
BulletArm: An Open-Source Robotic Manipulation
Benchmark and Learning Framework

Dian Wang*, Colin Kohler*, Xupeng Zhu, Mingxi Jia, and Robert Platt

Khoury College of Computer Sciences
Northeastern University

Boston, MA 02115, USA
{wang.dian, kohler.c, zhu.xup, jia.ming,

r.platt}@northeastern.edu

Abstract. We present BulletArm, a novel benchmark and learning-environment
for robotic manipulation. BulletArm is designed around two key principles: re-
producibility and extensibility. We aim to encourage more direct comparisons
between robotic learning methods by providing a set of standardized benchmark
tasks in simulation alongside a collection of baseline algorithms. The framework
consists of 31 different manipulation tasks of varying difficulty, ranging from
simple reaching and picking tasks to more realistic tasks such as bin packing and
pallet stacking. In addition to the provided tasks, BulletArm has been built to fa-
cilitate easy expansion and provides a suite of tools to assist users when adding
new tasks to the framework. Moreover, we introduce a set of five benchmarks
and evaluate them using a series of state-of-the-art baseline algorithms. By in-
cluding these algorithms as part of our framework, we hope to encourage users
to benchmark their work on any new tasks against these baselines.

Keywords: Benchmark, Simulation, Robotic Learning, Reinforcement Learning

1 Introduction

Inspired by the recent successes of deep learning in the field of computer vision, there
has been an explosion of work aimed at applying deep learning algorithms across a va-
riety of disciplines. Deep reinforcement learning, for example, has been used to learn
policies which achieve superhuman levels of performance across a variety of games
[36,30]. Robotics has seen a similar surge in recent years, especially in the area of
robotic manipulation with reinforcement learning [12,20,51], imitation learning [50],
and multi-task learning [10,14]. However, there is a key difference between current
robotics learning research and past work applying deep learning to other fields. There
currently is no widely accepted standard for comparing learning-based robotic manipu-
lation methods. In computer vision for example, the ImageNet benchmark [8] has been
a crucial factor in the explosion of image classification algorithms we have seen in the
recent past.

While there are benchmarks for policy learning in domains similar to robotic ma-
nipulation, such as the continuous control tasks in OpenAI Gym [4] and the DeepMind

*Equal Contribution

ar
X

iv
:2

20
5.

14
29

2v
2 

 [
cs

.R
O

] 
 1

7 
O

ct
 2

02
2



2 Wang et al.

Control Suite [37], they are not applicable to more real-world tasks we are interested
in robotics. Furthermore, different robotics labs work with drastically different systems
in the real-world using different robots, sensors, etc. As a result, researchers often de-
velop their own training and evaluation environments, making it extremely difficult to
compare different approaches. For example, even simple tasks like block stacking can
have a lot of variability between different works [31,28,43], including different physics
simulators, different manipulators, different object sizes, etc.

In this work, we introduce BulletArm, a novel framework for robotic manipulation
learning based on two key components. First, we provide a flexible, open-source frame-
work that supports many different manipulation tasks. Compared with prior works, we
introduce tasks with various difficulties and require different manipulation skills. This
includes long-term planning tasks like supervising Covid tests and contact-rich tasks
requiring precise nudging or pushing behaviors. BulletArm currently consists of 31
unique tasks which the user can easily customize to mimic their real-world lab setups
(e.g., workspace size, robotic arm type, etc). In addition, BulletArm was developed
with a emphasis on extensability so new tasks can easily be created as needed. Second,
we include five different benchmarks alongside a collection of standardized baselines
for the user to quickly benchmark their work against. We include our implementations
of these baselines in the hopes of new users applying them to their customization of
existing tasks and whatever new tasks they create.

Our contribution can be summarized as three-fold. First, we propose BulletArm,
a benchmark and learning framework containing a set of 21 open-loop manipulation
tasks and 10 close-loop manipulation tasks. We have developed this framework over
the course of many prior works [43,3,45,3,44,42,54]. Second, we provide state-of-the-
art baseline algorithms enabling other researchers to easily compare their work against
our baselines once new tasks are inevitably added to the baseline. Third, BulletArm
provides a extensive suite of tools to allow users to easily create new tasks as needed.
Our code is available at https://github.com/ColinKohler/BulletArm.

2 Related Work

Reinforcement Learning Environments Standardized environments are vitally impor-
tant when comparing different reinforcement learning algorithms. Many prior works
have developed various video game environments, including PacMan [33], Super Mario
[39], Doom [21], and StarCraft [41]. OpenAI Gym [4] provides a standard API for the
communication between agents and environments, and a collection of various different
environments including Atari games from the Arcade Learning Environment (ALE) [2]
and some robotic tasks implemented using MuJoCo [38]. The DeepMind Control Suite
(DMC) [37] provides a similar set of continuous control tasks. Although both OpenAI
Gym and DMC have a small set of robotic environments, they are toy tasks which are
not representative of the real-world tasks we are interested in robotics.

Robotic Manipulation Environments In robotic manipulation, there are many bench-
marks for grasping in the context of supervised learning, e.g., the Cornell dataset [19],
the Jacquard dataset [9], and the GraspNet 1B dataset [11]. In the context of reinforce-
ment learning, on the other hand, the majority of prior frameworks focus on single

https://github.com/ColinKohler/BulletArm


BulletArm 3

tasks, for example, door opening [40], furniture assembly [27], and in-hand dexter-
ous manipulation [1]. Another strand of prior works propose frameworks containing a
variety of different environments, such as robosuite [55], PyRoboLearn [7], and Meta-
World [48], but are often limited to short horizon tasks. Ravens [50] introduces a set of
environments containing complex manipulation tasks but restricts the end-effector to a
suction cup gripper. RLBench [18] provides a similar learning framework to ours with
a number of key differences. First, RLBench is built around the PyRep [17] interface
and is therefor built on-top of V-REP [34]. Furthermore, RLBench is more restrictive
than BulletArm with limitations placed on the workspace scene, robot, and more.

Robotic Manipulation Control There are two commonly used end-effector control
schemes: open-loop control and close-loop control. In open-loop control, the agent se-
lects both the target pose of target pose of the end-effector and some action primitive
to execute at that pose. Open-loop control generally has shorter time horizon, allowing
the agent to solve complex tasks that require a long trajectory [52,51,43]. In close-loop
control, the agent sets the displacement of the end-effector This allows the agent to
more easily recover from failures which is vital when delaing with contact-rich tasks
[12,20,53,44]. BulletArm provides a collection of environments in both settings, allow-
ing the users to select either one based on their research interests.

3 Architecture

At the core of our learning framework is the PyBullet [6] simulator. PyBullet is a Python
library for robotics simulation and machine learning with a focus on sim-to-real transfer.
Built upon Bullet Physics SDK, PyBullet provides access to forward dynamics simu-
lation, inverse dynamics computation, forward and inverse kinematics, collision detec-
tion, and more. In addition to physics simulation, there are also numerous tools for
scene rendering and visualization. BulletArm builds upon PyBullet, providing a diverse
set of tools tailored to robotic manipulation simulations.

