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Abstract. It is challenging for a security analyst to detect or defend against
cyber-attacks. Moreover, traditional defense deployment methods require the se-
curity analyst to manually enforce the defenses in the presence of uncertainties
about the defense to deploy. As a result, it is essential to develop an automated
and resilient defense deployment mechanism to thwart the new generation of
attacks. In this paper, we propose a framework based on Markov Decision Pro-
cess (MDP) and Q-learning to automatically generate optimal defense solutions
for networked system states. The framework consists of four phases namely;
the model initialization phase, model generation phase, Q-learning phase, and
the conclusion phase. The proposed model collects real network information as
inputs and then builds them into structural data. We implement a Q-learning
process in the model to learn the quality of a defense action in a particular
state. To investigate the feasibility of the proposed model, we perform simula-
tion experiments and the result reveals that the model can reduce the risk of
network systems from cyber attacks. Furthermore, the experiment shows that
the model has shown a certain level of flexibility when different parameters are
used for Q-learning.

Keywords: Automation · Cyber-attacks · Defense · Deep Learning · Reinforce-
ment Learning · Machine learning · Q-Learning.

1 Introduction

Cyber-attacks have grown over the past few years to become more effective. In partic-
ular, cyber-criminals are now incorporating artificial intelligence (AI) to power cyber-
attacks (e.g., deep locker [13]) and to outsmart conventional defense mechanisms using
various approaches [1,8,11]. For instance, a group of researchers at McAfee [9] in their
2020 threat prediction report have predicted the potential raise of less-skilled attack-
ers to become more powerful to create and weaponize deepfake content. In addition,
they have predicted that cyber-criminals will use AI to produce convincing real data
capable of bypassing many user authentication mechanisms. Besides, the current state-
of-the-art defense enforcement methods require the security expert to manually deploy
cyber-defenses, thus faced with uncertainties about the best countermeasures to enforce
in order to achieve optimal security.

To address these challenges, we propose a novel approach to automatically select and
deploy cyber defense by formulating Markov Decision Process (MDP) that reflects both
attack and defense scenarios. Specifically, we propose an automatic MDP modeling-
based approach to automate defense deployment and selection using a Q-learning model
(A Q-learning is a reinforcement learning policy that finds the next best action, given
a current state). Here, we use the Q-learning model with the MDP framework to learn

1 Cite this article as:
Zhou, X., Enoch, S. Y., and Kim, D. S. (2022). Markov Decision Process For Automatic
Defense. In Information Security Applications (WISA 2022). Lecture Notes in Computer
Science, Springer, Cham.
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the quality of a defense action in the states. The proposed framework is divided into
four phases; model initialization, model generation phase, Q-learning phase, and the
conclusion phase. The model initialization phase takes a real network situation as the
input and converts it into structured data; the model generation phase generates all
the possible states for the MDP model using a breadth-first search algorithm; the
Q-learning phase implements a Q-learning iteration which trains the model to learn
the space and update the quality for each state-action pair, and the conclusion phase
searches for the optimal solutions using the Q-table trained after the previous phase.
The focus of this paper is to use an AI technique to automate cyber defense and thwart
attacks. The main contributions of this paper are as follows:

– To design and implement an automation framework based on MDP and a deep
learning algorithm for the automatic cyber defense of networked systems.

– To collect real network data and generate an MDP structure model based on the
real data.

– To develop a Q-learning model which can train itself and generate an optimal
defense solution.

– To build a testbed and to demonstrate the usability and applicability of the pro-
posed framework based on our framework.

The rest of the paper is organized as follows. Section 2 provides the related work on
defense automation based on different approaches. Our proposed MDP-based frame-
work model is presented in Section 3. In Section 4, we provide the experimental setup
and analysis of the obtained results. We conclude the paper in Section 5.

2 Related work

In this section, we briefly survey related work on defense automation for both the
traditional defense and AI-based approaches.

