Berger, C., Eichhammer, P., Reiser, H., Domaschka, J., Hauck, F., Habiger, G.: A survey on resilience in the IoT: taxonomy, classification, and discussion of resilience mechanisms. ACM Comput. Surv. 54(7), 1–39 (2022). https://doi.org/10.1145/3462513

    Article  Google Scholar 

  5. Bhuiyan, M.N., Rahman, M.M., Billah, M.M., Saha, D.: Internet of things (IoT): a review of its enabling technologies in healthcare applications, standards protocols, security and market opportunities. IEEE Internet Things J. 8, 10474–10498 (2021)

    Article  Google Scholar 

  6. Butpheng, C., Yeh, K.H., Xiong, H.: Security and privacy in IoT-cloud-based e-health systems-a comprehensive review. Symmetry 12(7), 1191 (2020)

    Article  Google Scholar 

  7. Calabretta, M., Pecori, R., Vecchio, M., Veltri, L.: MQTT-auth: a token-based solution to endow MQTT with authentication and authorization capabilities. J. Commun. Softw. Syst. 14(4), 320–331 (2018)

    Google Scholar 

  8. Chacko, A., Hayajneh, T.: Security and privacy issues with IoT in healthcare. EAI Endors. Trans. Pervasive Health Technol. 4(14) (2018)

    Google Scholar 

  9. Chifor, B.C., Bica, I., Patriciu, V.V.: Mitigating dos attacks in publish-subscribe IoT networks. In: 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp. 1–6. IEEE (2017)

    Google Scholar 

  10. Colombo, P., Ferrari, E.: Access control enforcement within MQTT-based internet of things ecosystems. In: Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies, pp. 223–234 (2018)

    Google Scholar 

  11. Colombo, P., Ferrari, E., Tümer, E.D.: Regulating data sharing across MQTT environments. J. Netw. Comput. Appl. 174, 102907 (2021)

    Google Scholar 

  12. Diro, A., Reda, H., Chilamkurti, N., Mahmood, A., Zaman, N., Nam, Y.: Lightweight authenticated-encryption scheme for internet of things based on publish-subscribe communication. IEEE Access 8, 60539–60551 (2020)

    Article  Google Scholar 

  13. Disterer, G.: ISO/IEC 27000, 27001 and 27002 for information security management. J. Inf. Secur. 04, 92–100 (2013)

    Google Scholar 

  14. Elemam, E., Bahaa-Eldin, A.M., Shaker, N.H., Sobh, M.A.: A secure MQTT protocol, telemedicine IoT case study. In: 2019 14th International Conference on Computer Engineering and Systems (ICCES), pp. 99–105. IEEE (2019)

    Google Scholar 

  15. Fáñez, M., Villar, J., de la Cal, E., González, V., Sedano, J., Khojasteh, S.: Mixing user-centered and generalized models for fall detection. Neurocomputing 452, 473–486 (2021)

    Article  Google Scholar 

  16. Firdous, S.N., Baig, Z., Valli, C., Ibrahim, A.: Modelling and evaluation of malicious attacks against the IoT MQTT protocol. In: 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 748–755 (2017)

    Google Scholar 

  17. Hammi, B., Zeadally, S., Khatoun, R., Nebhen, J.: Survey on smart homes: vulnerabilities, risks, and countermeasures. Comput. Secur. 117 (2022). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126601158 &doi=10.1016%2fj.cose.2022.102677 &partnerID=40 &md5=64340c17de56a9712c366f4f4f79bba0

  18. Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., Sikdar, B.: A survey on IoT security: application areas, security threats, and solution architectures. IEEE Access 7, 82721–82743 (2019)

    Article  Google Scholar 

  19. Hathaliya, J.J., Tanwar, S.: An exhaustive survey on security and privacy issues in healthcare 4.0. Comput. Commun. 153, 311–335 (2020)

    Article  Google Scholar 

  20. Hindy, H., Bayne, E., Bures, M., Atkinson, R., Tachtatzis, C., Bellekens, X.: Machine learning based IoT intrusion detection system: an MQTT case study (MQTT-IoT-IDS2020 dataset). In: Ghita, B., Shiaeles, S. (eds.) INC 2020. LNNS, vol. 180, pp. 73–84. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64758-2_6

    Chapter  Google Scholar 

  21. Hsieh, S.L., Chen, C.C., Wu, S.H., Yue, T.W.: A wrist -worn fall detection system using accelerometers and gyroscopes. In: Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control, pp. 518–523 (2014). https://doi.org/10.1109/ICNSC.2014.6819680

  22. Husnain, M., et al.: Preventing MQTT vulnerabilities using IoT-enabled intrusion detection system. Sensors 22(2) (2022). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85122801941 &doi=10.3390%2fs22020567 &partnerID=40 &md5=543e08cd987bcb6b63c906cf9cd57442

