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Abstract. Nodes in the Lightning Network synchronise routing infor-
mation through a gossip protocol that makes use of a staggered broad-
cast mechanism. In this work, we show that the convergence delay in the
network is larger than what would be expected from the protocol’s speci-
fication and that payment attempt failures caused by the delay are more
frequent, the larger the delay is. To this end, we measure the convergence
delay incurred in the network and analyse what its primary causes are.
Moreover, we further investigate and confirm our findings through a time-
discrete simulation of the Lightning Network gossip protocol. We explore
the use of alternative gossip protocols as well as parameter variations of
the current protocol and evaluate them by the resulting bandwidth us-
age and convergence delay. Our research shows that there are multiple
ways of lowering the convergence delay, ranging from simple parameter
changes to overhauling the entire protocol.
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1 Introduction

Since its inception in 2008, the Bitcoin E] network showed an inability to scale
to a high volume of transactions [13]. The Bitcoin Lightning Network [11] is
a second-layer payment channel network (PCN) that enables a high volume of
low-cost off-chain Bitcoin transactions.

In the Lightning Network, nodes route payments by finding a path to the
destination based on a local copy of the public channel graph that each node
maintains. In order to keep their channel graph views in sync, nodes propagate
update messages via a peer-to-peer gossip protocol that utilizes a so-called stag-
gered broadcast mechanism. As a result of the gossip protocol, it can—in the
worst case—take more than 10 minutes for a message to reach all nodes in the
network.

To avoid issues caused by stale routing information, a convergence delay
of this magnitude goes against the common goal of routing protocols to reach
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convergence quickly and reliably. The larger the convergence delay is, the more
likely it is for payment attempts to fail since a source node might be computing
a route based on stale information. Payment attempt failures stemming from the
convergence delay currently account for roughly 1.24% of all failures according
to [14]. These failures can not be eliminated completely given that message
propagation cannot be instant. Moreover, improved routing algorithms such as
multi-part payments (MPPs) do not improve the rate at which these failures
occur. In fact, they may even increase their occurrences as the probability of
such failures only increases with the number of channels involved in a payment.

In this work, we investigate the convergence delay of routing information and
its effects on payments in the Lightning Network. Our main goal is to present the
state of the convergence delay in the Lightning Network, the issues it causes, and
to layout potential improvement ideas. Our contributions can be summarized as
follows:

— We analyze the Lightning Network’s gossip protocol in its current state by
looking at and comparing c-1ightning and LND, the two most popular node
implementations. We measure the delay seen in the real network through
a passive experiment and catalog the seen gossip messages (specifically all
channel updates) to understand why and when gossip messages are broadcast
by nodes. The catalog is also useful to understand which types of channel
updates are potentially disruptive to payment routing. (Section [3])

— We implemented a simulator capable of simulating the Lightning Network’s
gossip protocol as well as payments in the Lightning Network. We can boot-
strap our simulation from historical topology data and replay recorded gossip
messages. We use the simulation to gain further inside into how the gossip
protocol operates and where its inefficiencies lie. (Section M)

— We evaluate the use of alternative message propagation mechanisms in the
Lightning Network. Through simulation, we compare flooding, a structured
broadcast utilizing the channel graph topology, inventory based gossip, as
well as efficient set reconciliation using Minisketch [4]. (Section M)

To our knowledge, there exists no prior related work on the convergence delay
in the Lightning Network. However, there is a long history of convergence delay
research in internet routing through the Border Gateway Protocol (BGP), which
we use to draw inspiration for potential improvement ideas |1, 2, [7]. We discuss
these and other related works in Section[6l In the following, we give a primer on
information propagation and the convergence delay in the Lightning Network.