3.1 Design Philosophy

The design philosophy behind our framework focuses on four key principles:
1. Reproducibility: A key challenge when developing new learning algorithms is

the difficulty in comparing them to previous work. In robotics, this problem is espe-
cially prevalent as different researchers have drastically different robotic setups. This
can range from small differences, such as workspace size or degradation of objects, to
large differences such as the robot used to preform the experiments. Moving to sim-
ulation allows for the standardization of these factors but can impact the performance
of the trained algorithm in the real-world. We aim to encourage more direct compar-
isons between works by providing a flexible simulation environment and a number of
baselines to compare against.

2. Extensibility: Although we include a number of tasks, control types, and robots;
there will always be a need for additional development in these areas. Using our frame-
work, users can easily add new tasks, robots, and objects. We make the choice to not



4 Wang et al.

1 from bulletarm import env_factory
2
3 task_config = {’robot’: ’kuka’}
4 env = env_factory.createEnvs(1,
5 ’block_stacking’, task_config)
6 agent = Agent()
7 obs = env.reset()
8 while not done:
9 if expert:

10 action = env.getNextAction()
11 else:
12 action = agent.getAction(obs)
13 obs, reward, done = env.step(action)
14 env.close()

1 from bulletarm.base_env import BaseEnv
2 from bulletarm.constants import CUBE
3
4 class PyramidStackEnv(BaseEnv):
5 def __init__(self, config):
6 super().__init__(config)
7
8 def reset(self):
9 self.resetPybulletWorkspace()

10 self.cubes = self._generateShapes(CUBE, 3)
11 return self._getObservation()
12
13 def _checkTermination(self):
14 return self.areBlocksInPyramid(self.cubes)

Fig. 1. Example scripts using our framework. (Left) Creating and interacting with a environment
running the Block Stacking task. (Right) Creating a new block structure construction task by
subclassing the existing base domain.

restrict tasks, allowing users more freedom create interesting domains. Figure 1 shows
an example of creating a new task using our framework.

3. Performance: Deep learning methods are often time consuming, slow processes
and the addition of a physics simulator can lead to long training times. We have spent a
significant portion of time in ensuring that our framework will not bottleneck training by
optimizing the simulations and allowing the user to run many environments in parallel.

4. Usability: A good open-source framework should be easy to use and understand.
We provide extensive documentation detailing the key components of our framework
and a set of tutorials demonstrating both how to use the environments and how to extend
them.

3.2 Environment

Our simulation setup (Figure 4) consists of a robot arm mounted on the floor of the
simulation environment, a workspace in front of the robot where objects are generated,
and a sensor. Typically, we use top-down sensors which generate heightmaps of the
workspace. As we restrict the perception data to only the defined workspace, we choose
to not add unnecessary elements to the setup such as a table for the arm to sit upon.
Currently there are four different robot arms available in BulletArm (Figure 3): KUKA
IIWA, Frane Emika Panda, Universal Robots UR5 with either a simple parallel jaw
gripper or the Robotiq 2F-85 gripper.

Environment, Configuration, and Episode are three key terms within our frame-
work. An environment is an instance of the PyBullet simulator in which the robot inter-
acts with objects while trying to solve some task. This includes the initial environment
state, the reward function, and termination requirements. A configuration contains ad-
ditional specifications for the task such as the robotic arm, the size of the workspace,
the physics mode, etc (see Appendix B for an full list of parameters). Episodes are
generated by taking actions (steps) within an environment until the episode ends. An
episode trajectory τ contains a series of observations o, actions a, and rewards r:
τ = [(o0, a0, r0), ..., (oT , aT , rT )].

Users interface with the learning environment through the EnvironmentFactory and
EnvironmentRunner classes. The EnvironmentFactory is the entry point and creates the



BulletArm 5

Fig. 2. The Deconstruction planner. Left to right: a deconstruction episode where the expert de-
constructs the block structure in the left-most figure. Right to left: a construction episode is gen-
erated by reversing the deconstruction episode. This is inspired by [49] where the authors propose
a method to learn kit assembly through disassembly by reversing disassembly transitions.

Environment class specified by the Configuration passed as input. The Environment-
Factory can create either a single environment or multiple environmaents meant to be
run in parallel. In either case, an EnvironmentRunner instance is returned and provides
the API which interacts with the environments. This API, Figure 1, is modelled after
the typical agent-environment RL setup popularized by OpenAI Gym [4].

The benchmark tasks we provide have a sparse reward function which returns +1
on successful task completion and 0 otherwise. While we find this reward function to be
advantageous as it avoids problems due to reward shaping, we do not require that new
tasks conform to this. When defining a new task, the reward function defaults to sparse
but users can easily define their custom reward for a new task. We separate our tasks into
two categories based on the action spaces: open-loop control and closed-loop control.
These two control modes are commonly used in robotics manipulation research.

3.3 Expert Demonstrations

Expert demonstrations are crucial to many robotic learning fields. Methods such as
imitation and model-based learning, for example, learn directly from expert demonstra-
tions. Additionally, we find that in the context of reinforcement learning, it is vital to
seed learning with expert demonstrations due to the difficulties in exploring large state-
action spaces. We provide two types of planners to facilitate expert data generation: the
Waypoint Planner and the Deconstruction Planner.

The Waypoint Planner is a online planning method which moves the end-effector
through a series of waypoints in the workspace. We define a waypoint as wt = (pt, at)
where pt is the desired pose of the end effector and at is the action primitive to exe-
cute at that pose. These waypoints can either be absolute positions in the workspace
or positions relative to the objects in the workspace. In open-loop control, the planner
returns the waypoint wt as the action executed at time t. In close-loop control, the plan-
ner will continuously return a small displacement from the current end-effector pose as
the action at time t. This process is repeated until the waypoint has been reached. The
Deconstruction Planner is a more limited planning method which can only be applied
to pick-and-place tasks where the goal is to arrange objects in a specific manner. For ex-
ample, we utilize this planner for the various block construction tasks examined in this
work (Figure 2). When using this planner, the workspace is initialized with the objects



6 Wang et al.

(a) Kuka (b) Panda (c) UR5 Parallel (d) UR5 Robotiq

Fig. 3. Our work currently supports four different arms: Kuka, Panda, UR5 with parallel jaw
gripper, and UR5 with Robotiq gripper.

Fig. 4. The environment containing a
robot arm, a camera, and a workspace

(a) (b)

Fig. 5. (a) The manipulation scene. (b) The state includ-
ing a top-down heightmap I , an in-hand imageH and the
gripper state g.

in their target configuration and objects are then removed one-by-one until the initial
state of the task is reached. This deconstruction trajectory, is then reversed to produce
an expert construction trajectory, τexpert = reverse(τdeconstruct).

4 Environments

The core of any good benchmark is its set of environments. In robotic manipulation,
in particular, it is important to cover a broad range of task difficulty and diversity. To
this end, we introduce tasks covering a variety of skills for both open-loop and close-
loop control. Moreover, the configurable parameters of our environments enable the
user to select different task variations (e.g., the user can select whether the objects
in the workspace will be initialized with a random orientation). BulletArm currently
provides a collection of 21 open-loop manipulation environments and a collection of 10
close-loop environments. These environments are limited to kinematic tasks where the
robot has to directly manipulate a collection of objects in order to reach some desired
configuration.

