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Abstract

Cancer is a complex disease with significant social and eco-
nomic impact. Advancements in high-throughput molecu-
lar assays and the reduced cost for performing high-quality
multi-omics measurements have fuelled insights through
machine learning . Previous studies have shown promise
on using multiple omic layers to predict survival and strat-
ify cancer patients. In this paper, we developed a Super-
vised Autoencoder (SAE) model for survival-based multi-
omic integration which improves upon previous work, and
report a Concrete Supervised Autoencoder model (CSAE),
which uses feature selection to jointly reconstruct the in-
put features as well as predict survival. Our experiments
show that our models outperform or are on par with some
of the most commonly used baselines, while either pro-
viding a better survival separation (SAE) or being more

*This preprint has not undergone peer review (when applicable) or any
post-submission improvements or corrections. The Version of Record of
this contribution was Accepted for publication on The 8th International
Conference on machine Learning, Optimization and Data science - LOD
2022, please refer to that publication for the final version

interpretable (CSAE). We also perform a feature selection
stability analysis on our models and notice that there is a
power-law relationship with features which are commonly
associated with survival. The code for this project is avail-
able at: https://github.com/phcavelar/coxae

1 Introduction

Given the rapid advance of high-throughput molecular as-
says, the reduction in cost for performing such experiments
and the joint efforts by the community in producing high-
quality datasets with multi-omics measurements available,
the integration of these multiple omics layers has become
a major focus for precision medicine [21, 5]. Such inte-
gration involves analysis of clinical data across multiple
omics layers for each patient, providing a holistic view of
underlying mechanisms during development of disease or
patient response to treatment.

Methods for multi-omic data integration can be classi-
fied in sequential, late, and joint integration approaches,
depending on the order of implemented tasks and at what
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point multi-omics data is integrated [27]. In sequential
integration, each omic layer is analysed in sequence, i.e.
one after the other, which was the used by many early
approaches. In late integration methods [23, 26, 29, 28, 6],
each layer is analysed separately and then results are inte-
grated, which helps capture patterns that are reproducible
between different omics, but making the method blind to
cross-modal patterns. Finally, in joint integration methods
[9, 30, 24, 2, 18, 27, 29, 8, 25, 20, 1, 22] all omics layers
are analysed jointly from the start, with these methods
often employing a dimensionality reduction method that
maps all layers into a joint latent space representing all the
layers [7], making it possible to analyse cross-modal pat-
terns that may help identify how multiple layers function
and interact to affect a biological process.

All of the aforementioned approaches can be linked to
particular challenges in the machine learning task. First,
many of the datasets are sparse, often with some omics fea-
tures missing between samples or studies, or even omics
layers being unavailable for some patients. Second, molec-
ular assay data are often highly complex, comprising thou-
sands to tens-of-thousands of different features for each
omics layer. Third, even with reduced cost of profiling,
availability of data may still be prohibitively expensive
and specialised, limiting the number of publicly-available
datasets for analysis. Fourth, although experiments might
be performed using the same assaying technologies and
be collected with the same system in mind, there can be
varying experimental conditions between datasets [16]
and batch effects may be present in the same dataset
[15], which must be taken into account when analysing
data, especially when analysis is attempted across multiple
datasets. Finally, recent advances have allowed profiling
on the level of single cells, which increases dataset size
dramatically, posing challenges to available methodolo-
gies.

In this context there are many end-tasks for which we
might use multi-omic datasets: (Stratification) we might
try to analyse which patients group together and analyse
their clinical information to see what emerging patters are
visible, including whether a patient is considered high or a
low risk, whether a patient expression patterns are distinct
from others, etc; (Classification) or we might even try to
stratify patients into previously known groups, such as
whether a patient is in a previously-defined subtype group,
whether they might respond or not to a certain drug or

treatment, etc; (Regression) And we can also try to infer
directly to which level a patient might react to something,
such as reaction to a treatment or drug, or how long is
a patient is expected to survive given his conditions, etc.
(Biomarker identification) given any of the aforementioned
tasks, we might also try to interpret why are patients strati-
fied or classified in a certain way, or why they will react to
the level predicted by the algorithm, this generally entails
in identifying which biomarkers (that is, which features)
are associated with these responses.

The benefits of integrated datasets include more accurate
patient stratification (e.g. high/low risk), disease classifi-
cation or prediction of disease progression. All of those
may suggest better treatment strategies, resulting in better
patient outcomes. Additionally, the combined information
may also be used for biomarker identification supporting
further research.

In this paper we provide several contributions to the
field of survival-based autoencoder (AE) integration meth-
ods, which can be summarized in the following points:
1. In Subsection 3.4, we develop a simpler Supervised Au-
toencoder (SAE) as an alternative to the HierSAE model
[29] for data integration, a method which provides sta-
ble and efficient survival separation, and use it as an up-
per-bound baseline for performance testing our concrete
supervised-autoencoder. 2. In Subsection 3.5, we propose
the Concrete Supervised-Autoencoder (CSAE), building
up on Concrete Autoencoders [3], a method for supervised
feature selection, which we showcase with the case study
of survival-based feature selection. 3. In Subsection 3.3,
we provide a testing framework more stringent than that
used by previous work with which we compare our re-
sults with a standard PCA pipeline as well as the more
advanced Maui [24] method. 4. With our testing frame-
work, in Section 4, we show that the Concrete Supervised
Autoencoder has achieved performance on par with that of
more complex baselines, while simultaneously being more
interpretable, and also provide, to the best of our knowl-
edge, the first feature importance analysis with multiple
runs on a model of such a family.

2



2 Related Work

2.1 Autoencoders for Multi-Omics

After an initial publication in 2018 showing the use of
Autoencoders (AEs) for dimensionality reduction in multi-
omic datasets [9], there has been a wave of re-application
of this technique in cancer risk separation, prognostication,
and biomarker identification [9, 30, 2, 18, 23]. All of
the applications of these methods share the same pipeline,
and most [9, 30, 2, 23] use the same techniques up to
the AE optimisation, having only minor differences in
the hyperparameters and loss functions. Only [18] has a
major difference in their model, using Adam instead of
SGD as the optimiser. Another publication in this vein
is [23], which does not perform early-integration, instead
opting to project the input for each omics layer separately,
concatenating features from different omics layers after
Cox-PH selection, and using a boosting approach to train
and merge multiple models into a single predictor. One
of the main differences from these methods and ours is
that the AEs are used to perform risk subgroup separation
on the whole dataset, which is then used as ground truth
for another classification model, whereas our pipeline is
entirely cross-validated.

In [24] a method was proposed using a Variational
Autoencoder (VAE), dubbed Maui, to learn reduced-
dimensionality fingerprints of multiple omics layers for
colorectal cancer types, showing that their method both
correctly mapped most samples into the existing subtypes,
but also identified more nuanced subtypes through their
approach, while still keeping a level of interpretability by
relating input features with embedding features through
correlation. The same group expanded their analysis on a
pan-cancer study [27], changing their interpretability ap-
proach to consider the absolute value of the multiplication
of the neural path weights for each input-fingerprint fea-
ture pair. This interpretability is one of the many method-
ological differences that sets these works apart from the
aforementioned AE approaches based on [9]. These VAE-
based works also use the fingerprints to cluster samples
into different risk subgroups and for hazard regression.
The main difference with our proposed framework is the
type of AE used (VAE instead of AE), and that our mod-
els are supervised with a Cox loss and that our Concrete
Supervised Autoencoder uses a different type of encoding

function.

2.2 Supervised Autoencoders

One can also perform Cox regression on neural networks
[13, 10, 12], and this obviously implies that one can add
a hazard-predicting neural network block on an Autoen-
coder’s fingerprints. Independently from our Cox-SAE
model, presented in Subsection 3.4, two other works devel-
oped similar techniques. In [26], they developed the same
principles of performing Cox-PH regression on the finger-
prints generated by the autoencoder. However, the main
difference is that the integration is done on the fingerprint-
level – that is, they perform dimensionality reduction
through the autoencoder as normal, and then either con-
catenate the fingerprints to perform Cox-PH regression
(Figure 4 of their paper) , or they do cross-omics decod-
ing, with the Cox-PH loss being calculated on the average
of both generated fingerprints (Figure 5 of their paper)
. They also limit themselves to 2-omics integration. A
recent paper also improved on this idea by proposing an
autoencoder which tries to reconstruct the concatenation
of the fingerprints generated through the other encoders
[29] , as seen in Figure 1D of their paper, while performing
a 6-omics integration also using clinical data.

2.3 Concrete Autoencoders

Recently, the efficacy of using a concrete selection layer as
the encoder of an autoencoder was shown [3], dubbing this
model the Concrete Autoencoder, and providing tests with
many different feature types, including gene expression
for providing an alternative to the “943 landmark genes”
[17], as well as mice protein expression levels. A concrete
selection layer [19] is an end-to-end differentiable feature
selection method, that uses the reparametrisation trick [14],
to provide a continuous approximation of discrete random
variables, which Balin et al. used in its autoencoder model
with an exponentially decreasing temperature during train-
ing to provide a smooth transition from random feature
selection to discrete feature selection [3].
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3 Methods

3.1 Datasets

We wanted to test our models on open high-quality can-
cer data with multiple omics layers and which had sur-
vival information. The TCGA datasets fit these criteria,
being used as a baseline testing dataset for many devel-
oped methods, including the most relevant related work
[9, 24, 27, 23, 26, 29]. We use the datasets provided by
[29] and described in Table 1, following the same prepro-
cessing steps, however we use our own set of splits for
cross validation, as we perform 10-fold cross validation,
with 10 repeats, as compared to 2 repeats of 5-fold cross
validation in the initial work.

Some points raised in the literature about these datasets
are interesting to be reiterated here: The LUSC and PRAD
datasets were considered to be some of the hardest “(...)
As the default, we use 10 models with 80% of original
training samples to construct all the cancer models, except
for LUSC and PRAD which we use 20 models since they
are more difficult to train. (...)” [23]; The combination of
Clinical factors and Gene Expression is said to perform
better than using multiple omics layers with regards to
performance on simpler models [29].

3.2 Evaluation and Metrics

3.2.1 Concordance Index

The most commonly-used quantitative metric for both Sur-
vival Regression and and Survival Stratification is the
Concordance-Index (C-Index), which can be seen as a
generalisation of the AUC metric for regression, being
similarly interpreted, with a C-Index of 0 representing per-
fect anti-concordance, 1 representing perfect concordance,
and 0.5 being the expected result from random predictions.
The metric is calculated by analysing the number of times
a set of model predictions f (xi)> f (x j) given that yi > y j
as well, while also handling censored data, due to the fact
that if a value y j is censored, it is less certain to say that yi
is in fact greater than y j. That is, given a set of features X
to which a function f is applied to, and the ground-truth
consisting of both the set event occurrences E as well as
the drop-out times Y , we would have the metric defined as:

CI( f (X),Y,E) =
CP( f (X),Y,E)+ TP( f (X),Y,E)

2
AP( f (X),Y,E)

Where CI( f (X),Y,E) if the concordance index,
CP( f (X),Y,E) is the number of correct pairs,
TP( f (X),Y,E) the number of tied pairs, and
AP( f (X),Y,E) the number of admissible pairs. An
admissible pair is one that both events were observed or
where a single event ei was observed and yi ≤ y j. The
number of correct and tied pairs are be taken from the only
from the admissible pairs. To the best of our knowledge,
none of the related work has the entire pipeline validated
as we show here, with most related work normalising the
whole dataset before the pipeline [9, 24, 26, 29]

3.2.2 Qualitative Analysis

We can also perform a qualitative analysis of the models
by analysing how well the expected survival of subgroups
classifies when using the method as an analysis method.
One way to qualitatively assess a model for the Stratifica-
tion task would be to fit Kaplan-Meier (KM) curves for
each subgroup the models stratifies, and then analysing the
behaviour of each subgroup. This has been done in many
of the related works, where they report the KM curves for
all the samples, accompanied of the logrank p values for
the subgroup separation [9, 24, 27, 23].