2 Information Propagation in the Lightning Network

The Bitcoin Lightning Network |11] is a second-layer payment channel network
(PCN) that enables a high volume of low-cost off-chain Bitcoin transactions. A
payment channel describes a type of smart contract that enables two parties to
transact off-chain, with the only bottleneck being the network latency between
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the two parties. A PCN enables payments between nodes that do not have di-
rect channels with each other by routing payments over intermediary nodes to
reach the destination. In order to ensure that payment forwarding requires no
trust towards these intermediaries, such multi-hop payments are secured through
so-called Hash Time Locked Contracts (HTLCs). Candidate routes are discov-
ered by the originators through a source-routing algorithm operating on a local
copy of the network graph, i.e., the routing information base (RIB). These lo-
cal information are regularly kept in sync by gossiping update messages in the
network.

The channel_announcement,node_announcement and channel_update mes-
sages are the three main messages of the Lightning Network’s gossip protocol.
Channel announcements are used by two nodes to prove that there is a channel
between them. The proof comes in the form of four signatures tying the nodes to
the keys used in the funding transaction. Node announcements are used to pro-
vide additional information about a node such as reachable network addresses.
Channel updates provide routing information for a channel edge, such as routing
fees and lock times. Each channel counterparty is able to broadcast a channel
update for its outgoing channel edge. In order for a channel to be operational the
network has to see three messages, one channel announcement and two channel
updates (one for each edge of the channel).

2.1 Influences on the Convergence Delay

While the details of the information dissemination protocols are left to the imple-
mentations, the most common implementations, such as c-1lightning and LND{,
generally follow the same concepts. As we show later, the concepts presented in
the following and their concrete parameterizations can have a significant impact
on the convergence delay.

Staggered Broadcast. The gossip protocol of the Lightning Network uses a stag-
gered broadcast that acts as a natural rate limiting mechanism to ensure that
the network is resistant to certain types of denial-of-service (DoS) attacks. In a
staggered broadcast, each node listens for gossip messages for a specified inter-
val (stagger interval) before broadcasting all messages to a subset of peers. While
listening, messages concerning the same channels are deduplicated by the times-
tamp field provided in the messages. If two channel updates for the same channel
edge are seen, only the most recent update is kept in the broadcast queue. The
value chosen for the stagger interval has a big impact on the convergence delay,
since the higher it is the longer messages take to reach a majority of nodes. The
speciﬁcatio recommends a 60 second stagger interval.

3 https://github.com/ElementsProject/lightning
4 https://github.com/lightningnetwork/Ind
5 https://github.com/lightning/bolts
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c-lightning LND

Staggered Broadcast 60 second stagger interval. 90 second stagger interval,
batches are broadcast in 5
second intervals.

Gossip Syncers Five syncers, individual Three syncers, one being
rotations every hour. rotated every 20 minutes.
Rate Limiting One channel update per One channel update per
day, burst up to 4. minute, burst of up to 10.

Table 1: Comparison of c-1ightning and LND with regard to the most influential
concepts on the convergence delay.

Gossip Syncers. The gossip_timestamp_filter message allows nodes to man-
age from which peers they want to receive new gossip. Not sending the filter
message is equivalent to not requesting any gossip. By default, nodes only send
filters to a subset of their peers, which are called active gossip syncers, while all
other peers are passive gossip syncers. The number of active syncer connections
each node maintains has an impact on the convergence delay since it determines
how well nodes are connected. The more active syncer nodes choose the faster
messages will propagate.

Rate Limiting. While the staggered broadcast already offers a form of rate lim-
iting, nodes in addition apply a second rate limit on a per-edge basis. Only a
certain number of updates from the same edge are allowed for each rate limiting
interval. Such policies exist to prevent nodes from spamming the network with
channel updates, but also to prevent I/O DoS attacks, since nodes write new
channel updates to disk. A third rate limiting applies to redundant channel up-
dates (only differing in the timestamp of the message), which are also considered
as keep alive updates. A node will broadcast keep alive updates to indicate that
its channels are still active and should not be pruned from other nodes’ views of
the network. To rate limit keep alive updates, nodes usually only allow them in a
defined frequency, but the details differ from implementation to implementation.

Comparing Node Implementations While the Lightning implementations gen-
erally follow the concepts just discussed, the specific parameters used by these
implementations can differ quite a bit. In the following, we therefore discuss
the relevant details of the two most popular implementations of the Lightning
Network protocol, c-lightning and LND.

