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Abstract. In this paper, we present a secure multiparty computation
(SMC) protocol for single-source shortest distances (SSSD) in undirected
graphs, where the location of edges is public, but their length is private.
The protocol works in the Arithmetic Black Box (ABB) model on top
of the separator tree of the graph, achieving good time complexity if
the subgraphs of the graph have small separators (which is the case for
e.g. planar graphs); the achievable parallelism is significantly higher than
that of classical SSSD algorithms implemented on top of an ABB.
We implement our protocol on top of the Sharemind MPC platform, and
perform extensive benchmarking over different network environments.
We compare our algorithm against the baseline picked from classical
algorithms — privacy-preserving Bellman-Ford algorithm (with public
edges).

Keywords: Secure multiparty computation · Privacy-preserving com-
putation · Path Algebra · Semiring framework · single-instruction-multiple-
data · Bellman-Ford · Sharemind

1 Introduction

Graph algorithms are the foundation of many computer science applications
such as navigation systems, community detection, supply chain networks [39,40,34],
hyperspectral imaging [36], and sparse linear solvers. Privacy-preserving paral-
lel algorithms are needed to expedite the processing of large private data sets
for graph algorithms and meet high-end computational demands. Construct-
ing real-world privacy applications based on secure multiparty computation is
challenging due to the round complexity of the computation parties of SMC pro-
tocol [25,24,12]. The round complexity problem of SMC protocol can be solved
using parallel computing [11,15].

Single-Instruction-Multiple-Data (SIMD) is a parallel framework used to per-
form parallel computation for multiple data using single instruction simulta-
neously [19]. Recently, SIMD principles have been used to reduce the round
complexities in many privacy-preserving graph algorithms, including minimum
spanning tree [3,26] and shortest path [1,4,2]. These privacy-preserving graph
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protocols are constructed on top of SMC protocols, and they are capable to pro-
cess sizeable private data sets, where both the location and weight of edges are
private.

Our main goal is to create a privacy-preserving shortest path protocol that
can process large graphs efficiently with the lowest possible running time. Conse-
quently, besides building the protocol using SIMD parallelism, if the end-points
of edges are public in a private graph, then this information may be of use for
the privacy-preserving algorithm, leading to a reduction in running time in pro-
cessing such a graph. Such methods can be used only in applications where their
locations are available to the public. For example, the navigation on city streets
and the layout of the roads is available to the public [38], and in shortest paths
and distances with differential privacy [35]. However, the classical SSSD algo-
rithms, adapted to run on top of a SMC protocol set, can either not benefit from
the public end-points of edges at all [17], or can benefit only slightly [7].

Besides the combinatorial algorithms for finding the shortest path, We can
also find the shortest path by following a different technique called Algebraic
Path Computation (APC). The algebraic path problem is a general setting for
the shortest path that can be found by considering the two operations to be
those of a semiring [18]. The dioid or semiring is an algebraic structure with
two binary operations, addition and multiplication [6]. The general setting of
shortest path algorithms provided from algebraic path problems can help in the
optimization more than in essential shortest path algorithms [29]. Moreover,
the semiring framework in APC allows for performing some precomputation for
public edges. This precomputation provides some parameters that will be used
to represent data sparsely. Hence, the sparse representation of a matrix allows for
performing SIMD parallel instructions for multiple data. Thus, the total running
time of secure implementation (for finding the shortest path) in the arithmetic
black box of SMC will be reduced. This means such implementation can handle
large private graphs in the lowest possible running time.

A general algebraic framework for single-source shortest distances based on
semiring framework is proposed [30]. The algorithm finds the shortest distance
for a weighted directed graph and the k-shortest distances in a directed graph.
Besides using an algebraic framework based on a semiring framework for solving
the shortest path, another one can be used to solve the minimum spanning tree
problem. For example, general algorithms can solve MST problems by following
different cost criteria. The minimum spanning tree Prim’s and Kruskal’s algo-
rithms are keys for constructing the MST algorithms based on c-semiring in this
work [8]. These Prim’s and Kruskal’s algorithms built based on the c-semiring
framework reduced the time complexities to logarithmic time. Moreover, the
Minimum spanning forest problem is n times the Minimum spanning tree, which
is also solved using linear algebra primitives [5].

Pan and reif [31] proposed a parallel algorithm for the algebraic path com-
putation in an n-vertex graph. More specifically, they proposed a general stream
contraction technique for speed-up of parallel algorithms through their systolic
rearrangement and showed its power by accelerating a parallel algorithm of [32].
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They presented two algorithms, the first is generalizing the algorithm based
on [32], and the second is the accelerated version of the algorithm; hence both al-
gorithms are based on a semiring framework. The algorithm uses a tree-separator
approach to split the graph into s(n)-separator, then computes a special recur-
sive factorization of the adjacency matrix A [33]. This approach can be used
with a semiring framework for sparsely computing the algebraic path of ma-
trix A. In our paper, we use this approach, the parallel algorithm for finding
algebraic path computation, and as a precomputation, we use the tree-separator
that will produce the parameters we need to perform the computation using a
sparse representation of a matrix.

We exploit the sparse representation of a matrix to create our protocol using
SIMD parallelism, and the precomputation is for public data; this means the
computation will take place on a local server, and no communication will occur
among the computation parties of the SMC platform. We implement our protocol
on the Sharemind MPC platform [9], which provides a three-party SMC protocol
set with passive security against a single corrupted party.
Our contributions. In this paper, we produce following contributions:

– The first privacy-preserving parallel computation protocol of Algebraic short-
est path. The protocol uses the sparse representation of a matrix, where the
locations of edges are public. The number of vertices and edges is also public,
while the weights are only private.

– A sparsely parallel version of the min and sum functions (used as a subrou-
tine in algebraic path computation) on top of SMC protocol in a semiring
algebraic structure.

– A sparsely parallel version of finding privacy-preserving block diagonal ma-
trix and their related functions in semiring structure.

– An optimized version of the privacy-preserving SSSD Bellman-Ford protocol.
The values of edges are public, while the values of the weights are private.
This protocol is benchmarked with algebraic path computation for different
graphs over different network environments.

2 Materials and Background

2.1 Secure Multiparty Computation

Secure multiparty computation (SMC) is a cryptographic technique, allowing
a number of parties each give input to a pre-agreed functionality F , and learn
the input meant for this party, such that each party (or a tolerable coalition of
parties) will learn nothing besides their own input and output. There exist a
number of different approaches for constructing SMC protocols, including gar-
bled circuits [41], homomorphic encryption [16,22], or secret sharing [20,13], and
offering security either against passive or active adversaries. These approaches
typically include steps for entering a value into the computation in a privacy-
preserving manner, for performing simple arithmetic operations (e.g. addition
and multiplication in a finite field or ring) with private values present in the
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computation, and for opening a private value to a party upon the agreement of
sufficiently many other parties. These steps, that constitute protocols by them-
selves, can be combined relatively freely. Hence, if the functionality F has been
presented as an arithmetic circuit, then these protocols for input/output and
arithmetic operations can be combined to yield a protocol for F .