Ray et al. [12] proposed a framework based on UML-based use cases, state-chart
diagrams, and XML to show attacker, attack actions, and the possible defense method.
This work is still theoretical. Applebaum et al. [2] developed a practical framework
based on MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK)
to test for weaknesses and train defenders. In their work, they used classical planning,
Markov decision processes, and Monte Carlo simulations to plan attack scenarios and to
proactively move through the entire target networked systems searching for weakness
and training the defenders on possible defenses to deploy.

The authors in [7] presented a framework for automating threat response based on
a machine learning approach. Also, Noor et al. [10] presented a framework for data
breaches based on semantic analysis of attacker’s attack patterns from a collection of
threats. The focus of these papers is different from our work, as they have focused on
automating threat responses from a given repository, while our proposed automation
framework is based on simulation of real networks.

Zheng and Namin [14] presented a defense strategy against Distributed Denial-
of-Service (DDoS) in a Software-Defined Networking (SDN) using Markov Decision
Process. The authors used three parameters to model the finite set states of the MDP
model, including Flow Entry Size (F), Flow Queue Size (Q), and Transmitted Packets
Count (T). The rewards function is related to these three parameters F, Q, and T.
Each of them has been applied with different weight factors because they have dif-
ferent impacts on the network. Their results show that the model can keep the flow
traffic optimized and detect potential DDoS attacks at an early stage. This work also
showed that the model can control how the system makes a transition by adjusting the
rewards weight factor. Also, Booker and Musman [3] presented a theoretical model-
based automated cyber response system, where they frame a cyber response problem
as a Partially Observable Markov Decision Problem (POMDP). In another work, the
authors extended their work where the POMDP is used to frame automated reasoning



To appear In Information Security Applications. WISA 2022, Springer, Cham

for defensive cyber-response that searches for a policy that maps to system states, and
probabilistic beliefs.

The authors in [15] proposed a Markov Decision Process to model Moving Target
Defense with the interaction between the defend and attack sides. the paper uses four
states (Normal, Targeted, Exploited, Breached) with three possible defense strategies
(wait, defend, reset) to describe the model. It also uses the Bellman equation and value
iteration method to find out the optimal policy for each state. Their result demonstrated
how much impact the cost will have on the optimal policy and how that will help the
defender to make better defense strategies. Other authors such as [4, 5] developed a
blue team framework that can perform cyber defense generation, defense enforcement,
and security evaluation using a defined workflow. However, the work did not use any
AI technique to enhance system attack learning or to thwart cyber attacks.

3 The Proposed Approach

In this section, we describe the proposed framework for automatic cyber defense based
on MDP. The workflow of the framework comprises of four phases; Initialization Phase,
Generation Phase, Q-learning Phase, and Conclusion Phase. We explain them in detail
as follows.

3.1 Model Initialization Phase

The first phase is the initialization phase. During this phase, the program takes some
real network situations as the inputs. These inputs need to be recognized and trans-
formed into programmed data and later implemented into the MDP model. Here, the
more detailed the description of the network situation is, the more complex the model
will become.

3.2 Model Generation Phase

The second phase is the model generation phase. During this phase, the program will
generate all the possible states for the MDP using the input data collection from the
previous phase. To guarantee all the states will be visited in a well-designed order, it is
necessary to have a traversal method (and the Breadth-First Search (BFS) algorithm
will be used in this phase). Algorithm 1 and Algorithm 2 are used for the model
generation, including the generation of the next state and the defense states.

Algorithm 1: Initialize States
queue.add(initialState);
while queue not empty do

currentState ← queue.pop();
states.add(currentState);
GenerateNextState(currentState);

end

There are two major assumptions during the model generation phase. Firstly, the
attacker can only attack the host which is next to a compromised host or public internet.
For example, if the attacker attempted to compromise one host in the network, this is
only possible to happen when there is at least one neighbor host compromised, or the
host is directly connected to the public internet. Secondly, there is no value to patch
vulnerabilities on a host that has already been compromised. Once a host is marked as
compromised in the model, it is assumed that the data on the host has already been
fully breached or the host has already been controlled.