As also shown in Table [l the behavior of c-lightning generally sticks to
the specification’s guidance, while LND differs from it significantly with a stagger
interval of 90 seconds. When the timer expires, all seen messages are split up into
batches and broadcast to all relevant peers in 5 second intervals. The function
for calculating the batch size from the total number of messages n to broadcast
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is the following;:
. -1
sb(n) = min (10, %)

90s

The number of broadcast batches increases with the number of messages, but
is capped at 18 in order to prevent the overlapping of stagger intervals. With 5
seconds between batches and a maximum of 18 batches, the last message may
potentially be broadcast 17 -5 = 85 seconds after the stagger timer expires. A
plot of sb(n) can be seen in Figure[Tal Ouly if there are more than 162 messages
seen per 90-second stagger interval, all 18 batches will be filled. If the general
rate of messages in the network is lower than that, less batches will be used
lowering the convergence delayE

The rate limiting policies of these two node implementations do not play to-
gether without friction. If a channel is updated once per minute, a c-lightning
node would disregard all updates after the fourth for up to one hour, while a LND
node would happily accept all updates. The c-lightning node will not relay
disregarded updates, which can cause the convergence delay for these updates
to increase. However, this is not an observable issue, since the majority of nodes
are running LND.

3 Gossip Traffic Analysis

In the following, we describe our methodology for measuring and analysing gossip
traffic in the Lightning Network.

3.1 Measuring the Convergence Delay

In order to measure the convergence delay in the Lightning Network, we used the
python pyln—protoﬁ package to connect to and communicate with nodes on the
network. The node addresses were extracted from a topology snapshot collected
from an LND node right before the start of the experiment (Oct. 30, 2021). We
connected to as many nodes as possible and chose all of them as our active gossip
syncers. We recorded all received messages including at which times {¢1,...,t,}
and from which node we got the message. The recorded timestamps can then be
used to estimate the convergence delay in the network by looking at the difference
between the first and last timestamp. This estimation method assumes that the
first timestamps in these lists correspond to the time of initial broadcast and
that all nodes have seen the message after the last timestamp.

6 The stagger interval was increased in January 2019 from 30 to 90 seconds with the
reasoning to lower bandwidth usage by slowing the propagation of messages |10]. In
April 2019, the sub-batch broadcast was introduced with the reasoning to eliminate
bursty resource usage after the stagger timer expires [6]. We could not find records of
detailed discussion on how the exact parameter values for these changes were chosen.

"https://github.com/ElementsProject/lightning/tree/master/contrib/pyln-proto
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Fig. 2: Categorization of observed gossip messages.

In total, we received 69,942 unique gossip messages from 1,046 nodes over
a time span of close to 10 hours. To estimate the convergence delay, we used all
messages that were received at least from 500 different nodes.

Figure [1b] shows the share of nodes that have seen a message in relation to
the time since initial broadcast: the average time it takes for a node to see a
message is 359.9 seconds, with 95% of nodes seeing messages after 753 seconds
and 100% of nodes seeing messages after 2,500 seconds.

3.2 Dissecting Recorded Gossip

We then categorized the collected data and examined which share of gossip
messages are node announcements, channel announcements or channel updates.
We also analyzed the contents of all channel updates to understand when nodes
send updates and how they typically update channel policies.

As seen in Figure 2al the rate at which new messages arrive is more or
less constant. Of all messages we recorded, 5.13% were node announcements,
0.34% were channel announcements and 94.53% were channel updates. This
distribution matches our expectations, as channel announcements are directly
rate limited by the blockchain, node announcements only need to be broadcast
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infrequently to modify network addresses or add new feature announcements,
and channel updates change channel policies, which happens regularly over the
course of a channel’s lifespan.

We categorized channel updates into six different categories:

— Keep-alive updates only differ in the timestamp field. These updates are
meant to tell the network that a channel is still active. They made up 45.32%
of all recorded messages.

— Channel closure updates close a channel temporarily or permanently. Tem-
porary channel closures can happen if a peer goes offline due to network
issues, in which case the other peer will broadcast such an update to in-
form the network not to route over the offline peer. These updates made up
19.29% of all recorded messages.

— Channel re-open updates open a channel that was previously closed. These
updates made up 18.66% of all recorded messages.

— Disruptive updates change the channel policy in a way that could cause
payment failures, if the payment source does not know of the update. Chan-
nel closures are excluded because we categorize them separately. Disruptive
updates made up 8.57% of all recorded messages.

— Non-disruptive updates change the channel policy in a way that could cause
a payment source to over-pay on fees or use a higher lock time than needed.
These updates made up 7.22% of all recorded messages.

— Misc. updates are all other updates that we saw. For example, updates that
change the htlc_minimum_msat field fall into this category. These updates
made up 0.99% of all recorded messages.

The observed amount of keep-alive updates is slightly concerning, as they
make up roughly 50% of all seen updates. This amount of keep-alive updates
cannot be explained by nodes broadcasting them at a reasonable rate. In theory,
a keep-alive only has to be sent for channels that did not have an update within
14 days. Therefore, transmitting a keep-alive update every 13 days should be
sufficient to prevent other nodes from pruning the channel. Figure [3al shows
the difference in the timestamp field between the keep-alive and the previous
update: we observe that for almost all of the keep-alive updates the differences
lie between 86,400 and 88, 200 seconds, which corresponds to exactly 1 day and 1
day plus 30 minutes. We found that LND nodes are responsible for these updates,
because they check every 30 minutes if any of their channels had an update
within the last day, and will broadcast a keep-alive update otherwise. However,
we were not able to explain the large peaks seen in Figure [Bal at the interval
boundaries. Moreover, we did not observe any keep-alive updates with a smaller
difference, because LND nodes do not relay such updates and therefore they do
not propagate through the network.

Looking at the timestamp differences for all updates in our channel re-open
category (cf. Figure [BD]), we see that most channels edges that get re-opened
were disabled for short periods of time. For example, 60% of edges were closed
for less than 22 minutes. This is likely caused by network issues that lead nodes
to temporarily disable edges.
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4 Simulation Study

In the following, we discuss the conducted model-based simulation study on the
routing convergence delay in the Lightning Network.

4.1 Simulation Model

The behavior of real-world peer-to-peer networks is influenced by many different
variables. Nodes participating in such networks can be diverse in geographical
location, bandwidth restrictions, software implementation, software version or
configuration, and simulating all different permutations is simply not feasible.
In the context of investigating the gossip protocol of the Lightning Network,
we restrict the scope of our simulation by making the following assumptions: if
two nodes are connected through a channel, they have a constant TCP connec-
tion. The snapshot we use to bootstrap our simulation contains all nodes and
all channels that exist in the network. We ignore any non-listening nodes that
were not announced to the network, as well as private channels. Our simulation
propagates node and channel announcements, but does not actually add them
to the simulated topology. Only channel updates are applied to the simulated
topology. The gossip algorithm is the main influence on the convergence delay,
and we do not simulate other potential influences such as an overhead caused
by cryptographic functions. Payments are atomic and instant. All nodes in each
simulation follow the same gossip protocol. All nodes have the same bandwidth
of 1 MB/s in up- and download.

We chose to implement our discrete-event simulatoif] in the Go programming
language and bootstrap the simulation from historical topology snapshots that
were extracted from an LND node with a fully synced network graph. These snap-
shots contain a list of nodes and channels which we use to build our simulation
network. The snapshot we use for all simulations contains 17,332 nodes, 77,921
channels and was taken on Oct. 30, 2021. In order to simulate a realistic amount

8 https://github.com/dergoegge/lnconv-paper-sim
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of traffic, we replay gossip messages that we recorded in the real network. This
works well as most gossip messages can be traced back to an origin node in the
network as long the snapshot we use to bootstrap the simulation is not much
older than the start of the recorded period. For messages for which we could not
find an origin in our snapshot we choose a random origin. Bandwidth is mod-
eled by each node having an incoming byte counter that gets incremented with
every message that is being downloaded and decremented with every message
that is fully received. The arrival time of a new message is calculated based on
a fixed bandwidth, the number of incoming bytes and a fixed latency overhead
of 100 ms.

4.2 Simulation Results

In this section, we present the data collected on an LND simulation scenario in
which we replayed the first hour of the gossip we recorded in Section Bl consist-
ing of 7,217 network messages. We simulate 100,000 payment attempts which
were uniformly distributed over the hour. Payment sources and destinations are
chosen randomly and the payment amount is set to 1sat in order to reduce
interference by failures originating from anything else than outdated routing
information.

Bandwidth. The simulated network transferred a total of 40.77 GB to deliver the
7,217 messages to all nodes. The theoretical lower bound for bandwidth usage
Biin is the product of the number of all nodes, the total number of messages
and the average message size, i.e.,

Bnin = num_nodes - num_messages - avg _message_size

Assuming all messages are channel updates with a size of 128 bytes, Bpin =
16.01 GB. We therefore found that the network uses 2.55 times the theoretically
needed bandwidth B,y

Redundancy. 6.29% of messages will be seen only once, 33.28% will be seen twice,
59.93% will be seen three, and 0.5% will be seen four times. All nodes have 3
active gossip syncers which explains why most messages are seen three times or
less. A message is only seen 4 times if it is received as part of the initial broadcast,
which goes out to all connected peers. On average each message is seen 2.55 times.
Note that this is the same factor as the one from our bandwidth calculations:
every message that is received more than once is exactly the overhead to a perfect
broadcast in which every message is received only once by each node.

Convergence Delay. We measure the convergence delay by recording how long it
takes a message to be seen for the first time by every node. This is very similar
to the measurements conducted in Section Bl but within a simulation we get
much more accurate data since we have an omniscient view. Figure al compares
the convergence delay we recorded in the real network to the one we observed
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Fig.4: Convergence delay and broadcast queue waiting times in a simulated
network consisting only of LND nodes.

in the simulation. In our simulation, the average time it took for a node to see a
message is 291.21 seconds, with 95% of nodes seeing messages after 510 seconds
and 100% of nodes seeing messages after 1,075 seconds. The convergence delay
seen in the simulation slightly differs from the delay measured in the real network
with messages in the simulation propagating faster after initially being broadcast
and messages taking longer to reach all nodes in the real network. From 20% to
80% of nodes having seen the messages it takes 240 seconds in the simulation
while in took 265 seconds in the real network.

As mentioned previously, roughly 50% of the messages that we recorded
are keep-alive updates. We ran a simulation without the keep-alive updates
(lnd-no-keepalives) and found that the convergence delay was significantly
reduced, with 95% of nodes converging after 374.19 instead of 510 seconds.

Waiting Times. Looking at the broadcast queue waiting times of messages we
observed that waiting times and hence the convergence delay become larger the
more messages are propagating through the network. This is explained by the
sub-batch trickling approach that LND has chosen which makes waiting times
dynamic to a certain degree. The growth of waiting times is bounded by the
maximum number of sub-batches that LND will send. A plot of the waiting times
can be seen in Figure The minimum waiting time is 0 seconds and the
maximum is 175 seconds. A message will wait 175 seconds, if it arrives at the
beginning of the 90 second stagger interval and gets broadcast in the last sub-
batch, 85 seconds after the stagger timer ticks.

Failed Payment Attempts. Out of the 100,000 tried payment attempts, 42%
were successful and 58% failed. 0.114% of attempts failed because the payment
source did not have a recent update for one of the channel edges in the payment
route.