3.3 Main Testing Pipeline
We followed the common and well-established practice of
cross validation of the whole pipeline, During our prelimi-
nary testing, performing scaling only on training samples
versus on the whole dataset accounted for a drastic per-
formance change. Also, analysing logrank p-values and
concordance indexes on the whole dataset generally means
that the logrank p values will be significant only due to the
fact that the training dataset is generally larger than the test
dataset, skewing the results towards already-seen data. The
testing framework we adopt solves both these issues, and
this testing framework is one of the biggest methodological
differences between our model and some previous work
[9, 30, 2, 18, 23, 24, 27], which either provide external
validation through other cohorts and/or validate piecewise.
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Dataset Samples Clinical GEx CNV Methylation µRNA Mutation RPPA Total Used

BLCA 325 9 20225 24776 22124 740 16317 189 84380 4938
BRCA 765 9 20227 24776 19371 737 15358 190 80668 4936
COAD 284 16 17507 24776 21424 740 17569 189 82221 4945
ESCA 118 17 19076 24776 21941 737 9012 193 75752 4947
HNSC 201 16 20169 24776 21647 735 11752 191 79286 4942
KIRC 309 14 20230 24776 19456 735 9252 189 74652 4938
KIRP 199 5 20178 24776 21921 738 8486 190 76294 4933
LGG 395 15 20209 24776 21564 740 10760 190 78254 4945
LIHC 157 3 20078 24776 21739 742 8719 190 76247 4935
LUAD 338 11 20165 24776 21059 739 16060 189 82999 4939
LUSC 280 20 20232 24776 20659 739 15510 189 82125 4948
OV 161 17 19064 24776 19639 731 8347 189 72763 4937
PAAD 100 26 19932 24776 21586 732 9412 190 76654 4948
SARC 190 45 20206 24776 21724 739 8385 193 76068 4977
SKCM 238 3 20179 24776 21635 741 17731 189 85254 4933
STAD 304 7 16765 24776 21506 743 16870 193 80860 4943
UCEC 392 24 17507 24776 21692 743 19199 189 84130 4956

Table 1: Number of features in each of the used TCGA datasets. The “Used” column indicates how many features we
expect the models to use after the second pipeline step, which involved selecting the top 1000 features for each omics
layer. All datasets were used as preprocessed and made available by [29].

Figure 1: A diagram showing the pipeline used in our testing framework.
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As part of our pipeline we perform 6 steps, shown with
letters A to F in 1: (A) First perform per-omics feature se-
lection by selecting the k most variable features from each
omics layer, as was done in previous work [24, 26, 23, 27];
(B) After that, doing feature scaling by z-scoring the se-
lected features, here being different from most related work
in that we only perform feature scaling with those samples
available during training; (C) Then, perform feature com-
pression (i.e. integration, selection, or linear combination)
through the model in question; (D) After this, performing
Cox-PH univariate feature selection to select those features
that are considered to be relevant for survival, and then;
(E) Performing 2-clustering (with a clustering algorithm
that allows for clustering new inputs) on this integrated
dataset, which can be used for survival subgroup separation
and differential expression analyses; (F) Or performing
hazard prediction, which can be used to rank patients with
regards to survival probability, and is also the endpoint
from which we can calculate C-indexes for the pipeline.

We run all of the experiments on a HPC cluster, creating
a single process for each dataset, using the same consis-
tent seeds across algorithm repetitions to ensure the same
10-fold cross validation splits were used for all models.
For the BRCA and STAD we ran 5 repetitions of 10-fold
cross validation due to limitations in our compute bud-
get, and for all other datasets we used 10 repetitions of
10-fold cross validation. For the BRCA, STAD and KIRP
datasets we ran the experiments with 16000MB of avail-
able RAM memory, and for all other datasets we made
available 8000MB of RAM. All experiments were run with
16 cores available to the program.