4.1 Open-Loop Environments

In the open-loop environments, the agent controls the target pose of the end-effector,
resulting in a shorter time horizon for complex tasks. The open-loop environment is



BulletArm 7

(a) Block Stacking (b) House Building 1 (c) House Building 2 (d) House Building 3

(e) House Building 4 (f) Improvise House
Building 2

(g) Improvise House
Building 3

(h) Bin Packing

(i) Bottle Arrangement (j) Box Palletizing (k) Covid Test (l) Object Grasping

Fig. 6. The open-loop environments. The window on the top-left corner of each sub-figure shows
the goal state of each task.

comprised of a robot arm, a workspace, and a camera above the workspace providing
the observation (Figure 4). The action space is defined as the cross product of the gripper
motion Ag = {PICK, PLACE} and the target pose of the gripper for that motion Ap,
A = Ag × Ap. The state space is defined as s = (I,H, g) ∈ S (Figure 5), where I is
a top-down heightmap of the workspace; g ∈ {HOLDING, EMPTY} denotes the gripper
state; and H is an in-hand image that shows the object currently being held. If the last
action is PICK, then H is a crop of the heightmap in the previous time step centered at
the pick position. If the last action is PLACE, H is set to a zero value image.

BulletArm provides three different action spaces forAp:Ap ∈ {Axy, Axyθ, ASE(3)}.
The first option (x, y) ∈ Axy only controls the (x, y) components of the gripper pose,
where the rotation of the gripper is fixed; and z is selected using a heuristic function
that first reads the maximal height in the region around (x, y) and then either adds a
positive offset for a PLACE action or a negative offset for PICK action. The second op-
tion (x, y, θ) ∈ Axyθ adds control of the rotation θ along the z-axis. The third option
(x, y, z, θ, φ, ψ) ∈ ASE(3) controls the full 6 degree of freedom pose of the gripper,
including the rotation along the y-axis φ and the rotation along the x-axis ψ. Axy and
Axyθ are suited for tasks that only require top-down manipulations, while ASE(3) is de-
signed for solving complex tasks involving out-of-plane rotations. The definition of the
state space and the action space in the open-loop environments also enables effortless



8 Wang et al.

(a) The Ramp Environment (b) The Bump Environment

Fig. 7. The 6DoF environments. (a): In the Ramp Environment, the objects are initialized on two
ramps, where the agent needs to control the out-of-plane orientations to pick up the objects. (b):
Similarly, in the Bump Environment, the objects are initialized on a bumpy surface.

(a) (b) (c)

Fig. 8. (a) The close-loop environment containing a robot arm, two cameras, and a workspace.
(b) The point cloud generated from the two cameras. (c) The orthographic projection generated
from the point cloud which is used as the observation. The two squares at the center of the image
represent the gripper. Alternatively, the image can be generated using a simulated orthographic
camera located at the position of the end-effector.

sim2real transfer. One can reproduce the observation in Figure 5 in the real-world using
an overhead depth camera and transfer the learned policy [43,45].

Figure 6 shows the 12 basic open-loop environments that can be solved using top-
down actions. Those environments can be categorized into two collections, a set of
block structure tasks (Figures 6a-6g), and a set of more realistic tasks (Figures 6h and
6l). The block structure tasks require the robot to build different goal structures using
blocks. The more realistic tasks require the robot to finish some real-world problems,
for example, arranging bottles or supervising Covid tests. We use the default sparse
reward function for all open-loop environments, i.e., +1 reward for reaching the goal,
and 0 otherwise. See Appendix A.1 for a detailed description of the tasks.

6DoF Extensions The environments that we have introduced so far only require the
robot to perform top-down manipulation. We extend those environments to 6 degrees
of freedom by initializing them in either the ramp environment or the bump environ-
ment (Figure 7). In both cases, the robot needs to control the out-of-plane orientations
introduced by the ramp or bump in order to manipulate the objects. We provide seven



BulletArm 9

(a) Block Reaching (b) Block Picking (c) Block Pushing (d) Block Pulling

(e) Block in Bowl (f) Block Stacking (g) House Building (h) Corner Picking

(i) Drawer Opening (j) Object Grasping

Fig. 9. The close-loop environments. The window on the top-left corner of each sub-figure shows
the goal state of the task.

ramp environments (for each of the block structure construction tasks), and two bump
environments (House Building 4 and Box Palletizing). See Appendix C for details.

4.2 Close-loop Environments

The close-loop environments require the agent to control the delta pose of the end-
effector, allowing the agent more control and enabling us to solve more contact-rich
tasks. These environments have a similar setup to the open-loop domain but to avoid
the occlusion caused by the arm, we instead use two side-view cameras pointing to the
workspace (Figure 8a). The heightmap I is generated by first acquiring a fused point
cloud from the two cameras (Figure 8b) and then performing an orthographic projection
(Figure 8c). This orthographic projection is centered with respect to the gripper. In
practice, this process can be replaced by putting a simulated orthographic camera at the
position of the gripper to speed up the simulation. The state space is defined as a tuple
s = (I, g) ∈ S, where g ∈ {HOLDING, EMPTY} is the gripper state indicating if there
is an object being held by gripper. The action space is defined as the cross product of
the gripper open width Aλ and the delta motion of the gripper Aδ , A = Aλ ×Aδ .

Two different action spaces are available for Aδ: Aδ ∈ {Axyzδ , Axyzθδ }. In Axyzδ , the
robot controls the change of the x, y, z position of the gripper, where the top-down ori-
entation θ is fixed. InAxyzθδ , the robot controls the change of the x, y, z position and the



10 Wang et al.

Benchmark Environments Action Space

Open-Loop 2D Benchmark open-loop environments with fixed orientation Ag ×Axy
Open-Loop 3D Benchmark open-loop environments with random orientation Ag ×Axyθ

Open-Loop 6D Benchmark open-loop environments 6DoF extensions Ag ×ASE(3)

Close-Loop 3D Benchmark close-loop environments with fixed orientation Aλ ×Axyzδ

Close-Loop 4D Benchmark close-loop environments with random orientation Aλ ×Axyzθδ

Table 1. The five benchmarks in our work include three open-loop benchmarks and two close-
loop benchmarks. ‘fixed orientation’ and ‘random orientation’ indicate whether the objects in the
environments will be initialized with a fixed orientation or random orientation.

Task B
lo

ck
St

ac
ki

ng

H
ou

se
B

ui
ld

in
g

1

H
ou

se
B

ui
ld

in
g

2

H
ou

se
B

ui
ld

in
g

3

H
ou

se
B

ui
ld

in
g

4

Im
pr

ov
is

e
H

ou
se

B
ui

ld
in

g
2

Im
pr

ov
is

e
H

ou
se

B
ui

ld
in

g
3

B
in

Pa
ck

in
g

B
ot

tle
A

rr
an

ge
m

en
t

B
ox

Pa
lle

tiz
in

g

C
ov

id
Te

st

O
bj

ec
tG

ra
sp

in
g

Number of Objects 4 4 3 4 6 3 4 8 6 18 6 15

Optimal Number of Steps 6 6 4 6 10 4 6 16 12 36 18 1

Max Number of Steps 10 10 10 10 20 10 10 20 20 40 30 1
Table 2. The number of objects, optimal number of steps per episode, and max number of steps
per episode in our Open-Loop 3D benchmark experiments

top-down orientation θ of the gripper. Figure 9 shows the 10 close-loop environments.
We provide a default sparse reward function for all environments. See Appendix A.2
for a detailed description of the tasks.