After all the states have been generated, a transition table will be constructed.
The table has size s by s where s is the number of all states. Each cell contains
transition information between the row state and the column state, or none represents
no transition available between two states. The transition information includes data
such as action, success rate, reward after success transition, and reward after the fail
transition.
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Algorithm 2: Generate Next State
/* Generate Attack States */
if attackPath is None then

for host ← adjacentHost do
if !host.compromised & host.hasVulnerabilities then

state ← AttackAction(host);
queue.add(state);

end
end

end
else

host ← GetNextHostOnPath();
if !host.compromised & host.hasVulnerabilities then

state ← AttackAction(host);
queue.add(state);

end
end
/* Generate Defense States */
for action ← defenseActionsList do

state ← DefenseAction(action);
queue.add(state);

end

3.3 Q-learning Phase

The third phase is the Q-learning phase. During this phase, the model will keep learning
the space until the iteration is over. Before starting the learning process, a Q-value table
will need to be initialized with rows and possible actions, and columns as all generated
states. Here, each q-value represents the "quality" of a state and action pair. During
this learning phase, the Q-table will keep updating until it has reached the maximum
iteration.

Four parameters are needed for the Q-learning; learning rate, epsilon, epochs, and
gamma (γ) or discounted factor which is ranging from 0 to 1. The γ parameter decides
how important the future rewards will be. It is also used to approximate the noise in
future rewards. The Q-learning phase is described by Algorithm 3. In this phase, if
gamma is close to one, it means the agent mostly considers the future rewards while
being willing to delay the immediate rewards. If gamma is close to zero, it means the
agent will mostly only consider the immediate rewards.

Algorithm 3: QLearningTrain
Input: gamma, lrnRate, epsilon, maxEpochs;
for i in range(maxEpochs) do

currS ← 0;
while True do

/* Decide to explor or exploit */
if random.uniform(0, 1) < epsilon then

action ← GetRandomNextAction(currS);

else
action ← GetMaxAction(currS);

nextS = GetStateFromAction(action);
/* Finish if no following state */
if nextS is None then

break;

/* Whether the action is successful or fail */
if random.uniform(0, 1) < trans[currS][nextS].rate then

reward ← rewards[currS][nextS].success;

else
reward ← rewards[currS][nextS].fail;
nextS ← currentS;

nextA ← GetMaxNextAction(nextS);
futureQ ← QTable[nextS][nextA];
/* Update Q Table */
QTable[currS][action] ← QValueCalculation();
currS ← nextS;

Equation (1) shows the detail calculation for the function QValueCalculation().

Q(s, a) = ((1− α) ∗Q(s, a)) + (α ∗ (reward+ (γ ∗Q(s′, a′))) (1)
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Here, the Q-learning needs to make sure every q-value has been updated with
sufficient times to reflect the actual quality. The agent can increase the number of
iterations (epochs) to increase the overall updated times. The agent can also adjust
the epsilon to balance between exploration and exploitation.

3.4 Conclusion Phase

After the Q-learning process has been completed and the Q-table has finished its up-
dates, the process will enter the conclusion phase. The main task in this phase is to
find the optimal solution(s) for the current network state.

4 Experimental Setup

In this section, we use a real network to illustrate the framework used for the attack
and defense scenarios.

Fig. 1. Real Network Structure

The network and attack model: The network structure is shown in Figure 1.
The network consists of 8 hosts, named host 1 - host 8. The network has a router that
controls access between the networked hosts. Hosts in the network have vulnerabilities
that may or may not be patchable. Table 4 shows the vulnerabilities of each host. In
the Table, we use Vi to denote vulnerability ID, CVSS Score for Common Vulnerability
and Scoring System Base Score, and Patch cost for the cost of patching vulnerabilities.
The CVSS score is based on the severity scores provided by National Vulnerability
Database [6], and we assume the patch cost value. We assume an attacker is located
outside the network. The attacker is trying to compromise the host in the internal
network. The attacker can directly connect to host 1 and host 2.