Availability of such compositions leads to the typical abstraction of SMC in
privacy-preserving applications — the Arithmetic Black Box (ABB) [16,27]. An
ABB is an ideal functionality in the Universal Composability [14] framework.
This framework considers a set T of interacting Turing machines [23], executing
a protocol Π. Beside the set of machines T , there is also another Turing machine
— the adversary that can interfere with Π by sending to machines in T certain
commands that have been defined in the adversarial API’s of these machines. The
set of the machines also includes the environment that interacts with machines
in T and the adversary over a well-defined API. Given two sets of machines
T and T ′ implementing the same API towards the environment, we say that
T is at least as secure as T ′, if for any possible adversary A targeting T (i.e.
its adversarial API), there exists an adversary S targeting T ′, such that the
environment cannot distinguish whether it is executing with T and A, or with
T ′ and S. This notion is composable: if additionally T = T0 ∪ {Ξ} for a Turing
machine Ξ, and a set of machines U is at last as secure as {Ξ}, then T0 ∪ U is
at least as secure as T ′. Often, we say that Ξ is the ideal functionality for the
corresponding real functionality U that implements it.

The ABB functionality is represented by a Turing machine FABB that allows
the environment representing all parties of a multiparty application to perform
private computations. If one of the parties sends the command (store, v) to the
ABB, where v is a value from one of the rings that the ABB supports, then it
creates a new handle h, stores the pair (h, v), and sends h back to all parties. If
all (or sufficiently many) parties send the command (perform, op, h1, . . . , hk) to
the ABB, where op is one of the supported operations and h1, . . . , hk are existing
handles, then the ABB looks up the stored pairs (h1, v1), . . . , (hk, vk), computes
v = op(v1, . . . , vk), creates a new handle h, stores (h, v), and sends h back to
all parties. If all (or sufficiently many) parties send the command (declassify, h),
then ABB looks up (h, v) and sends v back to all parties. A secure application
that makes use of the ABB remains secure if FABB is replaced with a set of
Turing machines that securely implement the ABB, i.e. run secure multiparty
computation protocols. Note that if we want to compute a function F with the
help of an ABB, and if the ABB only declassifies the end result of F , then the
resulting protocol is trivially private [27].

In the following, a value v stored in the ABB and accessed through a handle
is denoted by JvK. Similarly, J~vK denotes a vector of values, and JVK a matrix
of values stored in the ABB. We use the notation JuK + JvK to denote that the
addition operation is being invoked on the values JuK and JvK; the result of this
operation is again stored in the ABB. We extend this notation pointwise to
vectors and matrices. We write JuK ≤ JvK to denote the operation of comparing
the values u and v inside the ABB; the result of this operation is a boolean



Parallel Privacy-Preserving Path Algebra. . . 5

JbK. We write choose(JbK, JuK, JvK) for the operation that returns either the value
JuK or JvK, depending on whether the boolean b (which does not leak during
the operation) is true or false. The comparison and choice operations can be
used to implement the min-operation. We use several variants of this operation
below. The result of min(JuK, JvK) is the smaller among JuK and JvK. The result
of min(J~vK) is the smallest element of the vector J~vK. The result of min(J~vK, n)
for a vector J~vK of length kn is a vector of length k, where the i-th element is
the minimum among the elements in the i-th segment of J~vK of length n.

The cost of the operations of the ABB depends on the implementation of
FABB. If Sharemind has been used as the implementation, then the addition is a
free operation (i.e. it requires no communication between parties), and compar-
ison and choice require a constant amount of bits to be exchanged in a constant
number of rounds. Hence the bandwidth cost of min(J~vK) is linear in the length
of ~v, while the round complexity is logarithmic in this length. In the following
descriptions of algorithms built on top of the ABB, we have to be explicit in
stating, which operations can or cannot be performed in parallel. For loops, we
write forall to denote that all iterations take place in parallel; we write for to
state that the loop is sequential.

2.2 Graph and semiring framework

Graph is a mathematical structure consisting of a set V of points called
vertices that are connected by lines called edges from a set E. The edges between
vertices may have values that describe the distance of the edges called weights;
these are given by a function w : E → R. The graph can be directed, which
means that its edges have a particular direction between vertices, and also it can
be undirected (both sides). Let G = (V,E) be a directed weighted graph with
the set of vertices V = {0, 1, 2, . . . , n− 1}, and the set of the directed weighted
edges E ⊆ V × V . Each edge e ∈ E has a weight w(e) ∈ R.

A graph G = (V,E) can be represented in computer memory in different
ways. The adjacency matrix of G is a |V |×|V |matrix over Z∪{∞}, where the en-
try at u-th row and v-th column is w(u, v). Such representation has |V |2 entries,
and we call it the dense representation. On the other hand, the adjacency list
representation gives for each vertex u ∈ V the list of pairs (v1, w1), . . . , (vk, wk),
where (u, v1), . . . , (u, vk) are all edges in G that start in u, and wi = w(u, vi).
Such representation has O(|E|) entries, and we call it the sparse representation.
If edges |E| are significantly smaller than |V |2, then sparse representation takes
up less space than dense representation and the algorithms working on sparse
representation may be faster [10].

A graph (actually, an infinite family of graphs) is sparse if its number of
edges is ′′proportional′′ to its number of vertices, |E| = O(|V |). A graph is dense
if |E| = ω(|V |). A graph is planar if it can be drawn a plane without crossing the
edges outside vertices. If G is planar, then |E| ≤ 3|V | − 6 according to Euler’s
formula relating the numbers of a planar graph’s edges, vertices, and faces of its
drawing [37].
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Semiring Framework

Let G = (V,E) be a weighted graph with set of the vertices V = {1, 2, . . . , n},
and set of the weighted edges E ⊆ V×V and a weight functionW : E → S, where
S is a semiring. A semiring (or called dioid) is an algebraic structure with two
binary operations, ⊕ and ⊗. A path in G among any two non-neighbour vertices
is a sequence of vertices P = {v1, v2, . . . , vn} and the weight of a path which is
defined in the semiring as W (p) = w(v1, v2)⊗w(v2, v3)⊗, . . . ,⊗w(vn−1, vn). Let
an n × n matrix A = [aij ] with graph G = G(A), where aij = ∞ if there is no
edge between the vertices, i be associated j in graph G. The two versions of the
shortest distance problems over algebraic structure is giving as following:

– For single-source shortest distance, finding the vector X̄ = [x(i)] of distances
x(i) from vertex 1 to all vertices i in the graph G. Finding the shortest path
is iteratively given by sum +, and min operations as following:

• x(1) = min(min(x(j) + aj1), 0),

• x(i) = min(min(x(j) + aji), ∞), where i = 2, . . . , n

The operations, min will be substituted by ⊕ and sum + will substituted by
⊗. The distances in the graph using semiring structure satisfy the following:

• x(1) = ⊕ ( ⊕ ( x(j) ⊗ aj1 ), 0 ),

• x(i) = ⊕ ( ⊕ ( x(j) ⊗ aji ), ∞ ), where i = 2, . . . , n, and denoting Ī(1)
= [0,∞, . . . ,∞],

X̄ = X̄ ⊗A⊕ Ī(1) (1)

– For all-pairs shortest distance, finding the matrix X = [x(i, j)] of distances
between all pairs of the vertices in the graph G, and denoting I = [δii], δii
= 0, δij = ∞ if i 6= j.

X = X ⊗A⊕ I (2)

The systems (1) for vector and (2) for matrix can be used to solve various path
problems classes, existence, enumeration, counting, and optimization, i.e., paths
of maximum capacity, paths with a minimum number of arcs, paths of maximum
reliability, reliability of a network, longest paths and shortest paths [21].

2.3 Algebraic path problems and planar separator theorem

In the algebraic path computation protocol that we propose in this paper,
we follow a strategy in constructing this protocol in parallel. The essential algo-
rithms and framework in building the solution of path algebra problems through
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the algorithms of Pan and Reif [31,32,33], and the correctness of the formulas
is proven there. An efficient algorithm for computing minimum cost path for an
adjacency matrix associated with an undirected graph G(A) is proposed in [31].
This algorithm of computing algebraic paths is based on recursive factoriza-
tion presented in [33], the aim is to compute matrix A∗, by following equations,
h = 0, 1, . . . , d, where d = O(log n):

Ah =

[
Xh Y

T
h

Yh Zh

]
Ah+1 = Zh ⊕ YhX∗hY T

h (3)

A∗h =

[
I X∗hY

T
h

O I

] [
X∗h O
O A∗h+1

] [
I O

YhX
∗
h I

]
(4)

Indeed, the spacial recursive factorization in [33] and Cholesky factorization
in [28] can not be extended to the case of semiring framework (dioids) because
of lack in subtraction and division. In [32] a particular recursive factorization of
the inverse matrix A−1 of [33] has extended to the similar factorization of the
quasi-inverse A∗. This extension is sufficient in many path algebra computations,
particularly the one we use in this work. Using the concept of the inverse matrix
(I-A)−1, the quasi-inverse A∗ is defined for the case of semiring framework (or
dioids). The matrix equations 3 and 4 generalize the recursive factorization of
matrix A. This recursive factorization easily solves the system of linear equations
Ax = b for any given vector b. The result of finding single-source shortest path
is basically the multiplication of a unit vector b with matrix of A∗, the SSSD is
given by x = A∗ b. The partition of the nh × nh adjacency matrix Ah is based
on the separator structure of the graph into four parts, Xh, Yh, Zh and Y T

h —
the transpose of a matrix Yh. The adjacency matrix A of an undirected graph is
symmetric, and this is the one we use in the implementation and benchmarking
— implementation and benchmarking is only for undirected graph. For instance,
of directed graphs, the algebraic path computation protocol on top of SMC can
be extended to the case of a non-symmetric linear system with directed graphs.
Some changes should be made, replacing the matrix Y T

h with the matrix Wh

for all levels of h. Matrix Wh is given by Uh · Y T
h , while matrix Uh is given by

Yh ·X−h 1. Hence, the assumption that matrix Xh in all levels of h is symmetric
should be removed.

The four submatrices Xh, Yh, Zh and Y T
h can be obtained by applying an

efficient parallel algorithm in [33] that compute the recursive factorization of ma-
trix A. A recursive s(n)-factorization of an adjacency symmetric A is a sequence
of sub matrices A0, A1,. . . , Ad, such that A0 = PAPT , where P is an n × n
permutation adjacency matrix Ah, the size of matrix Ah is nd−h× nd−h. In any
n-vertex planar graph G = (V , E), the symmetric matrix A associated with a
graph G = G(α) having an s(n)-separator family with respect to two constants
α and n0, the graph G have s(n)-separator family if either |V | ≤ n0 or by erasing
some separator set of vertices O(

√
n). The partitioning of the graph G (which

also called separation) into two disconnected subgraphs G1 and G2 that has at
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most 2n/3 with two sets of vertices |V1| and |V2|, and the separator S which
has O(

√
n) vertices. The Separator S is a vector of vertices that are shared be-

tween the two partitioned new graphs, G1 and G2, which is responsible about
the performance of the algorithm. Once the separation produces three sets A, S
and B, the edges-endpoint in A belong to subgraph G1, and the edges-endpoint
in B belong to subgraph G2, while the edges-endpoint of separator S and the
remaining edges are separated arbitrarily. The separator tree is the adjacency
matrix of subgroups G1 and G2 resulting from partitioning. Furthermore, each
of the two subgraphs also has an s(n)-separator family, and it is not required
that G1 and G2 are connected subgraphs of the parent graph G. The algorithm
recursively keeps portioning until obtaining both subgraphs that have at least
n/3 vertices set.

Consider a grid graph with n× n size, with rows numR and columns numC.
The number of the vertices in the adjacency matrix equals numR × numC. For
instance, the illustration in Figure 1, numR = 5, and numC = 5, the number of
vertices N = numR × numC = 25. The partitioning starts by selecting the central
row or column in the adjacency matrix A. Suppose rows numR is an odd number,
and the single central row is separator S. Otherwise, two rows are equally near to
the centre. Vertically, if numC is an even number, there are two columns near the
centre; otherwise, the single centre column is separator S. Choosing separator S
to be any of these central rows or columns. Next, the graph G will be partitioned
into two smaller connected subgraphs G1 and G2. Consequently, the result of
partitioning graph G is two subgraphs G1, G2 and separator S, all called s(n)-
separator family. The separator S tree will be shared in the two subgraphs as
connectors. we expect the rows/columns of the adjacency matrix be labeled with
the vertices of the graph G in a certain order, based on the separator tree.

Figure 1 shows the process of the partitioning and the level of the portioning
h. In other words, the depth of the separator tree d. The recursive factorization
produces the separator families. It also shows the arguments that will be used
in the main computation of the algebraic path. The separator trees for each
level with the order of vertices are illustrated, and the elements will be stored in
public vector

−→
ST . Moreover, the size of blocks

−→
SB and their values and indices

are also obtained. In detail, the main program of privacy-preserving algebraic
path computation is presented in Algorithm 4.

It has eight arguments that come from the prerequisite computation —
s(n)-separator tree and its properties. The primary prerequisite functions are
separator-tree and its properties in computing R. The set of vertices Rh,k de-
note the set of all vertices of separator tree Sh,k that are not in Sh∗ for h∗ >
h, for each k = 1, . . . , Nh, for more details about R, refer to [33]. Practically,
R-function returns the set of R and its properties, which are indices of R in its
s(n)-separator family, the size of separator tree

−→
ST , and the size of block-diagonal

matrices
−→
BS for all separator trees in an adjacency matrix A.
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3 Privacy-Preserving Algebraic Shortest path

In the previous section, we presented the essential algorithm, definitions and
equations that end up by proposing the algebraic path computation protocol
using a semiring framework. The algorithm in [31] is based on the extended
definitions of solving sparse linear systems from [33], then a parallel version
of the algorithm has been proposed. This section presents a privacy-preserving
implementation of the parallel version of the algebraic path computation us-
ing a semiring framework. The main feature of our proposed implementation
is reshaping the whole computations and data input in sparse representation.
This representation is fit to process the given private graph on SIMD parallel
computation over a secret-sharing based SMC sharemind platform.

The sparse representation of the operations with data vectorization has been
done based on the prerequisite operations over a private undirected graph. Those
prerequisite operations are s(n)-separator tree and its properties that can be
obtained using the public elements of the given graph and its adjacency matrices.
The graph’s edges E are assumed to be public, while the private data consists
only of the edge weights W : E → R+.

The s(n)-separator tree and its properties can be obtained using the public
edges indices. Due to this setting, operations of s(n)-separator tree can be done
in a local server of MPC sharemind with no communication with other servers
— there are no round and bandwidth complexities.

The data input is symmetric matrix JAK that has been represented sparsely
associated with an undirected graph G. We rearrange given data represented in
the adjacency matrix into a sparse representation of matrices. To convert from
dense to a sparse representation of matrices, a Struct that grouped different
matrix elements is defined. It has four public elements and one private, which
is weight. This data model vectorizes the matrix JAK into three vectors/lists,
rows ~R, columns ~C and the vector for weights’ edges J ~W K. The number of rows
and columns of the matrix should be given, which are denoted numR and numC
will be used on related functions arguments of the main program. This structure
is indicated by a function that transforms graph coordinates into a sparse rep-
resentation of matrices. The vectors for both rows ~R and columns ~C are from
the matrix JAK, while the size of the sparse representation of the matrix is n×n
vertices of a graph G.

Although the SIMD operations have been applied in computation, we omitted
the infinite edges (which means no edges between two vertices) to reduce the size
of the vectors that can only handle the meaningful edges (non-infinity). This will
reduce the bottleneck of the SMC sharemind during communication between
servers. It is important to note that in the operations in the algebraic path
computation, no processing has occurred for the dense representation of A, all
processing on the sparse representation of the matrices, e.g., Yh. Hence we need
both numR and numC to be obtained before the beginning of the computation.
This section presents the related functions and their algorithms for the main
computation of the algebraic path; these functions are constructed in parallel.
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3.1 Related functions

The whole related functions of the main computation carry a sparse rep-
resentation of the given graphs. First, we present the parallel version of the
factorization and Block diagonal matrix functions. Those functions can be used
in the main computation of algebraic paths. Hence it can be used in different
computations in algebraic computation. As well as the principal operations in the
algebraic path which are computing the Sum and Min in sparse representation,
both operations are also constructed in SIMD parallel manner.

The last two related functions are the First and Second normalization func-
tion that can reduce the size of data represented in binary numbers. Both func-
tions are also constructed in SIMD parallel manner and its input data-sparse
representation.

Factorization

The first related function in the main program is Factorization, the Factoriza-
tion for matrix A — which is represented sparsely — that returns four matrices,
X, Y , Z and Y T which is the transpose of Y . Those matrices will be stored in a
special Struct called sparseF, and all matrices are sparse. The function has two
arguments, the sparse representation of the matrix A and the number of vertices
in separator tree

−→
ST for level h. The function splits the given sparse represen-

tation of A into four different-sized matrices. The given vertices’ number of
−→
ST

determines the size of the matrix X. Suppose k = ST [cyc], and the size of the
matrix A is n · n, then the size of X is k · k. The sizes of remains matrices are
based on the size of matrix X; this can be seen in Figure 2.

𝑋𝑘,𝑘

𝑍𝑌

𝑌𝑇

𝑛

𝑘

𝑛

𝑘

𝐴𝑛,𝑛 =

Fig. 2: Blocks of recursive factorization

First-normalization

We constructed the algebraic path protocol with related functions to process
a sparse representation of matrices on the SIMD framework. The elements of
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the sparse representation of matrices need to be sorted before applying the sec-
ond normalization. To solve this problem, we propose the first normalization of
numbers for the sparse representation of the matrices’ elements — rows, columns
and weights of a graph. Using the first normalization, numbers can be presented
in different ways, bringing the sparse representation of matrices into a more
canonical form. Furthermore, in particular, it enables Second-normalization.

Second-normalization

The sparse representation of matrices increases the size of the vectors pro-
cessed in parallel SIMD. In contrast, this causes a new problem regarding the
vectors’ size, also regarding the size of a graph. We propose the second normal-
ization for binary numbers of the sparse representation of matrices to solve this
problem. The aim is to reduce the size of the elements; hence vectors can carry
more data, and bottleneck problems among the servers of the SMC platform will
be reduced in particular, in the case of using big graphs.

The second normalization of the adjacency matrix represented in sparse rep-
resentation is presented in Algorithm 1. In general, getting the indices of the ~R
and ~C is based on conditional expression A.R[i-1] 6= A.R[i] or A.C[i-1] 6= A.C[i].
The elements of private vector A.W are based on the minimal values of A.W and
t, which are obtained by applying getMin-function. In general, lines 4-8 compute
the coordinates of the cells in the resulting matrix. lines 13 and 14 compute the
values in these cells.

Algorithm 1: Second-normalization
Data: Struct sparse A
Result: Struct sparse val

1 begin
2 if size(A.R) == 0 then
3 return A

4 for i← 1 to size(A.R) do
5 if (A.R[i-1] 6= A.R[i]) || (A.C[i-1] 6= A.C[i-1]) then
6 R[c] = A.R[i-1]
7 C[c] = A.C[i-1]
8 c++

9 R[c] = A.R[size(A.R)-1]
10 C[c] = A.C[size(A.R)-1]
11 val.R = R[0 : c+ 1]
12 val.C = C[0 : c+ 1]
13 [t] = A.R × A.numC + A.C + 1
14 val.W = getMin(A.W, t)
15 val.numR = A.numR
16 val.numC = A.numC
17 return val
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Block diagonal matrix

The second related function in the main program is the block diagonal matrix
in line 8. It has two arguments, the matrix Xk,k and blocks square matrices in
a level h. Both arguments are matrices but in sparse representation — elements
of the matrices stated in vectors. The while-loop (lines 5-7) in Algorithm 4
is to feed the second argument in the block diagonal matrix function. It picks
up an indices of the blocks matrices from

−→
BS in a level h. The number of the

blocks matrices is obtained from
−→
ST in that level h. The block diagonal matrix

is presented in Algorithm 2. We build this algorithm in parallel to perform the
computation over vectors to reduce the iteration over private elements. The use of
getSlice-function is to determine the dimensions and sizes of the block matrices
in the given vector A, then determine the indices of the elements located in
different locations.

Later, we transform the data from the sparse representation of matrix in A
to dense representation in B by applying sparse-to-dense-function. The next step
is to multiply the private elements of the blocks’ matrices in parallel (line 5).
This computation can be done in the same algorithmic structure as the Floyd-
Warshall algorithm with some changes based on the semiring framework ⊕.
Thereby, we use the parallel version of the Floyd-Warshall algorithm presented
in Algorithm 8 in [1] to perform this computation. It is important to note that
this algorithm performs the computation on one adjacency matrix. Hence here,
we run the Floyd-Warshall algorithm over n blocks matrices simultaneously.

Next, the operation in the algorithm is to get the elements of ~C and its
rows and columns indices. C[i] has similar size of A, and the content of A′[i]
goes to the same place (i.e. into the same block), from where A[i] was read. We
use the dense-to-sparse-function for transforming to sparse representation before
applying overlay-function. The return value of the Block diagonal matrix is Xh∗,
and its data is presented in sparse representation.

Algorithm 2: Block-Diagonal-Matrix-inv

Data: Struct sparse A,
−→
BS

Result: Struct sparse S
1 begin
2 forall i ∈ {1, ..., |BS|} do
3 A[i]← getSlice(A, 0,

∑i−1
j=1 BS[i], 1, BS[i])

4 B[i]← sparse-to-dense(A[i])
5 B′[i]← FloydWarshall-nSIMD(B[i])
6 A′[i]← dense-to-sparse(A[i])
7 C[i]← overlay(A′[i], ..., ...)

8 return overlap(C1, ..., C|BS|))
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Sum-sparse operation

In the semiring framework, the main mathematical operations are sum and
min, which will be executed five times for sum, while min appears only once
for each recursive cycle in the main program. The sum operation is constructed
sparsely as input data and operations in parallel that can reduce the round com-
plexity of SMC protocol. It has two arguments in sparse representation, Y and
Xh∗ in the first use for it in the main computation. The parallel Sum-operation
— in sparse representation — based on semiring framework is presented in Al-
gorithm 3.

Algorithm 3: Sum-sparse
Data: Struct sparse X, Y
Result: Struct sparse B

1 begin
2 for i← 0 to size(X.R) do
3 for j ← 0 to size(Y.R) do
4 if X.C[i] == Y.R[j] then
5 S.R← cons(X.R[i], S.R)
6 S.C ← cons(Y.C[j], S.C)
7 S.W ← cons(X.W [i] + Y.W [j], S.W )

8 S.numR = X.numR
9 S.numC = Y.numC

10 A = First-normalization(S)
11 B = Second-normalization(A)
12 return B

The algorithm supposes that the first argument has the same number of
columns as the second argument’s number of row assert(X.numC == Y.numR),
similar to the matrix multiplication in linear algebra. The portion (lines 2 to 7) is
to get the elements for both sparse matrices X and Y into ~R and ~C, respectively,
using cons-function. Then, applying the summation for both J ~W K of X and Y .

The double for-loop may, in fact, take much running time, in particular, if
the matrices X and Y are large. To optimize the portion, we assume that Y
has been normalized, and then we reorder the points in X by columns. Ordering
the points of X by the columns actually corresponds to transposing X and then
First-normalizing it. We then do a single loop, moving forward along both the
columns of X and rows of Y . Whenever we find a column index of X that equals
a row index of Y , we add things into S. This change lets the algorithm get the
elements’ indices of X identically with Y to perform the sum in parallel.

The single for-loop in the algorithm is for getting the elements of the public
vectors ~R and ~C, and indices of the private vector J ~W K. Using single instruction,
summation operation will be performed for vectors X and Y , and save the result
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in new struct S. The last operation in the sum algorithm is the First and Second
normalization.

Min-sparse operation

The min operation in our algebraic path computation is used only once. The
algorithm is represented sparsely to deal with the sparse representation of the
adjacency matrix located in Struct sparse. The data input is two arguments in
sparse representation X and Y . The algorithm starts by checking the rows of
the first argument X have the same number of second argument rows Y —
assert(X.numR == Y.numR). As well as checking the number of columns in both
arguments X and Y — assert(X.numC == Y.numC). When both conditional ex-
pressions in an assert statement are set to true, the algorithm indicates the
concatenation for three elements of the two arguments, the public vectors ~R and
~C, and the private vector J ~W K. The next step is assigning the three vectors with
their sizes in a Struct sparse XY , finding the first normalization of the XY .
Later on, finding the second normalization, which has the getMin-function that
will find the minimum values for both concatenated arguments.

3.2 Main computation

We begin with the input to Algorithm 4, and the given adjacency matrix
should be represented in a sparse representation A, as mentioned above. All
elements in Struct A are pubic except weights A.W is private. The arguments−→
ST and

−→
BS comes from prerequisite computation (R-function). In obtaining

−→
ST ,

the set of R should be obtained by the vertices of separator tree Sh,k that their
vertices are not in that level of h. Later, obtaining the indices of the R elements.
Finally, accounting for the number of the elements with the same indices of a
level h, we obtain the

−→
ST . In the case of

−→
BS, given the list of separator trees,

the R-function accounts for the number of vertices S in each separator tree that
their vertices are not in R to determine the blocks of diagonal matrices.

For the three arguments whose initial value is zero, cyc is a counter for the
recursive iteration, M indicates the range of Block diagonal matrices for each
iteration, and cont1 indicates the indices of the Block diagonal matrices. The
argument of Level (h) represents the number of iterations in the main program
and represents the number of portioning levels in the prerequisite computation
of the separator tree. The last argument is a Struct of v1

′′
, which carries the

algebraic shortest path of the given graph that will be updated in each iteration.
The return value of the main computation of the algebraic path is the short-

est distance for all vertices from their source vertex. In general, the algorithm
provides solution of a linear system Ax = b with a sparse n× n symmetric pos-
itive matrix A. We replace vector b in the equation by the initial value for the
shortest distances vector v, solution is x = A−1v, end up by shortest distances
located in Struct v. The main computation of the algebraic path has a recursive
(lines 1-28) nested with different related functions. Performing the recursion is
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by satisfying the condition which is the value of level h, thus requires O(log2 n)
time.

In each recursive cycle, the algorithm computes the recursive factorization
that will return four matrices. The first matrix, which is X, will be used as an
argument to find the block diagonal matrix of X with its matrices blocks; it
computes Xh∗. The next step is the summation of two matrices Y and Xh∗,
obtaining the Wh matrix. The components of Struct Wh will be swapped into
res2, the vector columnsWh.C into res2.R, the vector rows into res2.C, number
of rows into number of columns, and number of columns into number of rows,
res2.numR = Wh.numC, res2.numC = Wh.numR, respectively. No change in
weights private vector, res2.W = Wh.W .

The algorithm performs a First-normalization for Struct res2. Another sum-
mation will be performed to the Struct Wh with a transpose matrix of Y ; it
returns res3. To obtain the matrix Ah that will be used in the next recursive
cycle, the minimum of two Struct Z and res3 will be performed by Min-sparse.

The algorithm builds two matrices U and L based on the size of matrix A in
each recursive cycle. The matrix U localizes the matrix res2 in its upper right
quadrant, While matrix L localizes the matrix Wh in its lower left quadrant.
The remaining elements in matrices U and L are “∞”, while the diagonals are
0’s; matrices are represented in sparse representation.

One of the secondary related functions is getSlice, this function is to reshape
the struct of the shortest path v1

′
and v1

′′
that will be used in next operations.

The first argument v1 is the Struct of the shortest path that will be reshaped. The
second and third arguments are rows-to-remove and cols-to-remove, respectively.
The fourth and fifth arguments are rows-to-keep and cols-to-keep, respectively.

The new elements of rows ~R is A.Ri - rows-to-remove, while the vector ~C is
A.Ci - cols-to-remove. The private vector J ~W K gets its elements based on values
of i. Those three vectors will be constructed if the conditional expression is set
to true, the condition is two parts, over rows and columns. In detail, A.Ri >
rows-to-remove & A.Ri < rows-to-remove + rows-to-keep, the second part of the
condition is over columns, similar to the rows. The getSlice-function provides v1

′

and v1
′′
, the Struct v1

′
will be summed with Xh∗ to get v2

′
. Those intermediate

shortest path v1
′′
will be used as an argument in recursive call, and v2

′
will be

used as an argument in overlap-function after the recursive call.
The overlap-function has the same functionality and structure as Min-sparse.

The difference is that it has no Second-normalization, as well as assumes that
no position X and Y have non-INF at the same time. This function has two
arguments, which are the intermediate shortest paths. The two arguments have
to be modified before being carried out to the overlap-function.

The third secondary related function is overlay that increases the size of the
intermediate shortest paths v2

′
and v2

′′
in term of the columns ~C and number

of columns .numC. The aim of increasing the size is to make it to have the
same size as the other arguments in the overlap function. In detail, the second
and third arguments in the overlap function will be summed with v2.numC,
and the second argument will be summed with v2.C. No change in rows ~R and
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Algorithm 4: Main computation of Algebraic paths

Data: Struct sparse A,
−→
ST ,
−→
BS

Data: level(h), struct v1
′′

Data: cyc = 0, M = 0, cont1 = 0
Result: shortest paths Struct sparse v

1 Function Algebraic-paths(A,
−→
ST ,
−→
BS, cyc,M, cont1, level, v1

′′
) is

2 if cyc 6= level-1 then
3 rang = 0
4 Struct sparseF F = Factorization(A,ST [cyc])
5 while ST [cyc] 6= rang do
6 rang = rang + BS[cont1++]
7 cont2++

8 sparse Xh∗ = Block-Diagonal-Matrix-inv(F.X,BS[M : M + cont2])
9 M = M + cont2, cont2 = 0

10 Wh = Sum-sparse(F.Y,Xh∗)
11 sparse res2 = Wh; // res2.R = Wh.C & res2.C = Wh.R
12 res2 = First-normalization(res2)
13 sparse res3 = Sum-sparse(Wh,F.Y T )
14 sparse Ah = Min-sparse(F.Z, res3)
15 sparse U = getUpper(A.numR, res2)
16 sparse L = getLower(A.numR,Wh)
17 sparse v1 = Sum-sparse(v1

′′
, U)

18 row = F.X.numR, col = F.X.numC

19 sparse v1
′
= getSlice(v1, 0, 0, 1, col)

20 sparse v1
′′
= getSlice(v1, 0, col, 1, v1.numC-col)

21 sparse v2
′
= Sum-sparse(v1

′
, Xh∗)

22 cyc++
23 sparse v2

′′
= Algebraic-paths(Ah, [ST ], [BS], cyc,M, cont1, level, v1

′′
)

24 sparse v2 = overlap(overlay(v2
′
, 0, v1.numC - col), overlay(v2

′′
, col, 0))

25 sparse v = Sum-sparse(v2, L)
26 return v

27 [B] = A.numR
28 sparse A∗ = Block-Diagonal-Matrix-inv(A, [B])
29 sparse v = Sum-sparse(v1

′′
, A∗)

30 return v
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weights J ~W K. The shortest path v is returned value of the last Sum-sparse inside
the conditional expression, that summed Struct L and the intermediate shortest
path v. If the conditional expression is set to false, we define a single block with
a single size, which will be carried to the Block-diagonal-matrix function to find
the A∗. The shortest path v is returned value of the Sum-sparse which is out of
conditional expression, the sum is v1

′′
with A∗.

4 Privacy-Preserving Bellman-Ford for Public edges

The edges can be public elements in a privately given graph as mentioned
above. To use an efficient protocol in solving such a problem, we propose a version
of the privacy-preserving Bellman-Ford protocol with public edges, presented in
Algorithm 5. In general, the Bellman-Ford protocol has the same algorithmic
structure and functionality as Algorithm 1 in [1]. The difference between them
is that we replaced PrefixMin2 by getMin, both functions have the same func-
tionality with a difference that getMin-function deals with public edges m and
vertices n. This is the reason why getMin-function is faster than the two versions
of the prefixMin2-function (Algorithm 3 and Algorithm 4 in [1]). The second
difference is that no use for Laud’s protocol [26] with its functions, prepareRead
and performRead, this will reduce the round complexity a bit. The data input
is three vectors of a graph JGK, the source ~S and target ~T vertices are public,
while weights J ~W K of edges is private. The vector ~T should be sorted, and then
sorting the input all vectors according to ~T . Then, continue regularly performing
the computation for finding SSSP.

Algorithm 5: Bellman-Ford public edges
Data: Number of vertices and edges n and m
Data: Public Sources ~S and targets ~T
Data: Private weights J ~W K
Data: starting vertex s
Requires: [T ] is sorted
Result: Private distances J ~DK from vertex s

1 begin
2 J ~DK←∞
3 J~aK← J ~W K
4 for i← 0 to n− 1 do
5 forall j ∈ {S} do
6 J~aK[j]← J ~DK;

7 J~bK = J~aK + J ~W K
8 J ~DK = getMin(J~bK, [T ])

9 return J ~DK
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5 Analysis Performance

This section discusses the protocol’s performance in finding the shortest paths
in the algebraic path computation technique and related algorithms. The com-
plexity of the algorithms has two sides, round and bandwidth complexities. Let
n denote the number of the vertices in the given graph, while m is the number
of the edges.

5.1 Round complexity

The main computation of the algebraic path has no iteration control struc-
ture, while it has recursive iterations, and the related algorithms call in each it-
eration. First, the round complexity of the main computation requires O(log2 n).
Second, the related functions will be executed during each iteration, while each
one has round complexities separately. Some of these secondary functions have
zero round complexities, getSlice, overlap and overlay. As well as, the getUpper
and getLower functions require zero round complexities. Each iteration in a re-
cursive call has the following round complexities:

The first related function is the recursive factorization which has zero round
complexity. The algorithm split the Struct A into four matrices in sparse repre-
sentation. The public operations have zero round complexity, and assigning the
private vector weights J ~W K into four sub vectors are done in parallel, which has
zero round complexity.

The Block-diagonal-matrix-inv function has zero round complexity for all for-
loops. The function also has a subroutine of FloydWarshall-nSIMD, which process
t block matrices simultaneously; hence the number of blocks does not influence
the round complexity because all blocks are handled in parallel. We suppose k
is the size of the largest block. Thus, total round complexity of FloydWarshall-
nSIMD function is O(k).

It is important to present the complexities of First- and Second-normalization
functions before the Min-sparse and Sum-sparse functions. The round complexity
of the First-normalization is zero, the whole operations are public and assign-
ing the private vector has zero round complexity. The Second-normalization has
getMin-function as subroutine, which has O(log n) round complexity. Thus, each
Second-normalization call has O(log n) round complexity.

The Sum-sparse function has assigning operations for private vectors, which
requires zero round complexity, and it has Second-normalization that requires
O(log n) round complexity. Thereby, each Sum-sparse in one recursive cycle in the
main computation has O(log n) round complexity. The Min-sparse requires the
same round complexity as in Sum-sparse, which is O(log n). Both have the same
algorithmic structure in term of public and private operations, and subroutines.

5.2 Bandwidth complexity

Let n denote the number of the vertices in the given graph JGK, and m is
the number of the edges. In the algebraic path computation, we use the first-
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and Second- normalization to reduce the size of the elements; this reduction can
help the implementation to carry a big size graph. We consider e the number of
the edges in a graph used in algebraic path computation protocol, and v is the
number of vertices. It is important to note that the normalisation reduces the
size of e and v. The size of the single integer in edge ei is less than the size of
mi. It is also similar in the vertices; the size of the single element in vertex vi is
less than the size of ni.

The functions that require zero round complexity also require zero bandwidth
— no communication had occurred among the computation parties of the SMC
platform. These functions are recursive-factorization, First-normalization, getSlice,
overlap and overlay, getUpper and getLower.

Initially, the size of given adjacency matrix is v × v, which represented
sparsely into vectors, the size of each vector is e. The bandwidth of the main
computation (Algorithm 4) requires O(e log2 v). Each iteration in a recursive
call has the following bandwidth complexities:

The Block-diagonal-matrix-inv function has FloydWarshall-nSIMD function,
which process t blocks matrices simultaneously, the size of largest block is also k.
The total bandwidth is O(k3t). The Second-normalization function has getMin as
a subroutine, the bandwidth requires O(e). The Sum-sparse in one recursive cycle
in the main computation requires O(e2) bandwidth. The Min-sparse function has
O(e) bandwidth.

6 Security and privacy of protocols

The privacy-preserving APC protocol is built on top of a universally com-
posable ABB, and it inherits the same security properties against various adver-
saries as the underlying secure computation protocol set. This protocol is trivially
privacy-preserving if it does not contain any declassification statements.

In general, the privacy-preserving algebraic path parallel computation proto-
col and its related functions are privacy-preserving since they do not contain any
declassification statements. The given graph in the implementation has public
edges, while the weights are only private. The private result is no longer deter-
mined by the private values of all elements in a graph; some can be public (edges
and vertices) and hence do not leak the privacy preservation. The private values
in the algebraic path computation protocol have no declassification statements.
Hence our implementations are privacy-preserving.

7 Result and Experiments

This section presents the extensive benchmarks and analysis of the secret-
shared based secure multiparty computation of the Algebraic path computation
protocol. The implementation and benchmarking of this protocol are done on
various graph sizes, providing an overview of how they stack up on top of secure
multiparty computation protocols in different deployments. For analyzing and
evaluation, the experiments and analysis of the privacy-preserving public edges’
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version of the Bellman-Ford protocol are also done over the SMC Sharemind
platform. The different sizes of graphs used in these experiments are generated
using a random generating function.

7.1 Experimental setup

The implementations used the single-instruction-multiple-data framework
supported by the SecreC high-level language to write the codes. The bench-
marking of all implementation on sharemind cluster of three servers connected
with each other, where each server is 12-core 3 GHz CPUs with Hyper-Threading
running Linux and 48 GB of RAM, connected by an Ethernet local area net-
work with a link speed of 1 Gbps. Single-threaded is used in all Sharemind’s
implementation, hence no usage for multiple cores performing local operations,
nor the possibility of performing computations over distributed system simulta-
neously. For instance, the computation parties of the SMC platform are located
in different geographical locations; we benchmark our protocols on different net-
work environments. In the high-bandwidth (HB) setting, the link speed among
the computation parties is 1 Gbps, while low-bandwidth (LB) is only 100 Mbps.
In a low-latency (LL) setting, no delay (0ms) among computation parties, while
in a high-latency setting, 40ms is the delayed time among computation parties.
We use three different network environments in the benchmark, HBLL, HBHL,
and LBHL.

7.2 Experiments of algebraic path

We have implemented our privacy-preserving algebraic path computation
protocol and its related algorithms and have tested them on different sizes of
graphs obtained from a random generating function. The generated gird graphs
are given by G(A), where A is a R × C adjacency matrix, where R and C are
number of the rows and columns in a graph, respectively. The number of edges
in a graph is given by 2RC - R - C. Furthermore, the depth of tree is given by d
= 2 · k, where k ∈ {2,3,. . .,∞}. In the algebraic path computation protocol, we
use only grid graphs (with different sizes), the construction of a separator tree is
a task that is at the same time non-trivial, and peripheral to the goal of secure
computation; hence we do not want to put significant effort into programming
it.

The protocol is designed to perform the computation sparsely, and we use
sparse graphs. Nevertheless, the running time of the privacy-preserving algebraic
path computation protocol depends on the number of vertices n and edges m.
Note that the number of edges in a given graph also depends on the number
of vertices n. The running times and bandwidths of secret-sharing based se-
curity multiparty computation protocol of the algebraic path computation are
illustrated in Table 1. Running times and bandwidths are given in the High-
Bandwidth and Low-Latency environment. The total running times are recorded
to the main computation of the Algebraic path (Algorithm 4) with its related
functions. We did not record the preparatory step, a public operation with no
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Table 1: Running times (in seconds) and Bandwidth of privacy-preserving alge-
braic path computation protocol

Graph Recursive- Algebraic Path Computation
G(A) A×A cycle Bandwidth Time
5 25 4 0.16 MB 0.1
9 81 6 0.30 MB 0.3
17 289 8 2.31 MB 1.2
33 1089 10 27.3 MB 8.2
50 2500 12 90.3 MB 30.1
65 4225 12 366 MB 66.4
100 10000 14 874 MB 244
129 16641 14 1972 MB 522
150 22500 16 3136 MB 838
200 40000 16 7792 MB 2029
257 44049 16 16.4 GB 4280
513 263169 18 138.3 GB 35341
600 360000 20 224.6 GB 58082

round complexities. The bandwidth among the computation parties of the SMC
sharemind platform will be reduced.
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Fig. 3: Effective of graph size for the privacy-preserving APC protocol

The parallelization targets not only the main computation but also the re-
lated functions of the proposed protocol. Those related functions are constructed
to deal with the sparse representation of matrices in privacy-preserving. Further-
more, some of those related functions have no private operations over private
data, which means they have no round complexity. It is important to note that
such parallel functions can be used as a subroutine in constructing other proto-
cols in the sparse-linear system on top of secure multiparty computation. Note
that each Sum-sparse-function may have a different execution time depending
on the size of the matrices (which are represented sparsely), while the size of
matrices is based on the separator-tree. In Figure 3a, we show the relationship
between the grid graph size and the computation parties’ average running time.
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Furthermore, we present in Figure 3b the relation between the bandwidth and
size of the grid graph. The bandwidth is the average bandwidth for the three
computation parties of the SMC sharemind platform.
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Fig. 4: Performance of algebraic path computation protocol on graphs with given
numbers of vertices in different network environments (red: HBLL, green: HBHL,
blue: LBHL

In Figure 4, we establish the baseline for our experiments, measuring the run-
ning time of privacy-preserving Algebraic path computation protocol on graphs
of different sizes in different network environments. The performance is very
much latency-bound, such that the available bandwidth (even without First- and
Second- normalization) even does not affect the performance on most graphs in
high-latency environments.

7.3 Experiments of Bellman-Form

The performance of the privacy-preserving Bellman-Ford protocol depends
on the number of vertices n and edges m of the given private JGK. Increasing the
number of edges in a graph will increase the running time. This version of the
Bellman-Ford protocol has public elements, the number of the vertices n, edges
m, and both vectors of vertices ~R and edges ~C, while weights J ~W K are private.
The lonely preparatory step is the sorted vector ~T , followed by the main loop of
the proposed algorithm also executed at most (n− 1) times. The execution time
and bandwidth of the Bellman-Ford protocol are presented in Table 2. Various
graph sizes are used in this implementation, and the running time is given in
the High-Bandwidth and Low-Latency environment. The Bellman-Ford protocol
with its versions is more fit for sparse representation than dense, as shown in
Table 2. Although Bellman-Ford is fit for sparse graphs, the benchmarking is
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done over sparse and dense graphs. The lowest running time of the Bellman-
Ford protocols is when the edges are minimum — In like-planar graphs, running
time is lowest than in graphs with the same number of the vertices for sparse
and dense graphs.

Table 2: Running times (in seconds) and Bandwidth of privacy-preserving
Bellman-Ford protocol

Graph Bellman-Ford
k n m Bandwidth Time

10 25 0.3 MB 0.04
20 100 0.5 MB 0.11
50 400 1.6 MB 0.55
100 400 2.9 MB 1.14
200 900 11.0 MB 3.31

Sp
ar
se

500 5k 140 MB 24.4
1k 10k 538 MB 74.2
2k 50k 5.44 GB 688
10 45 0.2 MB 0.04
25 300 1.0 MB 0.23
50 1225 4.6 MB 1.07
100 4950 32.4 MB 4.55

D
en

se

200 19.9k 237 MB 27.1
500 124k 3.4 GB 434
1k 499k 28.4 GB 3368
2k 1999k 232 GB 26325

We also benchmarked the protocol using two fundamental tools in measure,
bandwidth and running time, as shown in Table 2. We also benchmarked our
work over different network environments. The running times of the Bellman-
Ford public edges over different network environments are presented in Figure 5.
In benchmarking in this test, the edges of the given graph depend on the maxi-
mum possible number of the edges in n × n grid graph, where n is the number
of the vertices.

The privacy-preserving Bellman-Ford protocol is more efficient then its ver-
sions 1 and 2 in [1] on SMC sharemind platform. The computation of public
edges’s version has the lowest round complexity among the computation parties
of the sharemind because of using the public edges. The benchmarking of the
privacy-preserving Bellman-Ford protocol versions is presented in Table 3. It
shows the running times and bandwidth for different graph sizes in sparse and
dense graphs. In the sparse graphs, the edges are four times the number of the
vertices in the given graphs — m = 4n. In terms of running time, Version 3 is
the most efficient than other versions.

In Figure 6a, the benchmark results for the three versions of the Bellman-Ford
protocol in privacy preservation over sparse graphs are presented. The edges in
the sparse graphs are four times the number of the vertices, given bym = 4n. The
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Fig. 5: Performance of Bellman-Ford protocol on graphs with given numbers
of vertices in different network environments (red: HBLL, green: HBHL, blue:
LBHL

result shows the influence of using public edges in computation and replacing
prefixMin2 shown in Algorithm 3 and Algorithm 4 in [1] by getMin-function,
which is constructed sparsely based on the publicity of the edges and vertices.
In contrast, the privacy-preserving SSSD Bellman-Ford protocol versions for the
dense graphs is presented in Figure 6b.
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Fig. 6: Effective of graph size for the privacy-preserving APC protocol

7.4 evaluation of the protocols

The running times of both privacy-preserving SSSD protocols that use public
edges — Bellman-Ford and Algebraic path computation — for the sparse rep-
resentation of the graphs are illustrated in Table 4. The experiments also show



26 Mohammad Anagreh and Peeter Laud

Table 3: Running time (in seconds) and Bandwidth for privacy-preserving
Bellman-Ford protocol Versions

Graph Bellman-Ford V1 Bellman-Ford V2 Bellman-Ford V3 Speed-up V3
K n m Band. Time Band. Time Band. Time vs.V2 vs.V1

20 80 0.85 MB 0.66 0.98 MB 0.47 0.38 MB 0.15 3.1x 4.4x
50 200 3.1 MB 1.97 4.41 MB 1.50 0.88 MB 0.41 3.6x 4.8x
100 400 8.1 MB 4.72 17.3 MB 5.12 3.12 MB 1.25 4.0x 3.7x

Sp
ar
se

500 2k 177 MB 67.2 502 MB 101 56.1 MB 13.2 7.6x 5.1x
1k 4k 449 MB 250 2.1 GB 351 216 MB 38.6 9.1x 6.5x
20 190 1.37 MB 0.76 2.1 MB 0.59 0.7 MB 0.17 3.4x 4.4x
50 1225 9.58 MB 3.88 26.3 MB 5.57 4.7 MB 1.20 4.6x 3.2x
100 4950 53.9 MB 15.9 224 MB 30.9 32 MB 4.38 7.1x 3.6x

D
en

se

500 124k 4.96 GB 1391 33.1 GB 3895 3.3 GB 435 8.9x 3.2x
1k 499k 239 GB 9237 456 GB 28618 26 GB 3004 9.5x 3.1x

average bandwidths in different network environments. The running times of all
graphs in different network environments for Algebraic path computation are
lower than the running times of the Bellman-Ford protocol Version 3. As well
as, the bandwidth in Algebraic path computation is more minor than bandwidth
in Bellman-Ford protocol Version 3 despite both protocols having a similar in-
put data structure. Both have been designed to be fit for sparse representation
of a graph. Also, both protocols have been constructed in the parallel SIMD
framework. In Table 4, the largest execution time is already measured for the
Bellman-Ford Version 3, which is more than eight years. We benchmarked the
larger examples by running only a few iterations, estimated the running time
of a single iteration, and then multiplied with the total number of iterations,
given by (k · k), where k is a number of rows/column in a grid graph. Moreover,
in Table 4, we documented the efficiency of privacy-preserving APC protocol in
different network environments compared with the running time of the Bellman-
Ford Version 3. The APC protocol is faster than Bellman-Ford Version 3 tens of
time, in particular, using big graphs.

Table 4: Benchmarking results (bandwidth for a single computing server) for
Bellman-Ford Version 3 and Algebraic path protocol in different network envi-
ronments

Bellman-Ford Version 3 (BF-v3) Algebraic Path Computation (APC) Efficiency
Band- Running time (s) Band- Running time (s) BF-v3 vs. APC

G(A) width HBLL HBHL LBHL width HBLL HBHL LBHL HBLL HBHL LBHL
5 0.4 MB 0.33 33.3 33.3 0.09 MB 0.1 18.2 18.2 3.3x 1.8x 1.8X
9 2.64 MB 2.74 108 108 0.28 MB 0.3 38.0 38.0 9.1x 2.8x 2.8x
17 22.3 MB 18.4 388 399 2.33 MB 1.2 69.4 71.4 15.3x 5.6x 5.6x
33 324 MB 214 1509 1684 24.1 MB 8.2 146 165 26.1x 10.3x 10.2
65 4.4 GB 819 6542 9205 273 MB 66.4 522 670 12.3x 12.5x 13.7x
129 173 GB 13395 36835 81346 2005 MB 522 1355 2669 25.6x 27.1x 30.5x
257 2.86 TB 203428 521491 1154261 17.2 GB 4280 9182 20276 47.5x 56.8x 56.9x
513 37.3 TB 3092314 7147049 17883699 144 GB 35341 73215 166643 87.4x 97.6x 107.3x
1025 349 TB 46914854 116623074 273458923 – – – – – – –
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In Figure 7, we present the comparison of Algebraic path computation and
Version 3 of the Bellman-Ford protocol for different network environments. We
see that despite the simple structure of the Bellman-Ford Version 3, Algebraic
path computation is still faster also in high-latency environments.
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Fig. 7: Performance (time in seconds) of Bellman-Ford Version 3 and Algebraic path
computation protocols on graphs of different sizes in different network environments
(red: HBLL, green: HBHL, blue: LBHL, dark: Bellman-Ford, light: Algebraic path
computation)

8 Conclusion and future work

We showed an alternative technique for privacy-preserving computation of
the shortest path using an algebraic path computation, not by applying essential
algorithms. We used the parallel SIMD framework to perform the computation
on private data. The matrix’s sparse representation plays a significant role in
efficiently constructing the proposed protocol. As well as we showed how the
precomputation stage also plays an essential role in building the protocol to
get some arguments that we need to perform the computation using the sparse
representation of the matrix. Regardless how expensive the precomputation is
as long as it is performed on local computation parties without communication,
because using of the public data.

This is a compilation of privacy-preserving parallel computation of algebraic
paths that have not been done before, giving a novel idea of how efficient it is on
top of SMC protocol and the ability to carry out an extensive data set until no
enough space of memory. Consequently, our proposed protocol is scalable. This
is the first such protocol for finding shortest path in privacy-preserving that
can process large private graph that has hundreds thousand vertices. We also
presented a new version of privacy-preserving Bellman-Ford with public edges
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to benchmark it with algebraic computation based privacy-preserving shortest
path. Both protocols have similar functionality (using a privately given graph
with known edges); the result shows that algebraic algorithm based shortest
paths computation is more efficient than an essential algorithm based shortest
paths computation, both protocols built on top of secure multiparty computa-
tion.

The future work on privacy-preserving algebraic graph computations may
included using some related functions have done in this work as a subroutines
for solving different problems based algebra computation. Such problems are
all-pairs shortest path, minimum spanning tree and forest.
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