5 Benchmark

BulletArm provides a set of 5 benchmarks covering the various environments and action
spaces (Table 1). In this section, we detail the Open-Loop 3D Benchmark and the Close-
Loop 4D Benchmark. See Appendix D for the other three benchmarks.

5.1 Open-Loop 3D Benchmark

In the Open-Loop 3D Benchmark, the agent needs to solve the open-loop tasks shown
in Figure 6 using the Ag × Axyθ action space (see Section 4.1). We provide a set of
baseline algorithms that explicitly control (x, y, θ) ∈ Axyθ and select the gripper mo-
tion using the following heuristic: a PICK action will be executed if g = EMPTY and



BulletArm 11

Fig. 10. The Open-Loop 3D Benchmark results. The plots show the evaluation performance of
the greedy policy in terms of the task success rate. The evaluation is performed every 500 training
steps. Results are averaged over four runs. Shading denotes standard error.

a PLACE action will be executed if g = HOLDING. The baselines include: (1) DQN
[30], (2) ADET [24], (3) DQfD [15], and (4) SDQfD [43]. The network architectures
for these different methods can be used interchangeably. We provide the following net-
work architectures:

1. CNN ASR [43]: A two-hierarchy architecture that selects (x, y) and θ sequentially.
2. Equivariant ASR (Equi ASR) [45]: Similar to ASR, but instead of using conven-

tional CNNs, equivariant steerable CNNs [5,46] are used to capture the rotation
symmetry of the tasks.

3. FCN: a Fully Convolutional Network (FCN) [29] which outputs a n channel action-
value map for each discrete rotation.

4. Equivariant FCN [45]: Similar to FCN, but instead of using conventional CNNs,
equivariant steerable CNNs are used.

5. Rot FCN [52,51]: A FCN with 1-channel input and output, the rotation is encoded
by rotating the input and output for each θ.

In this section, we show the performance of SDQfD (which is shown to be better
than DQN, ADET, and DQfD [43]. See the performance of DQN, ADET and DQfD in
Appendix E) equipped with CNN ASR, Equi ASR, FCN, and Rot FCN. We evaluate
SDQfD in the 12 environments shown in Figure 6. Table 2 shows the number of objects,
the optimal number of steps per episode, and the max number of steps per episode in the



12 Wang et al.

Task B
lo

ck
R

ea
ch

in
g

B
lo

ck
Pi

ck
in

g

B
lo

ck
Pu

sh
in

g

B
lo

ck
Pu

lli
ng

B
lo

ck
in

B
ow

l

B
lo

ck
St

ac
ki

ng

H
ou

se
B

ui
ld

in
g

C
or

ne
rP

ic
ki

ng

D
ra

w
er

O
pe

ni
ng

O
bj

ec
tG

ra
sp

in
g

Number of Objects 1 1 1 2 2 2 2 1 1 5

Optimal Number of Steps 3 7 7 7 11 12 12 14 9 7

Max Number of Steps 50 50 50 50 50 50 50 50 50 50
Table 3. The number of objects, optimal number of steps per episode, and max number of steps
per episode in our Close-Loop 4D Benchmark experiments.

open-loop benchmark experiments. Before the start of training, 200 (500 for Covid Test)
episodes of expert data are populated in the replay buffer. Figure 10 shows the results.
Equivariant ASR (blue) has the best performance across all environments, then Rot
FCN (green) and CNN ASR (red), and finally FCN (purple). Notice that Equivariant
ASR is the only method that is capable of solving the most challenging tasks (e.g.,
Improvise House Building 3 and Covid Test).

5.2 Close-Loop 4D Benchmark

The Close-Loop 4D Benchmark requires the agent to solve the close-loop tasks shown
in Figure 9 in the 5-dimensional action space of (λ, x, y, z, θ) ∈ Aλ × Axyzθδ ⊂ R5,
where the agent controls the positional displacement of the gripper (x, y, z), the ro-
tational displacement of the gripper along the z axis (θ), and the open width of the
gripper (λ). We provide the following baseline algorithms: (1) SAC [13], (2) Equivari-
ant SAC [44], (3) RAD [25] SAC: SAC with data augmentation, (4) DrQ [23] SAC:
Similar to (3), but performs data augmentation when calculating the Q-target and the
loss, and (5) FERM [53]: A Combination of SAC and contrastive learning [26] using
data augmentation. Additionally, we also provide a variation of SAC, SACfD [44], that
applies an auxiliary L2 loss towards the expert action to the actor network. SACfD can
also be used in combination with (2), (3), and (4) to form Equivariant SACfD, RAD
SACfD, DrQ SACfD, and FERM SACfD.

In this section, we show the performance of SACfD, Equivariant SACfD (Equi
SACfD), Equivariant SACfD using Prioritized Experience Replay (PER [35]) and data
augmentation (Equi SACfD + PER + Aug), and FERM SACfD. (See Appendix F for
the performance of RAD SACfD and DrQ SACfD.) We use a continuous action space
where x, y, z ∈ [−0.05m, 0.05m], θ ∈ [−π4 ,

π
4 ], λ ∈ [0, 1]. We evaluate the various

methods in the 10 environments shown in Figure 9. Table 3 shows the number of ob-
jects, the optimal number of steps for solving each task, and the maximal number of
steps for each episode. In all tasks, we pre-load 100 episodes of expert demonstrations
in the replay buffer.

Figure 11 shows the performance of the baselines. Equivariant SACfD with PER
and data augmentation (blue) has the best overall performance followed by standard



BulletArm 13

Fig. 11. The Close-Loop 4D benchmark results. The plots show the evaluation performance of the
greedy policy in terms of the task success rate. The evaluation is performed every 500 training
steps. Results are averaged over four runs. Shading denotes standard error.

Equivariant SACfD (red). The equivariant algorithms show a significant improvement
when compared to the other algorithms which do not encode rotation symmetry, i.e.
CNN SACfD and FERM SACfD.

6 Conclusions

In this paper, we present BulletArm, a novel benchmark and learning environment
aimed at robotic manipulation. By providing a number of manipulation tasks along-
side our baseline algorithms, we hope to encourage more direct comparisons between
new methods. This type of standardization through direct comparison has been a key
aspect of improving research in deep learning methods for both computer vision and
reinforcement learning. We aim to maintain and improve this framework for the fore-
seeable future adding new features, tasks, and baseline algorithms over time. An area of
particular interest for us is to extend the existing suite of tasks to include more dynamic
environments where the robot is tasked with utilizing tools to accomplish various tasks.
We hope that with the aid of the community, this repository will grow over time to con-
tain both a large number of interesting tasks and state-of-the-art baseline algorithms.



14 Wang et al.

Acknowledgments

This work is supported in part by NSF 1724257, NSF 1724191, NSF 1763878, NSF
1750649, and NASA 80NSSC19K1474.