All models use: 1: (A) k ≤ 1000 for feature selection
on each omics layer, which gives us the “Used” column
in Table 1; (B) We then proceed to perform feature scal-
ing using the mean and standard deviation available in the
training dataset for each fold; (C) Then, we use as a default
128 target “fingerprint” features for all models, and on tra-
ditional autoencoder-based models we choose 512 neurons
on the hidden layer to give us roughly 10x, and then a
further 5x compression on the input feature size. The Maui
model was trained for 400 epochs (taken as a default from
their codebase) whereas our models were trained for 256
epochs, with the Adam optimiser using 0.01 as a learning
rate and 0.001 as the l2 normalisation weight. All of the
AE models implemented by us used 0.3 dropout rate and a
gaussian noise with zero mean and 0.2 standard deviation

added to input features during training, and we used recti-
fied linear units as a nonlinearity on all intermediate layers.
We used the same temperature settings provided in [3] for
our concrete selection layers, starting with a temperature
of 10 and ending with a temperature of 0.1; (D) Cox-PH
univariate “fingerprint” feature selection is done with a
significance threshold of p < 0.05, falling back on using
all the of the fingerprints if no fingerprint is identified as
significant for survival; (E) 2-clustering was done with
KMeans with 10 initialisations, using the best in terms of
inertia, with a maximum of 300 iterations and a tolerance
of 0.001.; (F) All Cox-Regression was done non-penalised,
unless the model failed to converge, in which case we did
Cox-Regression with 0.1 penalisation. Furthermore, if a
model fails to run on any fold, we drop that value. Since
we perform 10 repetitions of the 10-fold cross validation,
this means that a model has at least some results for each
dataset, but the PCA model failed to produce any results
on two datasets due to convergence problems.

3.4 Cox-Supervised Autoencoder
Many methods available in the literature have used, or
attempted to use, autoencoders to perform dimensionality
reduction and then select survival-relevant features from
the autoencoder fingerprints through Cox-PH regression
[9, 30, 24, 2, 18, 23, 27]. We would like to argue that
the hidden assumption contained within an autoencoder
loss function is insufficient to provide features relevant for
survival, due to the fact that feature combinations that are
good at predicting other features might not necessarily be
good for survival prediction, an argument that has support
with preliminary tests where the non-trained models per-
form just as good as the trained models. To solve these
issues in this section we propose our independently de-
veloped method of a Cox-Supervised Autoencoder (SAE)
that addresses this issue.

To solve the lack of an inductive bias towards survival,
we would like to introduce a Cox-PH model inside the neu-
ral network as a normalising loss, so that the model learns
not only to create codes which are good at reconstructing
the input, but also codes that are indicative of survival.
Since a Cox-PH model is end-to-end differentiable, this
is easily done by simply adding a Cox-PH model on the
generated fingerprints, and performing Cox-PH regres-
sion with regards to the input survival times and observed
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Figure 2: A diagram visualising how a Cox-Supervised
Autoencoder (SAE) model works. We use both the multi-
omics input x to generate the encoding z and the recon-
struction x̂, as well as calculate the log hazards log(h) from
z using another neural module, which is trained using a
Cox-PH loss alongside the time and event informations, t
and e.

events. We can see a schematic overview of such a model
in Figure 2.

In mathematical terms, then, we would have a model
composed of the three neural network blocks shown in Fig-
ure 2: An encoder E, which takes the input x and produces
a set of fingerprints z from which a decoder D produces a
reconstruction of the input x̂, and finally a linear layer C
which uses the same fingerprints z to produce a log-hazard
estimate log(h) for each patient. We then perform gradi-
ent descent on a loss L which is composed not only of
a reconstruction loss LRec(x, x̂) and a normalisation loss
Lnorm(E,D,C) on the weights of E, D, and C, but also the
Cox-PH regression loss LCox(log(h), t,e) using the infor-
mation available about the survival time t and the binary
information of whether the event was censored or not e,
giving us the equation below:

L(x, t,e,E,D,C) =Lrec(x,D(E(x)))+

Lcox(C(E(x)), t,e)+

Lnorm(E,D,C)

(1)

Here we use the Cox-PH loss from [13] as implemented

by the pycox library (https://github.com/havakv/
pycox) version 0.2.3, which, assuming that x, t, and e
are sorted on t, and that we have k examples, is defined as:

Lcox(log(h)), t,e) =
∑1≤i≤k(log(hi))− log(gi)+ γ

∑1≤i≤k ei
,

gi = ∑
1≤ j≤ j

elog(h j)−γ ,

γ = max(log(h))

(2)

For the reconstruction, we chose the Mean Square Error
(MSE) loss, due to its symmetry, as below:

Lrec(x, x̂) =
∑1≤ i≤ k ∑1≤ j ≤ d(xi, j− ˆxi, j)

2

k
(3)

And, finally, we use the L2 norm of the model weights
as our normalisation loss, using the Frobenius norm || · ||F
and a hyperparameter λ to control the how much of the
norm is applied:

Lnorm(E,D,C) = λ ∑
w∈E,D,C

||w||2F (4)

Note that in our definitions here, the autoencoder re-
ceives as input all of the omics layers at the same time,
much like many models in the literature [9, 24, 27], and
we argue that this provides integration, since all of the
fingerprints may be composed of combinations of features
from different omics levels. This is highly different from
models where each omics layer is used as an input to a
separate autoencoder, and then concatenated [23, 26]; or
otherwise combined through pooling [29]; or even through
an hierarchical autoencoder [29], which only then would
de-facto integrate the omics layers through the separately-
compressed layer fingerprints through a much more com-
plex procedure.

3.5 Concrete Supervised Autoencoder
Another possible point of concern for many of the multi-
omics analysis pipelines is that using neural-network-
based models can lead to less interpretable results. To
address this, we use the Concrete Autoencoder proposed by
[3] to build a Concrete Supervised Autoencoder (CSAE),

7
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using the same concrete selection layer and reparametriza-
tion tricks as described previously [14, 19, 3]. We can
see a diagramatic representation of a concrete selection
layer and the gumbel distribution, used in its training, in
Figure 3.

Thus, our encoder follows the same exponential decay
rate, and model reparametrisation described previously [3],
to give us a sampling in d dimensions with parameters
α ∈Rd ,αi > 0∀αi, regulated by a temperature T (b), and
with d values g ∈Rd sampled from a Gumbel distribution,
giving us a probability distribution m ∈Rd :

g j =
elog(α j+g j)/T (b)

∑
d
k=1 elog(αk+gk)/T (b)

(5)

During training, each element outputted by a concrete
selection “neuron” i, would be a linear combination of the
input x ∈Rd :

E(x)i = xi ∗g j (6)

But as the temperature T (b)→ 0, we have that each
node will select only a single input, at which point we can
switch from the linear combination to simple indexing:

E(x)i = argmax
j

α j (7)

This allows us to smoothly transition for feature combi-
nation and also to reduce evaluation-time memory require-
ments, since the indexing takes O(1) space per neuron
instead of O(d) of the linear approximation. To perform
such smooth transition, we use the previously defined ex-
ponential temperature decay schedule, with T0 being the
initial temperature, TB the minimum temperature, b being
the current epoch, and B the maximum number of epochs:

T (b) = T0(TB/T0)
b/B (8)

Having our encoder thus defined, we simply apply the
same optimisation as in Equation 1, replacing the tradi-
tional pyramidal MLP used as the encoder for the Au-
toencoder with our concrete selection layer, and perform-
ing both input reconstruction with the decoder reverse-
pyramidal decoder D as well as hazard prediction through
the hazard prediction network C.