In our model, we represent the connections between hosts with links. For example,
the hosts (hi) information is going to be recorded as a list such as [h1, h2, ...,hn], and
links will be represented as [(h1, h2), (h2, h1), (h1, h3) . . . ]. In a real situation, the
network connections between two hosts are not always bi-directional. It is possible for a
host to stop receiving packages from another host while it is still able to send packages
to that host. Therefore, all the links recorded in the program are uni-directional.

Table 1. Hosts and Vulnerabilities Information

Host Address Vulnerability ID CVSS Score Patch Cost
172.16.0.1 V1 4.3 8.0
172.16.0.2 V2 2.1 5.0
172.16.0.3 V3 10.0 6.5
172.16.0.4 V4 4.3 3.5
172.16.0.5 V5 7.5 4.5
172.16.0.6 V6 8.8 5.0
172.16.0.7 V7 8.8 6.0
172.16.0.8 V8 6.1 7.0

Defense model: Since it is infeasible to patch all vulnerabilities in real network
environments, we assume only a few defense options can be selected for possible defense.
We explain each of the defenses as follows and we show the available defense strategies
in Table 2.
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– BLOCK(target, sub-target): Block port action takes two parameters, target, and
sub-target. Target tells the model to block port on which host, while sub-target
indicates which host should be blocked connection from. For example, command
BLOCK(172.16.0.2, 172.16.0.1) represents the host 172.16.0.1 should block port
from host 172.16.0.2.

– PATCH(target, vulnerability): Patch action takes two parameters, target, and vul-
nerability. For example, command PATCH(172.16.0.3, V3) represents patching vul-
nerability V3 on host 172.16.0.3.

Table 2. Available Defenses Options

Defenses ID Defense Detail
D1 Block port to Router on 172.16.0.1
D2 Patch V7 on 172.16.0.7
D3 Block port to Router on 172.16.0.2
D4 Block port to 172.16.0.7 on 172.16.0.3
D5 Patch V4 on 172.16.0.4
D6 Patch V6 on 172.16.0.6

4.1 Results and analysis

In this section, we use the network scenario described to illustrate the phases of the
framework with their results.

Initialization phase One of the features and an MDP-based model assumes that the
environment is fully observable and known by the agent. In this phase, the hosts and
vulnerabilities are collected and provided as input to the model, it is presumed that
the data collected have covered all the hosts and vulnerabilities in the space. For this
experiment, the following network data were collected:

– Host Address: The IP address for the host. This data is treated as the identifier for
each host in the model.

– CVSS Score: This value is collected from NVD. The number has a range from 0 to
10. The higher the number, the more severe the vulnerability is when it is compro-
mised by attackers. This number will be used as a negative offset in the model’s
rewards calculation for state transition, particularly for an "attack" transition.

– Vulnerability ID: is an identifier for each vulnerability. Hosts can have more than
one vulnerability.

– Patch Cost: is a number that represents the total cost of patching the vulnerability
on the host. The number has a range from 0 to 10. For example, the cost of patching
V1 is 8.0 and the cost of patching V3 is 6.5. The number will be used as a negative
offset in the model’s rewards calculation for state transition, particularly for a
"patch" transition.

Attack Path is an optional input for the model, it decides whether the model is
trying to solve a more particular problem or a wide-ranged problem. If the attack path
is given, the attacker will only attack the host which is on the path. If the attack path
is not specified in the model, the model will assume the attacker will attack any feasible
host for the attacker to attack. The attack patch is an important element during the
model generation phase. For this experiment, the following attack path (Figure 2) is
used:

Fig. 2. The attack path
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Fig. 3. State Generation Diagram

Model Generation Phase Figure 3 shows how the BFS algorithm starts exploring
the space from its root node, which corresponds to the initial state in the model. It
explores the next level of states using all possible attack and defense actions. There are
four possible actions to perform in the initial state in the figure, and thus it expands
its branches to those four states. The algorithm will finish exploring all of the neighbor
states at the same level before moving to the next depth level.