References

1. O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3–20, 2020.

2. M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

3. O. Biza, D. Wang, R. Platt, J.-W. van de Meent, and L. L. Wong. Action priors for large action
spaces in robotics. In Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, pages 205–213, 2021.

4. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

5. T. S. Cohen and M. Welling. Steerable cnns. arXiv preprint arXiv:1612.08498, 2016.
6. E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics

and machine learning. GitHub repository, 2016.
7. B. Delhaisse, L. D. Rozo, and D. G. Caldwell. Pyrobolearn: A python framework for robot

learning practitioners. In CoRL, 2019.
8. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierar-

chical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

9. A. Depierre, E. Dellandréa, and L. Chen. Jacquard: A large scale dataset for robotic grasp
detection. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3511–3516. IEEE, 2018.

10. C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine. Learning modular neural network
policies for multi-task and multi-robot transfer. In 2017 IEEE international conference on
robotics and automation (ICRA), pages 2169–2176. IEEE, 2017.

11. H.-S. Fang, C. Wang, M. Gou, and C. Lu. Graspnet-1billion: A large-scale benchmark for
general object grasping. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11444–11453, 2020.

12. S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic ma-
nipulation with asynchronous off-policy updates. In 2017 IEEE international conference on
robotics and automation (ICRA), pages 3389–3396. IEEE, 2017.

13. T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,
A. Gupta, P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint
arXiv:1812.05905, 2018.

14. K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Riedmiller. Learning an em-
bedding space for transferable robot skills. In International Conference on Learning Repre-
sentations, 2018.

15. T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan,
A. Sendonaris, I. Osband, et al. Deep q-learning from demonstrations. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

16. P. J. Huber. Robust estimation of a location parameter. The Annals of Mathematical Statistics,
35(1):73–101, 1964.



BulletArm 15

17. S. James, M. Freese, and A. J. Davison. Pyrep: Bringing v-rep to deep robot learning. arXiv
preprint arXiv:1906.11176, 2019.

18. S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark
& learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

19. Y. Jiang, S. Moseson, and A. Saxena. Efficient grasping from rgbd images: Learning using
a new rectangle representation. In 2011 IEEE International conference on robotics and
automation, pages 3304–3311. IEEE, 2011.

20. D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based
robotic manipulation. In Conference on Robot Learning, pages 651–673. PMLR, 2018.

21. M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski. Vizdoom: A doom-
based ai research platform for visual reinforcement learning. In 2016 IEEE conference on
computational intelligence and games (CIG), pages 1–8. IEEE, 2016.

22. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

23. I. Kostrikov, D. Yarats, and R. Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

24. A. S. Lakshminarayanan, S. Ozair, and Y. Bengio. Reinforcement learning with few expert
demonstrations. In NIPS Workshop on Deep Learning for Action and Interaction, volume
2016, 2016.

25. M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learn-
ing with augmented data. Advances in Neural Information Processing Systems, 33:19884–
19895, 2020.

26. M. Laskin, A. Srinivas, and P. Abbeel. Curl: Contrastive unsupervised representations for
reinforcement learning. In International Conference on Machine Learning, pages 5639–
5650. PMLR, 2020.

27. Y. Lee, E. Hu, Z. Yang, A. C. Yin, and J. J. Lim. Ikea furniture assembly environment for
long-horizon complex manipulation tasks. 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 6343–6349, 2021.

28. R. Li, A. Jabri, T. Darrell, and P. Agrawal. Towards practical multi-object manipulation using
relational reinforcement learning. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 4051–4058. IEEE, 2020.

29. J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmen-
tation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3431–3440, 2015.

30. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

31. A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming explo-
ration in reinforcement learning with demonstrations. In 2018 IEEE international conference
on robotics and automation (ICRA), pages 6292–6299. IEEE, 2018.

32. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop,
2017.

33. P. Rohlfshagen and S. M. Lucas. Ms pac-man versus ghost team cec 2011 competition. In
2011 IEEE Congress of Evolutionary Computation (CEC), pages 70–77. IEEE, 2011.

34. E. Rohmer, S. P. Singh, and M. Freese. V-rep: A versatile and scalable robot simulation
framework. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1321–1326. IEEE, 2013.

35. T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.



16 Wang et al.

36. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with
deep neural networks and tree search. nature, 529(7587):484–489, 2016.

37. Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

38. E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages 5026–
5033. IEEE, 2012.

39. J. Togelius, S. Karakovskiy, and R. Baumgarten. The 2009 mario ai competition. In IEEE
Congress on Evolutionary Computation, pages 1–8. IEEE, 2010.

40. Y. Urakami, A. Hodgkinson, C. Carlin, R. Leu, L. Rigazio, and P. Abbeel. Doorgym: A
scalable door opening environment and baseline agent. ArXiv, abs/1908.01887, 2019.

41. O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani,
H. Küttler, J. Agapiou, J. Schrittwieser, et al. Starcraft ii: A new challenge for reinforcement
learning. arXiv preprint arXiv:1708.04782, 2017.

42. D. Wang, M. Jia, X. Zhu, R. Walters, and R. Platt. On-robot policy learning with O(2)-
equivariant sac. arXiv preprint arXiv:2203.04923, 2022.

43. D. Wang, C. Kohler, and R. Platt. Policy learning in se (3) action spaces. In Conference on
Robot Learning, pages 1481–1497. PMLR, 2021.

44. D. Wang, R. Walters, and R. Platt. SO(2)-equivariant reinforcement learning. In Interna-
tional Conference on Learning Representations, 2022.

45. D. Wang, R. Walters, X. Zhu, and R. Platt. Equivariant Q learning in spatial action spaces.
In Conference on Robot Learning, pages 1713–1723. PMLR, 2022.

46. M. Weiler and G. Cesa. General E(2)-equivariant steerable cnns. arXiv preprint
arXiv:1911.08251, 2019.

47. W. Wohlkinger, A. Aldoma Buchaca, R. Rusu, and M. Vincze. 3DNet: Large-Scale Object
Class Recognition from CAD Models. In IEEE International Conference on Robotics and
Automation (ICRA), 2012.

48. T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning, pages 1094–1100. PMLR, 2020.

49. K. Zakka, A. Zeng, J. Lee, and S. Song. Form2fit: Learning shape priors for generaliz-
able assembly from disassembly. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 9404–9410. IEEE, 2020.

50. A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, et al. Transporter networks: Rearranging the visual world for
robotic manipulation. In Conference on Robot Learning, pages 726–747. PMLR, 2021.

51. A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser. Learning synergies
between pushing and grasping with self-supervised deep reinforcement learning. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4238–
4245. IEEE, 2018.

52. A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma, O. Taylor, M. Liu,
E. Romo, et al. Robotic pick-and-place of novel objects in clutter with multi-affordance
grasping and cross-domain image matching. In 2018 IEEE international conference on
robotics and automation (ICRA), pages 3750–3757. IEEE, 2018.

53. A. Zhan, P. Zhao, L. Pinto, P. Abbeel, and M. Laskin. A framework for efficient robotic
manipulation. arXiv preprint arXiv:2012.07975, 2020.