3.6 Baselines

3.6.1 Maui

For this baseline [24, 27] we used the code made avail-
able by the original authors on github (https://github.
com/BIMSBbioinfo/maui), and incorporated it into our
testing pipeline as an integration method. We also adapted
their cox-PH selection code to save the indexes which
are selected as relevant for survival. We used our own
Cox-regressor class on the significant factors, since it is
equivalent to ones by Maui. The original Maui paper also
used KMeans as a clusterer, but we limit our analyses to 2
subgroups, since this is a harder test for the model. Other
small changes include changing their code to work with
a different, more recent, version of Keras and Tensorflow.
Note that, although we are using the Maui original code
or adaptations of their code (where the original code does
not store a model for later use), our pipeline is drastically
different to Maui and more stringent, which might cause
different performance to be reported here.

3.6.2 Autoencoder + Cox-PH

Our AE baseline could be seen as a rough equivalent of
[18], and is the base on which our Supervised Autoencoder
model was built. The model we’ve first attested following
a similar approach [9] uses an SGD optimiser instead of
an Adam optimiser, and does so for a very small amount
of training epochs, which in our initial testing proved to be
equivalent to not training the algorithm at all, and might be
seen as a form of random projections, like in [4]. Another
approach used both omics-specific autoencoders (thus not
performing cross-omics combinations in the fingerprints)
and makes heavy use of boosting to improve the models
joint performance, as well as still uses the SGD optimiser
[23]. Using code available on the model’s github page
(https://github.com/lanagarmire/DeepProg), we
attested that the model provided similar outputs when
not trained and when trained with the default number of
epochs, most likely due to the use of SGD as an optimiser,
which again makes the model be interpretable as a form of
random projection [4]. These models were not included in
our final comparison due to the abovementioned method-
ological differences.
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Figure 3: A diagramatic Concrete Selection Layer’s neuron (a), where blue elements represent continuous stochastic
nodes, yellow elements are continuous and deterministic, and brown elements show the discrete selection path, generally
followed after training. The values of Gi are sampled from the Gumbel distribution, whose PDF we can see on (b).

3.6.3 PCA + Cox-PH

Our main baseline is the PCA baseline, which has been
thoroughly used as a baseline in other papers, and was
also used by the paper which first described the (unsu-
pervised) Concrete Autoencoders [3] as an upper-bound
for the reconstruction loss of their CAE model. For the
PCA baseline the first d principal components are used as
a drop-in equivalent for the d fingerprint nodes in any of
the autoencoder-based models.

4 Results

4.1 Concordance Index Analysis

Using our stringent testing pipeline we evaluated all
of the aforementioned models’ capabilities to predict
same-cancer out-of-sample instances through the cross-
validation scheme. This is due to the fact that normali-
sation was calibrated using only training data, which is
different, for example, to the methodology previously used
for MAUI [24], where normalisation is done on all samples
before validation, and the impact for this can be clearly
seen on Figure 4, where we see that the concordance in-
dexes reported in the original paper are higher than the
ones we’ve encountered with this difference, something
which was also noticed during our preliminary studies.

Also in Figure 4, we can see that our models either
perform better than a PCA-based model or are not signifi-
cantly different from the traditional PCA pipeline. In fact,
Maui was the model which had the worst average rank,
with 4.88 average rank, whereas the CSAE ranked equal
to the PCA model at 2.94, only slightly worse than an AE
model without Cox supervision with 2.53 average rank,
with the cox-supervised autoencoder having 1.82 average
rank.

With regards to overall Concordance-index, the previous
ordering remains very much the same, with the SAE being
the best overall with an average test score of 0.632 (all
p-values statistically significant < 10−4 through an inde-
pendent two-sided t-test), with the AE model having an
average score of 0.610 (statistically significant difference
p < 0.007 to the Maui and PCA models), the CSAE with
an average score of 0.603 (statistically significant differ-
ence p < 10−46 to the Maui model), and the Maui model
having an average test C-index of 0.526.