Each node in the BFS exploration tree will be visited only once, however it is still
possible for two nodes to have the same state. This is because doing different actions
in a different sequence is possible to result in the same state. Therefore, it is necessary
to check duplications before adding the node to the state set in the MDP model.

Here, the attack path is an important element during the exploration of the BFS
algorithm. If the attack path is not specified, the algorithm assumes the attacker will
attack any feasible host (i.e., the host being attacked is adjacent to a compromised
host and the host has at least one vulnerability.) Not specifying the attack path will
add complexity and run time for the model generation phase.

Q-learning Phase In this phase, the Q-Value Table shown in Figure 4 is initialized.
Initially, the Q values in the cells are all zero. Each Q-value represents the "quality"
of a state and action pair.

The parameters for Q-learning iteration is listed as follows:

– γ (Discount Factor) : 0.9
– α (Learning Rate) : 0.1
– ε : 0.7
– epochs : 5000

For this simulation experiment, 1492 possible states have been generated in total.
After the model finishes its process, all the output data generated were written into
a text file, including the optimal defense solutions and the full q-table after training.
The q-table is recorded into n lines where n is the number of possible states. Each
line represents the data for each state. One part of the line is used to describe the
situation of the state, (1) "Compromised Hosts" gives a list of hosts that have been
compromised by the attacker; (2) "Links" provide a list of existing connections between
the hosts, blocked links will not be included; (3) "Vulnerabilities" give a list of existing
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vulnerabilities, patched vulnerabilities will not be included. Another part is the q-value
for each action at this state. For example, the q-value for action 4 at this state is -2.1.

Compromised Hosts: [0, 2, 6]
Links: [(0, 1), (0, 2),(1, 2), ..., (7, 5), (7, 6)]
Vulnerabilities: [V1, V3, V4, V5, V6, V7]
Q-Values: -9.298, -6.19, -7.89, -2.1, -10.69, -5.39, -6.89

If an attack path (Figure 2) is provided to the model, the optimal defense sequence
for this network is D3 (Block port to 172.16.0.0 on 172.16.0.2). From the network
structure perspective, we can see that if host2 blocks connection from host0, then
according to the pre-defined attack path, the attacker will not be able to make any
attack action. Therefore, the network is secured after performing only one defense
action- D3.

From the q-table perspective (Table 3), D3 has the largest q-value at the State0
(Initial State), so D3 is added to the output sequence. For State5 (the state after
performing D3 at State0), the q-value for attack action is 0 which is larger than any
other defense action. Therefore, the model concludes that there is no need to perform
any defense actions, and the search ends.

Table 3. Q-Table for Real Network Example with Attack Path (Partial)

State Attack Action D1 D2 D3 D4 D5 D6
State0 (Initial State) -9.298 -6.19 -7.89 -2.1 -10.69 -5.39 -6.89
State5 (T(State0, D3) =
State4)

0.0 -4.3 -6.0 0.0 -8.8 -3.5 -5.0

If the attack path is not provided to the model, the optimal defense sequence for
this network is D3-D1. From the network structure perspective, if host1 and host2 both
block connection from host0, then the rest of the network is fully protected because
host1 and host2 are the only passes where the attack can proceed its attack. From the
q-table perspective (Table 4), D3 has the largest q-value at the State0 (Initial State), so
D3 is added to the output sequence. D1 has the largest q-value at State5 (Initial State),
so D1 is then added to the output sequence. For State29 (the state after performing
D1 at State5), the q-value for attack action is 0 which is larger than any other defense
action.

Table 4. Q-Table for Real Network Example without Attack Path (Partial)

State Attack Action D1 D2 D3 D4 D5 D6
State0 (Initial State) -9.298 -6.19 -9.296 -5.97 -12.363 -7.283 -8.274
State4 (T(State0, D3) =
State5)

-5.33 -4.3 -9.411 None -12.415 -7.203 -8.667

State29 (T(State5, D1)
= State29)

0.0 0.0 -5.948 0.0 -8.622 -3.478 -4.946

The output result may significantly depend on the network situation, such as the
cost of patching a vulnerability, the cost of blocking ports on a host, or the damage to
a host after being attacked. For some network systems, blocking ports on host1 (D1)
may result in further damage to the organization’s service, because it not only blocks
the attacker but also blocks all other normal users from accessing. In that case, the
cost of D1 will be raised significantly, and as a result, the optimal defense sequence
may not include D1. The model may choose other alternative defense strategies, such
as patching vulnerabilities on host4 (D5), to minimize the damage.

Conclusion Phase In this phase, all the q-values in the table are negative since the
implementation of cyberdefense is a costly task. Either patching a vulnerability or host
compromised puts a negative effect on the whole system. It is impossible to profit and
earn positive rewards.

Finding the optimal strategy for one certain state can be achieved by looking at
the corresponding q-value in the q-table. The larger the q-value is, the less damage
the action will result. For example in Figure 4, Action1 has the largest q-value in the
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Fig. 4. Q-Value Table

State1 column, which means Action1 theoretically is the best action to take at State1.
On the contrary, Action 4 is the worst action to take.

Finally, the model will look for a sequence of actions from the initial state. The
model will keep searching through the q-table by using the following steps:

1. Find the best action in the initial state, add the action to the sequence;
2. Go to the consequence state with the action. For example, performing Action1 in

State1 will result in State2.
3. Find the best action at that state and add the action to the sequence. Keep iterating

step 2 & 3 until there is no following states, or the q-value shows there is no need to
do any defense actions. (When the q-value of action attack is larger than any other
defense actions, it means that performing any defense actions will be redundant
and cause more damage to the system. That is when there is no need to do any
defense actions).

After performing the above steps, the model will output a sequence of actions such
as Action1-Action3-Action2. This action sequence is the solution that optimized the
rewards, therefore minimizing the overall cost and damage to the network system. The
initial state can be replaced by any state for this searching mechanism, which allows
the agent to find an optimal solution in any situation in the network.

4.2 Effect of Q-learning Parameters on Optimal Reward

Different parameters’ values may have a significant effect on the output result of the
model. In this section, Q-learning parameters such as discount factor, epsilon, and
iterations are investigated. This section will assess their performance with different
data, and a suitable combination of parameters should be concluded to maximize the
overall performance of the model.

Fig. 5. Impact of Discount Factor on Optimal Reward
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Discount Factor (γ) in Q-learning, γ ∈ (0, 1), indicates the importance of the
future rewards compared to the immediate rewards. If γ is larger, it means the agent
considers the future rewards more and is willing to delay the immediate rewards. As
figure 4.3 shows, the optimal solution reward grows almost linearly as the discount
factor increase. As the model digs deeper into space, the more certain it realizes that
the optimal solution has a better effect on defending the network system. This explains
why the damage becomes less when the discount factor increases.

Secondly, epsilon (ε) is a factor that balances exploration and exploitation. If ε is
larger, the agent will have more possibility to explore the space (i.e. to choose action
randomly). If ε is lesser, the agent will be more likely to choose the action with the
highest q-value. Changing ε has a minor effect on the overall optimal rewards value,
therefore in this experiment, the percentage improvement of the optimal solution’s
reward, compared to the rewards of not defending, is used as an index to test the
performance of the model. The percentage is calculated by equation (2) (where OSR
is Optimal Solution Reward, NDRs is No Defend Rewards).

Improvement Percentage = −OSR−NDRs
NDRs

(2)

Fig. 6. Improvement of Optimal Solution with Different Epsilon
Since the rewards are all negative, so the result needs to be negated. Figure 6

shows the improvement almost stays at 40% to 50% level when ε is less than 0.75.
However, after the ε gets larger than 0.75, the improvement drops substantially and
even decreases below 0% (the optimal reward is less than the attack reward) at 0.95.
This shows when ε gets larger than a certain point, the agent tends to explore more
paths. As a result, the agent did not give much weight to the optimal solution, therefore,
reducing the difference between every action.

Fig. 7. Improvement of Iteration Times on the Number of Un-Updated Q-Value
Lastly, iteration times (epochs) represent the maximum number of iterations the

Q-learning will iterate. As the iteration times increase, the overall quality and com-
pleteness of the output result are also increased. However, larger iteration times can
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also increase the run time for the model. Therefore, it is necessary to find a suitable
number of iteration times that allows both a decent run time and an acceptable quality
of the output results.

As figure 7 shows that the iteration times increase, the number of un-updated q-
value decreases (Note that the x-axis is in log-scale). The un-updated q-value means
the q-value in the q-table that has not been updated once. Since the q-table for the
experiment has a size of 13594 q-values, likely, some of them are not updated during
the process. The pattern of the graph is similar to a logarithm equation. When epochs
are relatively small, the un-updated q-values decrease substantially. When epochs are
relatively large, the un-updated q-values only decrease a small amount. That is because
when there is more and more q-value being updated, the probability for the agent to
reach an un-updated q-value becomes less.

Although the parameters for Q-learning can vary between different tasks, an appro-
priate range of those parameters has been concluded for a network defense problem.

– Discount Factor (γ): The experiment reveals that the larger the γ is, the more
rewards will be received from the optimal solution. However, it is also not proper
to weigh too much on the future rewards, since the immediate rewards still need to
be considered in some cases. In summary, the experiment suggests a range of 0.8
to 0.9 for the discount factor.

– Epsilon (ε): The experiment shows that if ε increases over 0.75, the overall difference
between the optimal solutions and other solutions will be reduced. Therefore, it will
become hard to distinguish between a "good" and "bad" action. While if ε gets
too small, the agent will be less likely to find alternative strategies that can further
reduce the overall damage to the network system. As a result, the experiment
suggests a range of 0.5 to 0.7 for the ε.

– Iteration Times (epochs): The experiments prove that as epochs increase, the over-
all quality and completeness of the output result is also increased. However, the
efficiency of improving the result decreases, and the run time raises when epochs
increase to a larger number. Therefore, the experiments suggest a range of 5000 to
10000 for the epochs.

4.3 Model Efficiency Experiments

In the area of cyber defense, algorithm efficiency is also a key element to determine
whether the system can successfully defend against the attacker. If the attacker’s effi-
ciency is better than the defense side, the optimal solution output from the model may
be no longer applicable to the environment.

The experiment uses a network with different numbers of hosts to test the efficiency
of the model. Normally, if there are more hosts in the network, the model will become
more complex and there will be more possible states to generate. As the state number
increases, the complexity of training the model also increased.

(a) (b)

Fig. 8. Time Efficiency for Model Generation

Figure 8 shows when the number of hosts is less than 8, the time to generate and the
time to train the model does not increase much as the number of hosts increases. The
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time for model generation stays under 1 minute and the time for training stays under 5
seconds. However, when the number of hosts is greater than 8, the time spent starts to
grow exponentially. On the other hand, the time to train the model is relatively faster
than the time to generate the model.

5 Conclusion and Future Work

In this paper, we have presented an MDP-based optimal solution model for cyber
defense. The model is composed of four sequential phases. The model initialization
phase takes some real network situation as the input and converts it into structured
data; the model generation phase generates all the possible states for the MDP model
using a breadth-first search algorithm; the Q-learning phase implements a Q-learning
iteration which trains the model to learn the space and update the quality for each
state-action pair; the conclusion phase searches for the optimal solutions using the q-
table trained after the previous phase. Real network simulation experiments have been
done to test the usability and functions of the model. The result demonstrates the
model can reduce the attack impact on the network system from a cyber-attack, in
either network structure prospective or q-table perspective. In the future, we plan to
add more defense actions to the model. Another potential development for the model
is to make it a POMDP (Partially observable Markov decision process). Besides, We
plan to collect more usable and real data from a bigger network.
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