54. X. Zhu, D. Wang, O. Biza, G. Su, R. Walters, and R. Platt. Sample efficient grasp learning
using equivariant models. Proceedings of Robotics: Science and Systems (RSS), 2022.

55. Y. Zhu, J. Wong, A. Mandlekar, and R. Mart’in-Mart’in. robosuite: A modular simulation
framework and benchmark for robot learning. ArXiv, abs/2009.12293, 2020.



BulletArm 17

A Detail Description of Environments

A.1 Open-Loop Environments

Block Stacking In the Block Stacking environment (Figure 6a), there are N cubic
blocks with a size of 3cm × 3cm × 3cm. The blocks are randomly initialized in the
workspace. The goal of this task is to stack all blocks in a stack. An optimal policy
requires 2(N − 1) steps to finish this task. The number of blocks N is configurable. By
default, N = 4, and the maximal number of steps per episode is 10.

House Building 1 In the House Building 1 environment (Figure 6b), there are N − 1
cubic blocks with a size of 3cm× 3cm× 3cm and one triangle block with a bounding
box size of around 3cm × 3cm × 3cm. The blocks are randomly initialized in the
workspace. The goal of this task is to first form a stack using the N − 1 cubic blocks,
then place the triangle block on top of the stack. An optimal policy requires 2(N − 1)
steps to finish this task. The number of blocks N is configurable. By default, N = 4,
and the maximal number of steps per episode is 10.

House Building 2 In the House Building 2 environment (Figure 6c), there are two cubic
blocks with a size of 3cm× 3cm× 3cm, and a roof block with a bounding box size of
around 12cm× 3cm× 3cm. The blocks are randomly initialized in the workspace. The
goal of this task is to place the two cubic blocks next to each other, then place the roof
block on top of the two cubic blocks. An optimal policy requires 4 steps to finish this
task. The default maximal number of steps per episode is 10.

House Building 3 In the House Building 3 environment (Figure 6d), there are two
cubic blocks with a size of 3cm× 3cm× 3cm, one cuboid block with a size of 12cm×
3cm× 3cm, and a roof block with a bounding box size of around 12cm× 3cm× 3cm.
The blocks are randomly initialized in the workspace. The goal of this task is to first
place the two cubic blocks next to each other, place the cuboid block on top of the two
cubic blocks, then place the roof block on top of the cuboid block. An optimal policy
requires 6 steps to finish this task. The default maximal number of steps per episode is
10.

House Building 4 In the House Building 4 environment (Figure 6e), there are four
cubic blocks with a size of 3cm× 3cm× 3cm, one cuboid block with a size of 12cm×
3cm× 3cm, and a roof block with a bounding box size of around 12cm× 3cm× 3cm.
The blocks are randomly initialized in the workspace. The goal of this task is to first
place two cubic blocks next to each other, place the cuboid block on top of the two
cubic blocks, place another two cubic blocks on top of the cuboid block, then place the
roof block on top of the two cubic blocks. An optimal policy requires 10 steps to finish
this task. The default maximal number of steps per episode is 20.



18 Wang et al.

Fig. 12. The object set in the Improvise House
Building 2 and Improvise House Building 3 en-
vironment.

Improvise House Building 2 In the Im-
provise House Building 2 environment
(Figure 6f), there are two random blocks
and a roof block. The shapes of the ran-
dom blocks are sampled from Figure 12.
The blocks are randomly initialized in
the workspace. The goal of this task is to
place the two random blocks next to each other, then place the roof block on top of the
two random blocks. An optimal policy requires 4 steps to finish this task. The default
maximal number of steps per episode is 10.

Improvise House Building 3 In the Improvise House Building 3 environment (Fig-
ure 6g), there are two random blocks, a cuboid block, and a roof block. The shapes of
the random blocks are sampled from Figure 12. The blocks are randomly initialized
in the workspace. The goal of this task is to place the two random blocks next to each
other, place the cuboid block on top of the two random blocks, then place the roof block
on top of the cuboid block. An optimal policy requires 6 steps to finish this task. The
default maximal number of steps per episode is 10.

Fig. 13. The object set in the Bin Pack-
ing environment.

Bin Packing In the Bin Packing task (Figure 6h),
N objects and a bin are randomly placed in the
workspace. The shapes of the objects are ran-
domly sampled from Figure 13 (Object models
are derived from [51]) with a maximum size of
8cm×4cm×4cm and a minimum size of 4cm×
4cm × 2cm. The bin has a size of 17.6cm ×
14.4cm × 8cm. The goal of this task is to pack
all N objects in the bin. An optimal policy requires 2N steps to finish the task. The
number of objects N is configurable. By default, N = 8, and the maximal number of
steps per episode is 20.

Fig. 14. The object set in the Bottle ar-
rangement environment.

Bottle Arrangement In the Bottle Arrangement
task (Figure 6i), six bottles with random shapes
(sampled from 8 different shapes shown in Fig-
ure 14. The bottle shapes are generated from the
3DNet dataset [47]. The sizes of each bottle are
around 5cm × 5cm × 14cm), and a tray with a
size of 24cm× 16cm× 5cm are randomly placed
in the workspace. The goal is to arrange all six
bottles in the tray. An optimal policy requires 12 steps to finish this task. By default, the
maximal number of steps per episode is 20.

Box Palletizing In the Box Palletizing task (Figure 6j) (some object models are derived
from [50]), a pallet with a size of 23.2cm × 19.2cm × 3cm is randomly placed in the



BulletArm 19

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15. An example of one COVID test process.

workspace. The goal is to stackN boxes with a size of 7.2cm×4.5cm×4.5cm as shown
in Fig 6j. At the beginning of each episode and after the agent correctly places a box
on the pallet, a new box will be randomly placed in the empty workspace. An optimal
policy requires 2N steps to finish this task. The number of boxes N is configurable (6,
12, or 18). By default, N = 18, and the maximal number of steps per episode is 40.

Covid Test In the Covid Test task (Figure 6k), there is a new tube box (purple), a
test area (gray), and a used tube box (yellow) placed arbitrarily in the workspace but
adjacent to one another. Three swabs with a size of 7cm× 1cm× 1cm and three tubes
with a size of 8cm × 1.7cm × 1.7cm are initialized in the new tube box. To supervise
a COVID test, the robot needs to present a pair of a new swab and a new tube from
the new tube box to the test area. The simulator simulates the user testing COVID by
putting the swab into the tube and randomly placing the used tube in the test area. Then
the robot needs to re-collect the used tube into the used tube box. See one example
of this process in Figure 15. Each episode includes three rounds of COVID test. An
optimal policy requires 18 steps to finish this task. By default, the maximal number of
steps per episode is 30.

Object Grasping In the Object Grasping task (Figure 6l), the robot needs to grasp an
object from a clutter of at mostN objects. At the start of training,N random objects are
initialized with random position and orientation. The shapes of the objects are randomly
sampled from the object set shown in Figure 16. The object set contains 86 objects
derived from the GraspNet1B [11] dataset. Every time the agent successfully grasps all
N objects, the environment will re-generate N random objects with random positions
and orientations. The maximal number of steps per episode is 1. The number of objects
N in this environment is configurable. By default, there will be 15 objects.



20 Wang et al.

Fig. 16. The object set in the Object Grasping environment.

A.2 Close-Loop Environments

Block Reaching In the Block Reaching environment (Figure 9a), there is a cubic block
with a size of 5cm× 5cm× 5cm. The block is randomly initialized in the workspace.
The goal of this task is to move the gripper towards the block such that the distance of
the fingertip and the block is within 3cm. By default, the maximal number of steps per
episode is 50.

Block Picking In the Block Picking environment (Figure 9b), there is a cubic block
with a size of 5cm× 5cm× 5cm. The block is randomly initialized in the workspace.
The goal of this task is to grasp the block and raise the gripper such that the gripper is
15cm above the ground. By default, the maximal number of steps per episode is 50.

Block Pushing In the Block Pushing environment (Figure 9c), there is a cubic block
with a size of 5cm× 5cm× 5cm and a goal area with a size of 9cm× 9cm. The block
and the goal area are randomly initialized in the workspace. The goal of this task is to
push the block such that the distance between the block’s center and the goal’s center is
within 5cm. By default, the maximal number of steps per episode is 50.

Block Pulling In the Block Pulling environment (Figure 9d), there are two cuboid
blocks with a size of 8cm × 8cm × 5cm. The blocks are randomly initialized in the
workspace. The goal of this task is to pull one of the two blocks such that it makes
contact with another block. By default, the maximal number of steps per episode is 50.

Block in Bowl In the Block in Bowl environment (Figure 9e), there is a cubic block
with a size of 5cm × 5cm × 5cm, and a Bowl with a bounding box size of 16cm ×



BulletArm 21

16cm × 7cm. The block and the bowl are randomly initialized in the workspace. The
goal of this task is to pick up the block and place it inside the bowl. By default, the
maximal number of steps per episode is 50.

Block Stacking In the Block Stacking environment (Figure 9f), there are N cubic
blocks with a size of 5cm × 5cm × 5cm. The blocks are randomly initialized in the
workspace. The goal of this task is to form a stack using the N blocks. By default,
N = 2, the maximum number of steps per episode is 50.

House Building In the House Building environment (Figure 9g), there areN−1 cubic
blocks with a size of 5cm × 5cm × 5cm and one triangle with a bounding box size of
5cm× 5cm× 5cm. The blocks are randomly initialized in the workspace. The goal of
this task is to first form a stack using the N − 1 cubic blocks, then place the triangle
block on top. By default, N = 2, the maximum number of steps per episode is 50.

Corner Picking In the Corner Picking environment (Figure 9h), there is a cubic block
with a size of 5cm × 5cm × 5cm and a corner formed by two walls. The poses of the
block and the corner are randomly initialized with a fixed relative pose between them
so that the block is right next to the two walls. The wall is fixed in the workspace and
not movable. The goal of this task is to nudge the block out from the corner and then
pick it up at least 15cm above the ground. By default, the maximum number of steps
per episode is 50.

Drawer Opening In the Drawer Opening environment (Figure 9i), there is a drawer
with a random pose in the workspace. The outer part of the drawer is fixed and not
movable. The goal of this task is to pull the drawer handle to open the drawer. By
default, the maximum number of steps per episode is 50.

Object Grasping In the Object Grasping task (Figure 6l), the robot needs to grasp an
object from a clutter of at mostN objects. At the start of training,N random objects are
initialized with random position and orientation. The shapes of the objects are randomly
sampled from the object set shown in Figure 16. The object set contains 86 objects
derived from the GraspNet1B [11] dataset. Every time the agent successfully grasps all
N objects, the environment will re-generate N random objects with random positions
and orientations. If an episode terminates with any remaining objects in the bin, the
objects will not be re-initialized. The goal of this task is to grasp any object and lift it
such that the gripper is at least 0.15m above the ground. The number of objects N in
this environment is configurable. By default, there will be 5 objects, and the maximum
number of steps per episode is 50.

B List of Configurable Environment Parameters

Table 4 shows a list of configuration parameters in our framework.



22 Wang et al.

Parameter Example Description

robot kuka the robot to use in the experiment.

action sequence pxyzr The action space. ‘pxyzr’ means the action space a
5-vector, including the gripper action (p), the posi-
tion of the gripper (x, y, z), and its top-down rota-
tion (r).

workspace array([[0.25, 0.65],
[-0.2, 0.2], [0, 1]])

The workspace in terms of the range in x, y, and z.

object scale range 0.6 The scale of the size of the objects in the environ-
ment.

max steps 10 The maximal steps per episode.

num objects 1 The number of objects in the environment.

obs size 128 The pixel size of the observation I .

in hand size 24 The pixel size of the in-hand image H .

fast mode True If True, teleport the arm when possible to speed up
the simulation.

render False If True, render the PyBullet GUI.

random orientation True If True, the objects in the environments will be ini-
tialized with random orientations.

half rotation True If True, constrain the gripper rotation between 0
and π.

workspace check point/bounding box Check object out of bound using the object center
of mass or the bounding box

close loop tray False If True, generate a tray like in the Object Grasping
(Figure 9j) in the close-loop environment.

Table 4. List of example configurable parameters in our framework.

C Open-Loop 6DoF Environments

Most of the 6DoF environments mirror those in Figure 6, but the workspace is initial-
ized with two ramps in the ramp environments or with a bumpy surface in the bump
environments.

In the ramp environments (Figure 17a-Figure 17g), the two ramps are always par-
allel to each other. The distance between the ramps is randomly sampled between 4cm
and 20cm. The orientation of the two ramps along the z-axis is randomly sampled be-
tween 0 and 2π. The slope of each ramp is randomly sampled between 0 and π

6 . The
height of each ramp above the ground is randomly sampled between 0cm and 1cm.
In addition, the relevant objects are initialized with random positions and orientations
either on the ramps or on the ground.



BulletArm 23

(a) Ramp Block Stacking (b) Ramp House Building 1 (c) Ramp House Building 2

(d) Ramp House Building 3 (e) Ramp House Building 4 (f) Ramp Improvise House
Building 2

(g) Ramp Improvise House
Building 3

(h) Bump House Building 4 (i) Bump Box Palletizing

Fig. 17. The open-loop 6DoF environments. The window on the top-left corner of each sub-figure
shows the goal state of each task.

In the bump environments (Figure 17h and Figure 17i), bumpy surface is generated
by nine pyramid shapes with a random slop sampled from 0 to π

12 degrees. The orien-
tation of the bumpy surface along the z-axis is randomly sampled at the beginning of
each episode.

D Additional Benchmarks

This section demonstrates the Open-Loop 2D Benchmark, the Open-Loop 6D Bench-
mark, and the Close-loop 3D Benchmark (Table 1).

D.1 Open-Loop 2D Benchmark

The Open-Loop 2D Benchmark requires the agent to solve the open-loop tasks in Fig-
ure 6 without random orientations, i.e., all of the objects in the environment will be



24 Wang et al.

Fig. 18. The Open-Loop 2D benchmark result. The plots show the evaluation performance of the
greedy policy in terms of the task success rate. The evaluation is performed every 500 training
steps. Results are averaged over four runs. Shading denotes standard error.

initialized with a fixed orientation. The action space in this benchmark is Ag × Axy ,
i.e., the agent only controls the target (x, y) position of the gripper, while θ is fixed
at 0 degree. Other environment parameters mirror the Open-Loop 3D Benchmark in
Section 5.1.