  23. Khan, M.A., et al.: A deep learning-based intrusion detection system for MQTT enabled IoT. Sensors 21(21), 7016 (2021)

    Article  Google Scholar 

  24. La Marra, A., Martinelli, F., Mori, P., Saracino, A.: Implementing usage control in internet of things: a smart home use case. In: 2017 IEEE Trustcom/BigDataSE/ICESS, pp. 1056–1063. IEEE (2017)

    Google Scholar 

  25. Merlo, A., Ruggia, A., Sciolla, L., Verderame, L.: Armand: Anti-repackaging through multi-pattern anti-tampering based on native detection. Pervasive Mob. Comput. 76, 101443 (2021)

    Google Scholar 

  26. Morelli, U., Vaccari, I., Ranise, S., Cambiaso, E.: DoS attacks in available MQTT implementations: investigating the impact on brokers and devices, and supported anti-DoS protections. In: The 16th International Conference on Availability, Reliability and Security, pp. 1–9 (2021)

    Google Scholar 

  27. Palmieri, A., Prem, P., Ranise, S., Morelli, U., Ahmad, T.: MQTTSA: a tool for automatically assisting the secure deployments of MQTT brokers. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642–939X, pp. 47–53 (2019). https://doi.org/10.1109/SERVICES.2019.00023

  28. Pathak, A.K., Saguna, S., Mitra, K., Åhlund, C.: Anomaly detection using machine learning to discover sensor tampering in IoT systems. In: ICC 2021-IEEE International Conference on Communications, pp. 1–6. IEEE (2021)

    Google Scholar 

  29. Pepa, L., Capecci, M., Andrenelli, E., Ciabattoni, L., Spalazzi, L., Ceravolo, M.: A fuzzy logic system for the home assessment of freezing of gait in subjects with parkinsons disease. Expert Syst. Appl. 147, 113197 (2020)

    Google Scholar 

  30. Pepa, L., Capecci, M., Verdini, F., Ceravolo, M., Spalazzi, L.: An architecture to manage motor disorders in Parkinson’s disease. In: IEEE World Forum on Internet of Things, WF-IoT 2015 - Proceedings, pp. 615–620. Institute of Electrical and Electronics Engineers Inc. (2015)

    Google Scholar 

  31. Potrino, G., De Rango, F., Santamaria, A.F.: Modeling and evaluation of a new IoT security system for mitigating dos attacks to the MQTT broker. In: 2019 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE (2019)

    Google Scholar 

  32. Rasouli, M., Miehling, E., Teneketzis, D.: A supervisory control approach to dynamic cyber-security. In: Poovendran, R., Saad, W. (eds.) GameSec 2014. LNCS, vol. 8840, pp. 99–117. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12601-2_6

    Chapter  Google Scholar 

  33. Riesco, R., Villagrá, V.A.: Leveraging cyber threat intelligence for a dynamic risk framework. Int. J. Inf. Secur. 18(6), 715–739 (2019). https://doi.org/10.1007/s10207-019-00433-2

    Article  Google Scholar 

  34. Szczepaniuk, E.K., Szczepaniuk, H., Rokicki, T., Klepacki, B.: Information security assessment in public administration. Comput. Secur. 90, 101709 (2020)

    Google Scholar 

  35. Vaccari, I., Aiello, M., Cambiaso, E.: SlowITe, a novel denial of service attack affecting MQTT. Sensors 20(10), 2932 (2020)

    Article  Google Scholar 

  36. Vaccari, I., Aiello, M., Cambiaso, E.: SlowTT: A slow denial of service against IoT networks. Information 11(9), 452 (2020)

    Article  Google Scholar 

  37. Wang, N., Jiao, L., Wang, P., Dabaghchian, M., Zeng, K.: Efficient identity spoofing attack detection for IoT in mm-wave and massive MIMO 5G communication. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2018)

    Google Scholar 

  38. Watzlaf, V., Zhou, L., Dealmeida, D., Hartman, L.: A systematic review of research studies examining telehealth privacy and security practices used by healthcare providers. Int. J. Telerehabil. 9(2), 39–59 (2017)

    Article  Google Scholar 

  39. Yankson, B.: Continuous improvement process (CIP)-based privacy-preserving framework for smart connected toys. Int. J. Inf. Secur. 20(6), 849–869 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Spegni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spegni, F., Sabatelli, A., Merlo, A., Pepa, L., Spalazzi, L., Verderame, L. (2023). A Precision Cybersecurity Workflow for Cyber-physical Systems: The IoT Healthcare Use Case. In: Katsikas, S., et al. Computer Security. ESORICS 2022 International Workshops. ESORICS 2022. Lecture Notes in Computer Science, vol 13785. Springer, Cham. https://doi.org/10.1007/978-3-031-25460-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25460-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25459-8

  • Online ISBN: 978-3-031-25460-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics