
Texture Generation Using A Graph Generative
Adversarial Network And Differentiable

Rendering

Dharma KC1[0000−0003−0676−2391], Clayton T. Morrison1[0000−0002−3606−0078],
and Bradley Walls2[0000−0002−5484−7587]

1 The University of Arizona, Tucson AZ 85721, USA
{kcdharma,claytonm}@arizona.edu

2 Areté Associates, Tucson AZ 85712, USA bwalls@arete.com

Abstract. Novel photo-realistic texture synthesis is an important task
for generating novel scenes, including asset generation for 3D simula-
tions. However, to date, these methods predominantly generate textured
objects in 2D space. If we rely on 2D object generation, then we need to
make a computationally expensive forward pass each time we change the
camera viewpoint or lighting. Recent work that can generate textures in
3D requires 3D component segmentation that is expensive to acquire. In
this work, we present a novel conditional generative architecture that we
call a graph generative adversarial network (GGAN) that can generate
textures in 3D by learning object component information in an unsuper-
vised way. In this framework, we do not need an expensive forward pass
whenever the camera viewpoint or lighting changes, and we do not need
expensive 3D part information for training, yet the model can generalize
to unseen 3D meshes and generate appropriate novel 3D textures. We
compare this approach against state-of-the-art texture generation meth-
ods and demonstrate that the GGAN obtains significantly better texture
generation quality (according to Fréchet inception distance). We release
our model source code as open source.3

Keywords: 3D texture synthesis · Graph neural networks · Differen-
tiable rendering.

1 Introduction

Synthesizing novel photorealistic textures for 3D mesh models is an important
task for the generation of novel scenes in static images or realistic 3D simula-
tions. Such generated textures can be applied to 3D mesh models and rendered
with different lighting conditions and camera angles quite easily. The generative
adversarial network (GAN) framework [11] is a promising approach to training
models capable of novel image generation. However, extending the GAN frame-
work to support texture generation in 3D that can generalize to novel, previously

3 https://github.com/ml4ai/ggan

ar
X

iv
:2

20
6.

08
54

7v
2

 [
cs

.C
V

]
 8

 F
eb

 2
02

3

https://github.com/ml4ai/ggan

2 Dharma KC, Clayton T. Morrison, and Bradley Walls

unseen 3D models poses interesting challenges. Generating textures in 2D space
(u, v coordinate system) and then wrapping to 3D mesh models won’t generalize
to unseen meshes because the UV mapping function is different for different 3D
meshes. However, humans are able to identify the components of a 3D object
and could texture them consistently. This raises an interesting research question:
can we design an algorithm that can generate realistic textures for unseen 3D
mesh models by identifying object components as humans do? We present here
a system that addresses this challenge. Our model can learn to distinguish 3D
part information shared across instances of an object class (e.g., wheels, doors,
hood, windows, tail, headlights, etc. of a car) in an unsupervised way that sup-
ports generating specific texture features for these components. Recent work
presented a new model called TM-NET [9] that can generate textures in 3D but
requires prior supervised segmentation of 3D parts, while our model can identify
3D part information in an unsupervised way. Another closely related work to
ours is [34], but they work on 2.5D space rather than on the original 3D space,
forcing us to make an expensive forward pass each time the viewpoint changes.
We use PyTorch [30] and PyTorch3D [35] for the implementation of our sys-
tem and use the ShapeNet dataset [3] to train and evaluate our framework. We
adopt the commonly used Fréchet Inception Distance (FID) [15] to assess the
quality of textures generated by model. FID is typically applied to 2D images.
To extend the FID measure to texture map generation for 3D models, we apply
the generated texture map that is to be evaluated to the given 3D model and
render it from multiple views, producing multiple 2D images, and the FID scores
across these images are aggregated to produce a summary FID score. The major
contributions of our paper are as follows:

– We present a simple solution to the challenging problem of 3D texture gen-
eration for 3D mesh models rather than 2D or 2.5D images.

– Our framework is capable of unsupervised learning of part information shared
across a class of objects, therefore avoiding a costly, separate supervised
learning task in order to learn textures appropriate to object parts.

– We present a thorough review, analysis, and evaluation of various techniques
that can be used for texture generation for 3D meshes and demonstrate the
advantages and disadvantages of each.

2 Related work

In this section, we describe five threads of work related to our problem and
proposed framework.

2.1 Generative adversarial networks

Generative adversarial networks (GANs) [11] are known for their ability to gen-
erate photorealistic images with very high resolution [20]. The GAN framework
consists of a generator G and discriminator D. The generator G attempts to

Graph Generative Adversarial Network 3

generate realistic images that can fool the discriminator. At the same time, the
discriminator D tries to predict whether the image is “real” (comes from the
real data distribution) or “fake” (generated by the generator). This constitutes
a two-player minimax game with the following value function:

V(G,D) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(1)

Here, x denotes a sample from a real distribution, pdata, and z denotes a “noise”
vector from distribution pz. D(x) denotes the probability that x comes from
the real distribution. Multiple applications have adapted GANs for the task of
generating realistic images. Specifically, Radford et al. [33] propose deep convo-
lutional GAN (DCGAN), which uses convolutional neural networks (CNNs) to
generate low-resolution photorealistic images. Recently, Karras et al. [18, 19, 20]
developed a novel architecture for the generator. Arjovsky et al. [1] propose the
Wasserstein GAN (WGAN) to improve the stability of training. Xian et al. [39]
propose image synthesis with texture, but this only works on 2D images. Mirza
et al. [29] propose a conditional GAN framework that can generate samples from
a specified class. In this framework, the noise vector is combined with a class
label to generate a sample image from that class. This work is closely related
to our work as we seek to generate a texture conditioned on an input mesh.
This work is a simplified version of our problem as they work on 2D images and
the combination of the noise vector with the class label (a one-hot vector) can
be easily achieved with a simple concatenation while a simple concatenation of
the noise vector with a 3D mesh model is not possible. This makes our problem
challenging and requires a new architecture.

2.2 Differentiable rendering

Fig. 1: Differentiable rendering

The second line of work related to ours is differentiable rendering. Rendering
in computer graphics is a process of generating a 2D image from a 3D mesh,

4 Dharma KC, Clayton T. Morrison, and Bradley Walls

light source, camera properties, texture properties, and other scene properties.
Classical rendering using rasterization, or ray tracing, is not differentiable. This
means we cannot propagate the gradients of the loss in image space (2D space)
with respect to mesh properties such as vertices and textures. Given that we
want to generate a realistic texture for a given 3D mesh model with supervision
from 2D images, we need a way to propagate the gradients of the loss from these
projected (rendered) 2D images back to the 3D scene properties. Differentiable
rendering is a process that enables backpropagating these gradients from the 2D
image loss back into the 3D scene properties. Figure 1 illustrates the differen-
tiable rendering part of our architecture. Recent methods propose approximate
solutions for making the rendering process differentiable [21, 25, 26, 27, 35]. We
use PyTorch3D [35] for differentiable rendering.

2.3 Texturing

Texturing is the process of applying a texture to a given 3D mesh model. There
are multiple ways to apply a texture to a 3D mesh. Given that we want to
generate textures for 3D polygonal meshes that can be applied directly to 3D
shapes, we have the following options for texturing [35]:

UV textures: A UV texture is a 2D image that can be mapped to 3D mesh
model. For UV textures to work, we need a 2D UV-coordinate image and a map-
ping function that maps every vertex in the 3D object space to a (u, v) coordinate
in a 2D UV image. The advantage of this method is that it can represent high-
resolution textures, but the mapping function is different for different meshes,
making the texturing process hard to generalize across varieties of 3D models.
We refer to this method as TextureUV in the following sections.

Vertex textures: A vertex texture defines a texture per vertex (e.g. r, g, b
color). If the mesh has V vertices, and the dimension of texture per vertex is
D, the texture can be represented by a tensor of shape (V,D) for a given 3D
mesh. In this approach, the texture within faces between vertices has to be
interpolated from vertex textures. This makes the vertex texture suitable only
for low-resolution textures. We refer to this method as TextureVertex in the
following sections.

Face textures: The face texture method defines a separate texture per face. The
texture per face can be an RxR dimensional texture, where R is the resolution
of a texture image of a single face. This can be modeled using a (F,R,R,D)
tensor where F is the number of faces, R is the resolution of a texture and D is
the dimension of a texture (e.g., D = 3: r, g, b colors). This allows us to learn
very high-resolution textures. We refer to it as TextureFace in the following
sections.

Graph Generative Adversarial Network 5

2.4 Deformable models

This family of work learns to generate the 3D mesh along with textures from
2D images. The method generally starts with a fixed geometry (e.g. sphere) and
a fixed UV mapping. Given input images, the model extracts information from
these images, represented as a latent vector. This vector is then used to predict
the deformation of the vertices of the sphere template to approximate the 3D
mesh and the texture image. Then the estimated 3D shape, estimated texture,
and fixed UV map go through a differentiable rendering step to generate a 2D
image. The main idea then is to make these generated images similar to the
original images, which can be achieved using reconstruction loss and adversarial
loss. Figure 2 shows the architecture.

Fig. 2: General architecture of deformable models

Recent work has explored variations of this idea and has achieved good re-
sults [5, 10, 14, 17, 31, 32, 32, 41]. This is a really good approach when we don’t
have ground truth 3D meshes. But, when the 3D meshes are available, as in our
case, the major disadvantage of this method is that the predicted mesh tends to
be relatively poor quality compared to the ground-truth mesh.

2.5 Graph neural networks

Graph neural networks (GNNs) are powerful models for learning from graph-
structured data. They work on the theory of message passing, where a node gets
some information from its neighbors and updates its state. Consider a graph
G = (V, E), where V is the set of nodes and E is the set of edges. Let, X ∈ R|v|∗d
be the set of node features where each node v ∈ V has a d dimensional feature.
The kth message passing iteration of a GNN can be modeled as a variation of
the following equation [12]:

h(k+1)
v = update(k)(h(k)v , aggregate(k)(h(k)u),

= update(k)(h(k)v ,m
(k)
N (v)) ∀u ∈ N (v))

(2)

6 Dharma KC, Clayton T. Morrison, and Bradley Walls

Here, N (v) denotes the neighbors of node v. At any iteration of the GNN, the
aggregate function takes the embedding of the neighbors of node v and combines
them into one embedding vector. The update function takes the embedding of
the node v at the previous time step and the output embedding vector of the
aggregate function to give us the new embedding for the node v. Here, update
and aggregate can be any differentiable functions. In our work here, we convert
an input 3D mesh model to a graph and use the power of GNNs to learn latent
part information of a class of objects.

3 Models

In this section, we describe multiple different approaches to addressing the prob-
lem of how to generate novel but realistic textures for variant 3D meshes of an
object class. We discuss the advantages and disadvantages of these methods. In
summary:

– Model-Baseline: This model utilizes simple UV mapping. We found that
this architecture doesn’t generalize to unseen 3D meshes.

– Model-UV: This model takes UV layout as extra input information but
suffers similar problems to Model-Baseline.

– Model-Deformable: This method is based on the idea of deformable mod-
els. The disadvantage of this method is that the approximated mesh is of
low quality compared to the original 3D mesh.

– Model-Graph: This model consists of two variants, Model-GCN, and
Model-GGAN. These models transform an input 3D mesh into a graph
and generate a texture conditioned on the graph. The final variant of this
model, called Model-GGAN, produced higher quality and more diverse
results than the other previous methods.

In the following section, we describe each model in detail.

3.1 Model-Baseline

In this first model, the texturing is performed using the TextureUV mecha-
nism. The framework is summarized in Figure 3. For this model, we adapted a
deep convolutional generative adversarial network (DCGAN) architecture [33]
for the generator and the discriminator. We modified the DCGAN architecture
to support the generation of higher-resolution textures. For applying the texture
map to these diverse 3D models, we need a way to map the 3D vertices in these
models into a 2D texture map (a procedure called UV mapping). We use the
smart UV project feature of the Blender Python API to automatically generate
these mappings for a given 3D model. Recall that our challenge is to adapt the
GAN framework so that we can take advantage of training on multiple real-world
examples and have the learned generation capability transfer to new 3D objects.
However, the UV image for each 3D model has a different coordinate system.
This means that, for example, the features of the given 3D model, such as the

Graph Generative Adversarial Network 7

tires or windshields of different cars, project to different regions in the UV space
for each 3D model.

Fig. 3: Initial architecture for texture synthesis

To establish a baseline, we directly applied the UV mapping and found that
this led the generator to converge to a mean texture across examples, rather
than learning how to produce varied textures constrained by the input 3D mesh.
This happens because the generator has no information about the UV mapping
function and 3D mesh model to which the texture will be applied.

3.2 Model-UV

To address the above issue, we next explored the idea of injecting the UV map
layout into the generator with the hypothesis that the generator might adapt
during training in order to learn where the different parts of the given 3D model
project in the 2D texture image. We used the same texturing mechanism, Tex-
tureUV, as described in the above Model-Baseline. The architecture pro-
duced results similar to Model-Baseline. The reason was the model couldn’t
learn complicated UV mapping information just from the UV layout image.

3.3 Model-Deformable

In this model, we use the idea of deformable models similar to Figure 2, but with
some modifications. We use the same TextureUV method described above. The

8 Dharma KC, Clayton T. Morrison, and Bradley Walls

main problem with the above two models is that the UV mapping function is dif-
ferent for different 3D mesh models, making it harder for the generator to learn
features that can work across different 3D mesh models. To mitigate this prob-
lem, we explored the idea of starting from a common mesh model with a fixed
UV mapping. We used a sphere template 3D model as the starting point and
used azimuth and elevation as the UV map function. We then used 3D chamfer
loss [7] to predict the deformations of the sphere template to approximate the
3D mesh. This model more directly addresses our overall challenge by learning a
generalized mapping from the space of textures to different 3D meshes enabling
us to swap the texture learned from one model to another. However, the gen-
erated textures must still be applied to the approximate model, which reduces
the quality of the 3D mesh model and the texture. The distortions in the model
shape mesh are significant as demonstrated in the example in Figure 6. Another
disadvantage of this method is that we need to approximate the deformation
for every new 3D model, creating extra computational overhead for training and
inference.

3.4 Model-Graph

Fig. 4: Graph-based methods for texture synthesis

Graph Generative Adversarial Network 9

In this section, we describe our architecture that incorporates information from
the 3D mesh model to guide the generator. We first convert the input 3D mesh
model into a graph by taking each face as a node in the graph and connecting
neighboring faces using graph edges. The graph neural network is then used to
learn a latent representation of the structural components of the given 3D model.
In the latent representation, the topological features of the 3D mesh graph can
be clustered, so as to learn features that could correspond to structural compo-
nents that tend to share texture properties, such as wheels, windows, lights, and
hood of a car. In turn, this latent component representation can then provide
an inductive bias for the generator to produce a texture for the given 3D mesh
model. The architecture is shown in Figure 4. An interesting aspect of this de-
sign is that the generator can take the unsupervised latent part representation
as node features and combine it with the input noise vector to generate a texture
for the particular 3D mesh. Node features is a 2D tensor of shape v, f where v is
the number of nodes and f is the dimension of the node feature. The noise is a 1D
vector of shape d. We sample a noise vector z ∈ Rd from a multivariate normal
distribution. This d dimensional noise vector is then replicated to have a shape of
v∗d. This allows our model to process 3D mesh models with a different number of
nodes. This noise tensor is then concatenated with the node feature tensor v ∗f .
The concatenated tensor is then input to the generator (e.g. MLP) that, in turn,
generates the textures for the given 3D mesh model. We use TextureFace for
texturing as it enables us to generate higher quality textures than Texture-
Vertex. We represent the faces of the 3D mesh as the nodes in the graph. The
x, y, z face position and its normal (nx, ny, nz) form the initial node features. We
use a graph convolutional neural network (GCN) [23] to learn the latent part
representation as shown in Figure 4. The generator generates a tensor of shape
F ∗ 3, where F is the number of faces (nodes in the graph), and 3 represents the
three r, g, b colors (texture) per face. We use TextureFace for texturing the 3D
mesh. We explored the following two variants of this Model-Graph that differ
only in the design of the generator. Model-GCN uses GCN [23] as a generator
to generate the texture from a combination of latent part representation and
noise vector. And Model-GGAN uses a multi-layer perceptron with residual
connections [13] as a generator. Model-GGAN is our best-performing model.

4 Experiments

We use the ShapeNet [3] car data set for all of our experiments. This data set
consists of a total of 3,514 3D mesh models of cars with textures. We use 3314
mesh models for training, 100 mesh models for validation, and 100 mesh models
for testing. The features extracted from intermediate layers of the pre-trained
deep neural networks are known to correspond to the perceptual metrics of
human vision [16, 40]. We found that incorporating this perceptual loss into the
generative adversarial loss improved the qualitative appearance of the generated
textures. Thus our overall loss function is as follows:

Loss(L) = gan loss + λ ∗ perceptual loss (3)

10 Dharma KC, Clayton T. Morrison, and Bradley Walls

We use the validation dataset to select the best value of λ. We use the library
of Zhang et al. [40] to extract features from the intermediate layer of pre-trained
AlexNet architecture [24] that are in turn used to calculate the perceptual loss.
All of the models are trained with the above loss function. At each minibatch
iteration, we render a 3D mesh with real and synthetic textures from eight dif-
ferent viewpoints. The loss is calculated from these real and synthetic (“fake”)
images. We use a learning rate of 0.0001 for both the generator and the discrim-
inator. We use a hidden size of 64 for both GNN and the MLP generator. Here,
hidden size is the dimension that’s being used to project the node features of the
graph. We render images of size 512× 512 from the differentiable renderer. We
use the Adam optimizer [22] for training all of our models. We used d = 16 for
the random noise vector. For Model-Graph variants, we use 3 graph convo-
lution layers [23] for learning the latent part representation. Each convolutional
layer has a hidden size of 64. The noise vector is concatenated to the output
of the last graph convolutional layer. We use TextureFace to texture the 3D
mesh model. For the Model-GCN, we use a 7-layered GCN [23] as a generator
with a hidden size of 64. The generator does not use residual connections [13].
For the Model-GGAN architecture, we use a 7-layered MLP as a generator
with a hidden size of 64. The generator uses residual connections [13].

5 Results

The Model-Baseline and Model-UV were only able to learn to generate tex-
tures for a single mesh model and were not able to generalize across unseen 3D
mesh models. The Model-Deformable was able to generate a texture for un-
seen 3D mesh models, but the quality of approximated mesh and texture was not
good, as demonstrated in contrast between Figures 5 and 6. Moreover, the ap-
proximation of the 3D mesh model created extra computational overhead. Thus
we didn’t move forward with this approach for the full ShapeNet car experi-
ment. The graph-based models based on the Model-Graph architecture were

Fig. 5: Original mesh with original
texture

Fig. 6: approximate mesh with learned
texture using Model-Deformable

able to learn textures across different 3D mesh models. This general approach
has multiple advantages compared to existing solutions that generate textures
in 2D. First, the model is able to learn about the parts of the given 3D mesh
model in an unsupervised way. This removes the effort and cost required for
manual labeling of the 3D part segmentation. Second, the approach generates
textures in 3D, so that a texture can be applied once and the 3D model can be
viewed from multiple directions and under multiple light conditions without a

Graph Generative Adversarial Network 11

need to generate texture each time we change these parameters. We evaluated
these models by applying the synthetic texture generated from respective mod-
els and rendering them from multiple viewpoints. We then calculated the FID
score based on these projected images and actual original images rendered from
the same views with the original texture. The Model-Baseline, Model-UV,
and Model-Deformable architectures were not suitable for learning textures
across different 3D mesh models, so we did not compute FID scores for these. Ta-
ble 1 shows the average FID values (lower is better) for different models per 3D
mesh model. For further comparison, we also experimented with a simple variant
of the NeRF [28] model as a generator (Model-nerf), but it did not produce
results as good as the graph neural network approaches. The low quality of re-
sults is reasonable because it doesn’t have a way for learning part information
like our Model-Graph.

Table 1: FID scores on the test dataset
Model FID

Model-GCN 0.75

Model-nerf 0.93

Model-GGAN 0.70

Figure 7 shows a set of selected examples of rendered images generated from
different models with a fixed viewpoint. Textures are applied to the 3D mesh
models and rendered as projected 2D images for visualization. The first column
shows the images rendered with original textures, the second column shows the
images rendered with textures generated from the Model-GGAN model, and
the third column shows the images rendered with textures generated from the
Model-GCN. In Figure 7, we observe that the Model-GCN lacks diversity
in the generated images: it produces images with the same texture for every
random noise input. We hypothesize that this is due to the over-smoothing
problem observed in GNNs [2, 4] as the model uses GNN-only layers for the
generator. Finally, the model Model-GGAN (GGAN) produces images (second
column, Figure 7) that respect the object boundaries, are visually better than
other models and are diverse (the model produces new textures on each run
with different random noise input). Some of the images generated from our final
model Model-GGAN (third row, second column) look even better than the
original image itself (third row, first column).

6 Conclusion

In this work, we have presented and evaluated the graph generative adversarial
network (GGAN), a new architecture that can learn to generate a texture for
a given 3D mesh with high fidelity and that can learn 3D part information in
an unsupervised way. We think GGAN will be useful in various domains to gen-
erate graph-structured representation. However, there are multiple directions

12 Dharma KC, Clayton T. Morrison, and Bradley Walls

(a)

(b)

(c)

(d)

Fig. 7: First column: original images, second column: Model-GGAN, third col-
umn: Model-GCN

for improvement. The first important research direction for future work is to
introduce symmetry constraints on the system such that all components with
symmetrical structures will generate textures that respect symmetries. Second,
we want to increase the diversity of the generated textures. Third, we want to
improve the controlled synthesis of part-specific textures. Another important re-
search direction would be to incorporate encoder-decoder graph architectures [8]
within our framework. Another important direction would be to couple with a
semi-supervised labeling approach. Finally, we would like to explore the use of
flow-based models [36, 37] and diffusion models [6, 38] for the generation of
texture within our current framework.

Bibliography

[1] Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arxiv 2017. arXiv
preprint arXiv:1701.07875 30, 4 (2017)

[2] Cai, C., Wang, Y.: A note on over-smoothing for graph neural networks.
arXiv preprint arXiv:2006.13318 (2020)

[3] Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-
rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

[4] Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and relieving
the over-smoothing problem for graph neural networks from the topological
view. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 34, pp. 3438–3445 (2020)

[5] Chen, W., Ling, H., Gao, J., Smith, E., Lehtinen, J., Jacobson, A., Fidler,
S.: Learning to predict 3d objects with an interpolation-based differentiable
renderer. Advances in Neural Information Processing Systems 32 (2019)

[6] Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems 34, 8780–8794 (2021)

[7] Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object
reconstruction from a single image. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 605–613 (2017)

[8] Gao, H., Ji, S.: Graph u-nets. In: international conference on machine learn-
ing. pp. 2083–2092. PMLR (2019)

[9] Gao, L., Wu, T., Yuan, Y.J., Lin, M.X., Lai, Y.K., Zhang, H.: Tm-net: Deep
generative networks for textured meshes. ACM Transactions on Graphics
(TOG) 40(6), 1–15 (2021)

[10] Goel, S., Kanazawa, A., Malik, J.: Shape and viewpoint without keypoints.
In: European Conference on Computer Vision. pp. 88–104. Springer (2020)

[11] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances
in neural information processing systems 27 (2014)

[12] Hamilton, W.L.: Graph representation learning. Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning 14(3), 1–159

[13] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recog-
nition. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 770–778 (2016)

[14] Henderson, P., Tsiminaki, V., Lampert, C.H.: Leveraging 2d data to learn
textured 3d mesh generation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 7498–7507 (2020)

[15] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans
trained by a two time-scale update rule converge to a local nash equilibrium.
Advances in neural information processing systems 30 (2017)

14 Dharma KC, Clayton T. Morrison, and Bradley Walls

[16] Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style trans-
fer and super-resolution. In: European conference on computer vision. pp.
694–711. Springer (2016)

[17] Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific
mesh reconstruction from image collections. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 371–386 (2018)

[18] Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen,
J., Aila, T.: Alias-free generative adversarial networks. Advances in Neural
Information Processing Systems 34 (2021)

[19] Karras, T., Laine, S., Aila, T.: A style-based generator architecture for gen-
erative adversarial networks. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. pp. 4401–4410 (2019)

[20] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: An-
alyzing and improving the image quality of stylegan. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. pp.
8110–8119 (2020)

[21] Kato, H., Ushiku, Y., Harada, T.: Neural 3d mesh renderer. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp.
3907–3916 (2018)

[22] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014)

[23] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907 (2016)

[24] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with
deep convolutional neural networks. Advances in neural information pro-
cessing systems 25 (2012)

[25] Li, T.M., Aittala, M., Durand, F., Lehtinen, J.: Differentiable monte carlo
ray tracing through edge sampling. ACM Transactions on Graphics (TOG)
37(6), 1–11 (2018)

[26] Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: A differentiable renderer for
image-based 3d reasoning. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 7708–7717 (2019)

[27] Loper, M.M., Black, M.J.: Opendr: An approximate differentiable renderer.
In: European Conference on Computer Vision. pp. 154–169. Springer (2014)

[28] Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi,
R., Ng, R.: Nerf: Representing scenes as neural radiance fields for view syn-
thesis. In: European conference on computer vision. pp. 405–421. Springer
(2020)

[29] Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784 (2014)

[30] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An im-
perative style, high-performance deep learning library. Advances in neural
information processing systems 32 (2019)

[31] Pavllo, D., Kohler, J., Hofmann, T., Lucchi, A.: Learning generative mod-
els of textured 3d meshes from real-world images. In: Proceedings of the

Graph Generative Adversarial Network 15

IEEE/CVF International Conference on Computer Vision. pp. 13879–13889
(2021)

[32] Pavllo, D., Spinks, G., Hofmann, T., Moens, M.F., Lucchi, A.: Convolu-
tional generation of textured 3d meshes. Advances in Neural Information
Processing Systems 33, 870–882 (2020)

[33] Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434 (2015)

[34] Raj, A., Ham, C., Barnes, C., Kim, V., Lu, J., Hays, J.: Learning to generate
textures on 3d meshes. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops. pp. 32–38 (2019)

[35] Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.Y., Johnson, J.,
Gkioxari, G.: Accelerating 3d deep learning with pytorch3d. arXiv preprint
arXiv:2007.08501 (2020)

[36] Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In:
International conference on machine learning. pp. 1530–1538. PMLR (2015)

[37] Weng, L.: Flow-based deep generative models. lilianweng.github.io (2018),
https://lilianweng.github.io/posts/2018-10-13-flow-models/

[38] Weng, L.: What are diffusion models? lilianweng.github.io (2021), https:
//lilianweng.github.io/posts/2021-07-11-diffusion-models/

[39] Xian, W., Sangkloy, P., Agrawal, V., Raj, A., Lu, J., Fang, C., Yu, F., Hays,
J.: Texturegan: Controlling deep image synthesis with texture patches. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 8456–8465 (2018)

[40] Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreason-
able effectiveness of deep features as a perceptual metric. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp.
586–595 (2018)

[41] Zhang, Y., Chen, W., Ling, H., Gao, J., Zhang, Y., Torralba, A., Fidler,
S.: Image gans meet differentiable rendering for inverse graphics and inter-
pretable 3d neural rendering. arXiv preprint arXiv:2010.09125 (2020)

https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

	Texture Generation Using A Graph Generative Adversarial Network And Differentiable Rendering