These results tell us two things: the first one being that
joint supervision on both the cox and reconstruction objec-
tives improves out-of-sample performance in autoencoder
based models. This was already somewhat attested previ-
ously [26, 29], but none of these studies performed joint
integration directly, using one autoencoder per omics layer
[26], which can be argued to not consist of integration at
all, since the omics layers do not cross-contribute to the
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generated fingerprints, or having the generated fingerprints
be de-factor integrated only through a two-step hierarchical
step [29]. Here we attest that models that do perform this
direct multi-omics integration, such as [9, 30, 2, 18, 24, 27]
could greatly benefit from Cox Supervision as a joint opti-
misation loss.

4.2 SKCM Analysis
We can see that the Cox-Supervised Autoencoder finger-
prints for the SKCM dataset provide a very clear separation
in terms of survival outcomes. In Figure 5a, we see the
2-clustering results on the survival-relevant fingerprints
for this model, which clearly separates a group of high-
risk patients and a group of low-risk patients, despite it
being 3rd place in terms of average C-index (only statisti-
cally significantly worse to PCA p = 0.02333) provided a
better separation on the Kaplain-Meier than what was pre-
viously reported with whole-dataset Kaplan-Meier plots
in previous works (e.g., [23]). The Concrete-SAE model,
which was 4th place (but also only statistically signifi-
cantly worse than PCA, p = 0.001685), still manages an
adequate survival stratification despite its “fingerprints”
consisting of the original features, showing that it can still
provide a good survival separation only on the basis of
highly-interpretable feature selection (Figure 5b).

With regards to layer selections, we ran our models
32 times each and analysed the most important feature
for each of their fingerprint features. In the case of the
SAE model, possibly due to the fact that each fingerprint
consists of a combination of combination of features, one
feature consistently outranked the others and thus was used
as the most important feature with regards to absolute neu-
ral path weight [27]. The Concrete SAE model, however,
since each fingerprint feature maps directly to an input fea-
ture, had a richer feature set selection, whose distributions
can be seen in Figure 6 and show a varied selection from
multiple omics layers as well as a strong preference for a
single Clinical factor which is very relevant for survival.

5 Discussion
In this paper we proposed two different models for
Multi-Omics analysis: Our independently developed Cox-
Supervised Autoencoder model, which is conceptually

simpler than previously described models which also at-
tempt at survival-based multi-omics analysis [26, 29],
proved to be very efficient, while providing true integra-
tion with regards to the sense adopted in previous work
[9, 30, 2, 18, 24, 27]; our Concrete Cox-Supervised Au-
toencoder model, which performs Multi-Omics feature
selection, instead, also proved to be a strong alternative
for cases where interpretability is more favourable than ex-
pressive power, being more interpretable than, while being
as powerful as, the PCA baseline, and not straying too far
from its theoretical maximal baseline, our Cox-Supervised
Autoencoder model.

Our proposed models, however, are not a one-size-
fits-all solution to all survival-based multi-omics integra-
tion/feature selection challenges. Although one of our
models ranked at least first or second with regards to sur-
vival separation on all but one dataset, the Concrete Su-
pervised Autoencoder model is not expressive enough to
capture cross-omics relationships due to its simple feature
selection method, and our Supervised Autoencoder model
might still be less expressive than its more complicated
counterpart, the Hierarchical Supervised Autoencoder [29],
a comparison which we left for future work.

We believe that our Cox-Supervised Autoencoder model
presented here provides a clear path forward, with a simple
method for survival-based multi-omics integration, which
can be further enriched with multitasking in its supervision,
possibly also integrating drug responses, which can then
lead to possible applications in drug discovery. Our Con-
crete Cox-Supervised Autoencoder model also makes use
of recent advances [19, 3] to provide an end-to-end differ-
entiable feature selection, whose ramifications can range
from finding specific sets of omics features that map to
tasks other than survival, allowing us to leverage the power
of differentiable programming techniques to discover new
relationships in molecular assay datasets.
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