As we have seen, the staggered broadcast is quite inefficient in its bandwidth
usage with messages being seen 2.55 times on average by the same node and
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Algorithm Conv. Delay Bandwidth Usage Payment attempts
1nd 509.75s 40.47 GB 602
1nd-tls 312.65s 39.36 GB 349
1nd-sb100 266.54s 38.9GB 316
1nd-inv 509.46s 19.26 GB 592
1nd-inv-tls 313.45s 19.41 GB 394
1nd-inv-sb100 267.93s 20.23 GB 274
c-lightning 101.29s 59.52 GB 171
c-lightning-inv 103.2s 26.36 GB 161
spanning (BFS) 1.11s 15.7GB 5
flooding-4 2.72s 50.7 GB 3
flooding-8 1.72s 94.7 GB 1
flooding-16 1.16s 180.92 GB 2
flooding-32 0.82s 353.21 GB 4
minisketch-4 19.25s 19.15 GB 33
minisketch-8 20.24s 19.84 GB 43
minisketch-16 20.7s 21.45GB 43
minisketch-32 20.54s 21.46 GB 30

Table 2: Convergence Delays (95%), bandwidth usage, and unconverged payment
attempts.

95% of nodes converging after 510 seconds. The share of unconverged payment
attempts (0.114%) does not seem that problematic but it could be argued that in
absolute numbers the total number of unconverged payment attempts can still be
large. The research by Waugh and Holz suggests that this rate is actually higher
at around 1.2% [14]. Exploring alternative gossip algorithms seems worthwhile
based on these results.

4.3 Evaluating Alternative Gossip Strategies

In this section, we layout ideas for potential alternative gossip algorithms that the
Lightning Network could employ. We use our simulator to compare the different
algorithms and evaluate the feasibility of these alternatives being used in the
real network based on bandwidth usage, convergence delays, and their impact
on payment attempts. We compare the following alternative strategies: flooding,
a structured broadcast using a global spanning tree, inventory based gossip,
parameter variations of the current protocol, as well as set reconciliation using
Minisketch [4].

We compare all alternative strategies to each other and the simulation data
from Section We specifically compare bandwidth usage, convergence times
and the number of unconverged payment attempts and simulate each algorithm
using the same snapshot and replaying the same messages as before (17,332
nodes, 77,921 channels, 7, 217 messages over 1 hour, 100, 000 payment attempts).
The convergence delays and bandwidth usage for all the different algorithms are
listed in Table



12 N. Gogge et al.

As expected, flooding has the highest bandwidth usage with low convergence
delays and the spanning tree algorithm (global tree constructed using breadth-
first search) has the lowest bandwidth usage and the lowest convergence delay.
With flooding, we see the bandwidth consumption scaling proportionally with
increased connectivity (number of active syncer connections). The convergence
delay is naturally smaller with increased connectivity.

LND’s choice of staggered broadcast parameters results in a roughly five times
increase in the convergence delay compared to c-lightning. While LND’s ap-
proach leads to a larger convergence delay it also reduces bandwidth usage by
about 33%. We simulated two variations of LND’s algorithm, one with a minimum
sub-batch size of 100 instead of 10 messages (1nd-sb100), and one with a sub-
batch delay of one instead of five seconds (1nd-t1s). Both of these parameter
changes lead to faster messages broadcast after the stagger timer expires leading
to an decrease in convergence delay of 39% for 1nd-t1s and 48% for 1nd-sb100.

Inventory-based protocols announce a shortened version of the full message
to give the receiver the chance to only request the full message once. For gossip
messages in the lightning network, the size of an inventory message can be 64
bits [12]. We see that inventory based protocols reduce bandwidth usage signifi-
cantly when compared to their regular variants. With 1nd-inv requiring 52.4%
less bandwidth than 1nd and c-lightning-inv requiring 55.7% less bandwidth
than c-lightning. The convergence delays however are unaffected by the de-
crease in bandwidth usage. Usually it would be expected that latency increases
with an inventory-based gossip protocol but the extra round trip has no impact
here, given that the stagger interval is multiples larger than the round trip time.

In Figure Bal we compare the bandwidth usage of flooding and set reconcili-
ation, in relation to the connections made by each node. Our set reconciliation
algorithm is based on the Erlay protocol that was proposed for the transaction
relay in the Bitcoin network [9]. In our protocol, we implemented no fan-out
flooding and hence all messages are exchanged via set reconciliation. We observe
that bandwidth usage does not increase proportionally with the number of con-
nections made for the set reconciliation protocol. Instead, the bandwidth usage
scales with the rate of messages in the network, just like the Erlay protocol.

We observe that the number of unconverged payment attempts is highly
correlated with the convergence delay. We do not distinguish between failed
payment attempts and attempts that arise due to opportunity costs, as the com-
bined number of these attempts is sufficient in evaluating different protocols. As
seen in Figure BDl based on our limited data set of the different algorithms, the
relationship between the convergence delay and the number of unconverged pay-
ment attempts is linear. The lower the convergence delay, the fewer unconverged
payment attempts can be observed.

5 Discussion

The staggered broadcast protocols rate-limit the propagation of channel updates
by de-duplicating updates for the same channel with in the stagger interval. This
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means that a node will only forward one channel update for the same channel
edge in every stagger interval. No potentially important updates are discarded,
since the newest update that was seen will always be forwarded. This form of
rate limiting prevents the network from witnessing rapid changes in channel
policies, while still propagating the newest updates. The propagation of the
newest updates is significantly delayed as we have shown through the simulations
and measured in Section Bl We argue that this form of rate limiting implicitly
discourages frequent channel updates at the cost of delivering the newest updates
with large delays. Explicitly discouraging frequent updates through strict per-
channel rate limiting as discussed in Section Bl could be well suited for some of
our alternative protocols that aim to deliver messages faster. A strict rate limit
would discard newer updates that violate the rate limit, so honest nodes should
never broadcast messages for the same channel in violation of the limit.

LND’s choice of parameters for its staggered broadcast is a bit of a mystery,
since there is no public record on how the exact values were chosen. However,
broadcasting messages in sub-batches instead of one large batch after the stagger
timer expires is a good choice to reduce bursty resource usage. We would however
recommend that the LND developers revisit their choice of parameters for the
staggered broadcast, because reducing bandwidth usage by 33% while increasing
the convergence delay by a factor of five does not seem like a reasonable trade-
off (compared to parameters mentioned in the specification). As we have shown
through the simulations, adjusting the parameters can have a big impact on
the convergence delay. Adjusting these parameters would be the least complex
software change to address the large convergence delay, while maintaining the
rate limiting properties of the staggered broadcast.

Introducing an inventory-based gossip protocol reduces the bandwidth usage
without changing the convergence delay at all. In combination with adjusting
the parameters of the staggered broadcast the convergence delay could also be
lowered. An inventory-based gossip protocol could remain a staggered broadcast
and thereby maintain its rate limiting effect without introducing strict rate lim-
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iting. The added software complexity of an inventory-based gossip is fairly low
and there already exists a proposal on the specification [3].

Increasing the number of connections that nodes make to gossip (connectiv-
ity) can lead to better reliability in adversarial environments. With low connec-
tivity an attacker has to control less connections to be able to censor information
from reaching a victim. For some protocols an increase in connectivity can also
lead to a reduction in convergence times because the spread factor is higher.

Even though the spanning tree protocol seems great based on the results, it is
not a great fit for the real network. As mentioned earlier, the protocol makes the
assumption that all nodes agree on the exact same static spanning tree, which
would not trivially work in the real network. A single tree is also not going work
for security and reliability reasons. If one node in the tree goes offline, none of
the nodes in its sub-tree would receive new messages. Introducing multiple trees
to gain redundancy would increase the bandwidth usage which makes using a
spanning tree less desirable in the first place. A spanning tree protocol with
multiple trees would probably turnout to be similar in efficiency to a flooding
protocol.

A flooding protocol comes with a small convergence delay of one to two sec-
onds but increases bandwidth usage above that of the current algorithm (1nd).
Bandwidth usage increases linearly with increased connectivity. If an increase
in connectivity is wanted then flooding would not be suitable. In fact all proto-
cols besides set reconciliation lead to a proportional increase in bandwidth with
increased connectivity.