Similar as in Section 5.1, we provide DQN, ADET, DQfD, and SDQfD algorithms
with FCN and Equivariant FCN (Equi FCN) network architectures (the other architec-
tures do not apply to this benchmark because the agent does not control θ). In this sec-
tion, we show the performance of SDQfD equipped with FCN and Equivariant FCN.
Figure 18 shows the result. Equivariant FCN (blue) generally shows a better perfor-
mance compared with standard FCN (red).

D.2 Open-Loop 6D Benchmark

In the Open-Loop 6D Benchmark, the agent needs to solve the open-loop 6DoF envi-
ronments (Appendix C) in an action space of Ag ×ASE(3), i.e., the position (x, y, z) of
the gripper and the rotation (θ, φ, ψ) of the gripper along the z, y, x axes.

We provide two baselines in this benchmark: 1) ASR [43]: a hierarchical approach
that selects the actions in a sequence of ((x, y), θ, z, φ, ψ) using 5 networks; 2) Equiv-
ariant Deictic ASR [45] (Equi Deictic ASR): similar as 1), but replace the standard
networks with equivariant networks and the deictic encoding to improve the sample



BulletArm 25

Fig. 19. The Open-Loop 6D benchmark result. The plots show the evaluation performance of the
greedy policy in terms of the task success rate. The evaluation is performed every 500 training
steps. Results are averaged over four runs. Shading denotes standard error.

efficiency. We use 1000 planner episodes for the ramp environments and 200 planner
episodes for the bump environments. The in-hand image H in this experiment is a 3-
channel orthographic projection image of a voxel grid generated from the point cloud
at the previous pick pose. Other environment parameters mirror the Open-Loop 3D
Benchmark in Section 5.1.

Figure 19 shows the results. Equivariant Deictic ASR (blue) demonstrates a stronger
performance compared with standard ASR (red).

D.3 Close-Loop 3D Benchmark

The Close-Loop 3D Benchmark is similar as the Close-Loop 4D Benchmark (Sec-
tion 5.2), but with the following two changes: first, the environments are initialized
with a fixed orientation; second, the action space is Axyzλ ∈ R4 instead of Axyzθλ ∈ R5,
i.e., the agent only controls the delta (x, y, z) position of the end-effector and the open-
width λ of the gripper.

We provide the same baseline algorithms as in Section 5.2. In this section, we show
the performance of SDQfD, Equivariant SDQfD (Equi SDQfD), and FERM SDQfD.
Figure 20 shows the result. Equivariant SACfD (blue) shows the best performance
across all tasks. FERM SACfD (green) and SACfD (red) has similar performance, ex-
cept for Block Reaching, where FERM SACfD outperforms standard SACfD.



26 Wang et al.

Fig. 20. The Close-Loop 3D benchmark result. The plots show the evaluation performance of the
greedy policy in terms of the task success rate. The evaluation is performed every 500 training
steps. Results are averaged over four runs. Shading denotes standard error.

E Additional Baselines for Open-Loop 3D Benchmark

In this section, we show the performance of three additional baseline algorithms in the
Open-Loop 3D Benchmark (Section 5.1): DQfD, ADET, and DQN. We compare them
with SDQfD (the algorithm used in Section 5.1). All algorithms are equipped with
the Equivariant ASR architecture. Figure 21 shows the result. Notice that SDQfD and
DQfD generally perform the best, while SDQfD has a marginal advantage compared
with DQfD. ADET learns faster in some tasks (e.g., House Building 1), but normally
converges to a lower performance compared with SDQfD and DQfD. DQN performs
the worst across all environments because of the lack of imitation loss.

F Additional Baselines for Close-Loop 4D Benchmark

In this section, we show the performance of two additional baseline algorithms in
the Close-Loop 4D Benchmark (Section 5.2): RAD SACfD and DrQ SACfD. As is
shown in Figure 22, RAD SACfD (yellow) performs poorly in all 10 environments.
DrQ SACfD (brown) outperforms FERM SACfD (purple) in Block Picking and Block
Pulling, but still underperforms the equivariant methods (blue and red).



BulletArm 27

Fig. 21. The Open-Loop 3D benchmark result with additional baselines. The plots show the eval-
uation performance of the greedy policy in terms of the task success rate. The evaluation is per-
formed every 500 training steps. Results are averaged over four runs. Shading denotes standard
error.

G Benchmark Details

G.1 Open-Loop Benchmark

In all environments, the kuka arm is used as the manipulator. The workspace has a
size of 0.4m× 0.4m. The top-down observation I covers the workspace with a size of
128×128 pixels. (In the Rot FCN baseline, I’s size is 90×90 pixels, and is padded with
0 to 128×128 pixels. This is padding required for the Rot FCN baseline because it needs
to rotate the image to encode θ.) The size of the in-hand image H is 24× 24 pixels for
the Open-Loop 2D and Open-Loop 3D benchmarks. In the Open-Loop 6D Benchmark,
H is a 3-channel orthographic projection image, with a shape of 3×24×24 in the ramp
environments, and 3 × 40 × 40 in the bump environments. We train our models using
PyTorch [32] with the Adam optimizer [22] with a learning rate of 10−4 and weight
decay of 10−5. We use Huber loss [16] for the TD loss. The discount factor γ is 0.95.
The mini-batch size is 16. The replay buffer has a size of 100,000 transitions. At each
training step, the replay buffer will separately draw half of the samples from the expert
data and half of the samples from the online transitions. The weight w for the margin
loss term of SDQfD is 0.1, and the margin l = 0.1. We use the greedy policy as the
behavior policy. We use 5 environments running in parallel.



28 Wang et al.

Fig. 22. The Close-Loop 4D benchmark result with additional baselines. The plots show the eval-
uation performance of the greedy policy in terms of the task success rate. The evaluation is per-
formed every 500 training steps. Results are averaged over four runs. Shading denotes standard
error.

G.2 Close-Loop Benchmark

In all environments, the kuka arm is used as the manipulator. The workspace has a size
of 0.3m× 0.3m× 0.24m. The pixel size of the top-down depth image O is 128× 128
(except for the FERM baseline, where I’s size is 142 × 142 and will be cropped to
128 × 128). I’s FOV is 0.45m × 0.45m. We use the Adam optimizer with a learn-
ing rate of 10−3. The entropy temperature α is initialized at 10−2. The target entropy
is -5. The discount factor γ = 0.99. The batch size is 64. The buffer has a capac-
ity of 100,000 transitions. In baselines using the prioritized replay buffer (PER), PER
has a prioritized replay exponent of 0.6 and prioritized importance sampling exponent
β0 = 0.4 as in [35]. The expert transitions are given a priority bonus of εd = 1. The
FERM baseline’s contrastive encoder is pretrained for 1.6k steps using the expert data
as in [53]. We use 5 environments running in parallel.


	BulletArm: An Open-Source Robotic Manipulation Benchmark and Learning Framework