Compared to the other protocols, set reconciliation has a small convergence
delay and low bandwidth usage. Increasing connectivity is also possible without
increasing bandwidth usage, as the bandwidth usage scales with the rate of mes-
sages seen in the network. Introducing set reconciliation comes with much greater
software complexity than any of the other protocols. Multiple new message types
would need to be introduced and the Minisketch library adds a dependency.

Decreasing the number of unconverged payment attempts can also be done
without changing the gossip protocol. Nodes could temporarily allow payments
that use old channel policies, after broadcasting a new policy. This would work
well for fee or lock time adjustments. In the end this depends on the channel
owners preferences on whether or not they want updates to immediately take
effect.

6 Related Work

The explosive growth of the internet in its topological complexity as well as user
count has led to a lot of research on the convergence delay for routing proto-
cols, such as the Border Gateway Protocol (BGP). Large convergence delays in
BGP can cause routing failures similar to how large convergence delays in the
Lightning Network can cause payment failures. Labovitz et al. showed through
a 2-year study that the convergence delay of BGP was much higher than pre-
viously expected. By injecting routing events to simulate failures and collecting
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data on these events, the authors were able to figure out the convergence de-
lay for different types of events. Convergence delays were primarily caused by
different router vendor’s implementations of the BGP specification with regard
to the choice of timer values [7]. da Silva and Souza Mota suggested ways on
how to lower the BGP convergence delay which included adjusting timer val-
ues of implementations and centralizing control of networks |2]. Ben Houidi et
al. investigated slow BGP table transfers which increase the convergence delay.
They found that gaps, in which both sender and receiver are idle, during ta-
ble transfers are a common occurrence caused by timer driven implementations,
with different vendors choosing different timer values [1]. Similar to this BGP
research, we found that a big part of the convergence delay in the Lightning Net-
work is driven by the parameter choices for the staggered broadcast of different
implementations.

Decker and Wattenhofer measured block propagation times in the Bitcoin
network and verified that the propagation time is the primary cause for forks in
the blockchain. They measured the propagation times by connecting to a large
number of nodes and listening for block announcements. With this setup they
recorded when blocks where seen and from which nodes. From this data they
are able to estimate how long it takes blocks to traverse the network after the
initial broadcast [3]. Our work is methodically similar, since we also measure the
convergence delay in the Lightning Network by connecting to many nodes in the
network and record arrival times of messages.

Naumenko et al. proposed FErlay, a protocol for transaction relay in the Bit-
coin network that makes use of efficient set reconciliation in combination with
flooding. It aims to lower the bandwidth requirements needed for transaction re-
lay with the trade-off of higher latency. The authors evaluated the bandwidth and
latency trade-off of Erlay and compared it to the current flood-only protocol [9].
We used the Erlay protocol as inspiration for simulating a similar protocol in
the Lightning Network and specifically used their prior research when choosing
the parameters for our protocol.

Waugh and Holz studied availability and reliability properties of the Light-
ning Network. They tested the network’s ability to route payments of different
amounts and created a taxonomy of permanent and temporary failures that oc-
curred. They looked at the availability of nodes in the network and measured how
much churn (nodes joining and leaving the network) exists [14]. This work listed
payment attempt failure types that were caused by outdated routing informa-
tion, by probing the network with real payments. We only simulated payments
to investigate these failure types.

7 Conclusion

In this work, we analyzed the convergence delay in the Lightning Network, de-
scribed the effect it can have on payments, and evaluated alternative gossip
protocols that could reduce the delay. We found the network to have a signifi-
cant convergence delay, with 95% of nodes only having converged after roughly
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10 minutes. A majority of the gossip traffic consists of redundant channel up-
dates (keep-alive messages), which further increase the delay given the parameter
choices of the LND implementation. Our simulations show that payment attempt
failures due to unconverged routing information are rare (occuring in < 1% of
payment attempts). However, the convergence delay may still be lowered while
also reducing the bandwidth usage, either by switching to alternative gossip al-
gorithms or adjusting the parameters of the current protocol. By switching to
a set reconciliation based protocol, the connectivity of the network could be in-
creased with nodes receiving gossip updates from more peers without suffering
from significant increases in bandwidth.
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