Skip to main content

Dynamic Feature Aggregation for Efficient Video Object Detection

  • Conference paper
  • First Online:
Book cover Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13842))

Included in the following conference series:

Abstract

Video object detection is a fundamental yet challenging task in computer vision. One practical solution is to take advantage of temporal information from the video and apply feature aggregation to enhance the object features in each frame. Though effective, those existing methods always suffer from low inference speeds because they use a fixed number of frames for feature aggregation regardless of the input frame. Therefore, this paper aims to improve the inference speed of the current feature aggregation-based video object detectors while maintaining their performance. To achieve this goal, we propose a vanilla dynamic aggregation module that adaptively selects the frames for feature enhancement. Then, we extend the vanilla dynamic aggregation module to a more effective and reconfigurable deformable version. Finally, we introduce inplace distillation loss to improve the representations of objects aggregated with fewer frames. Extensive experimental results validate the effectiveness and efficiency of our proposed methods: On the ImageNet VID benchmark, integrated with our proposed methods, FGFA and SELSA can improve the inference speed by \(31\%\) and \(76\%\) respectively while getting comparable performance on accuracy. Codes are available at https://github.com/YimingCuiCuiCui/DFA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For better analysis, we use the same way as FGFA [44] to categorize objects in every single frame based on their motion speeds.

  2. 2.

    There are around \(2\%\) mAP fluctuations in performance, and we take the mean after running 5 experiments.

References

  1. Cai, Z., Vasconcelos, N.: Cascade R-CNN: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2019). https://doi.org/10.1109/tpami.2019.2956516

  2. Chen, K., et al.: Optimizing video object detection via a scale-time lattice. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7814–7823 (2018)

    Google Scholar 

  3. Chen, Y., Cao, Y., Hu, H., Wang, L.: Memory enhanced global-local aggregation for video object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10337–10346 (2020)

    Google Scholar 

  4. MMT Contributors: MMTracking: OpenMMLab video perception toolbox and benchmark (2020). https://github.com/open-mmlab/mmtracking

  5. Cui, Y., Yan, L., Cao, Z., Liu, D.: TF-blender: temporal feature blender for video object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8138–8147 (2021)

    Google Scholar 

  6. Cui, Y., Yang, L., Liu, D.: Dynamic proposals for efficient object detection. arXiv preprint arXiv:2207.05252 (2022)

  7. Deng, J., Pan, Y., Yao, T., Zhou, W., Li, H., Mei, T.: Relation distillation networks for video object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7023–7032 (2019)

    Google Scholar 

  8. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–6578 (2019)

    Google Scholar 

  9. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  10. Gong, T., et al.: Temporal ROI align for video object recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1442–1450 (2021)

    Google Scholar 

  11. Han, L., Wang, P., Yin, Z., Wang, F., Li, H.: Exploiting better feature aggregation for video object detection. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1469–1477 (2020)

    Google Scholar 

  12. Han, L., Wang, P., Yin, Z., Wang, F., Li, H.: Class-aware feature aggregation network for video object detection. IEEE Trans. Circ. Syst. Video Technol. 32(12), 8165–8178 (2021)

    Article  Google Scholar 

  13. Han, W., et al.: Seq-NMS for video object detection. arXiv preprint arXiv:1602.08465 (2016)

  14. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. He, L., et al.: End-to-end video object detection with spatial-temporal transformers. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1507–1516 (2021)

    Google Scholar 

  17. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  18. Jiang, Z., Gao, P., Guo, C., Zhang, Q., Xiang, S., Pan, C.: Video object detection with locally-weighted deformable neighbors. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8529–8536 (2019)

    Google Scholar 

  19. Jiang, Z., et al.: Learning where to focus for efficient video object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 18–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_2

    Chapter  Google Scholar 

  20. Kang, K., et al.: T-CNN: tubelets with convolutional neural networks for object detection from videos. IEEE Trans. Circuits Syst. Video Technol. 28(10), 2896–2907 (2017)

    Article  Google Scholar 

  21. Kang, K., Ouyang, W., Li, H., Wang, X.: Object detection from video tubelets with convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016). https://doi.org/10.1109/cvpr.2016.95

  22. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45

    Chapter  Google Scholar 

  23. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  24. Liu, C., et al.: Progressive neural architecture search. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 19–34 (2018)

    Google Scholar 

  25. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  26. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  27. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  28. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  29. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  30. Shvets, M., Liu, W., Berg, A.C.: Leveraging long-range temporal relationships between proposals for video object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9756–9764 (2019)

    Google Scholar 

  31. Sun, P., et al.: Sparse R-CNN: end-to-end object detection with learnable proposals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14454–14463 (2021)

    Google Scholar 

  32. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  33. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  34. Wang, S., Lu, H., Deng, Z.: Fast object detection in compressed video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7104–7113 (2019)

    Google Scholar 

  35. Wang, S., Zhou, Y., Yan, J., Deng, Z.: Fully motion-aware network for video object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 542–557 (2018)

    Google Scholar 

  36. Wang, X., Huang, Z., Liao, B., Huang, L., Gong, Y., Huang, C.: Real-time and accurate object detection in compressed video by long short-term feature aggregation. Comput. Vis. Image Underst. 206, 103188 (2021)

    Article  Google Scholar 

  37. Wu, B., et al.: FBNet: hardware-aware efficient convnet design via differentiable neural architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10734–10742 (2019)

    Google Scholar 

  38. Wu, H., Chen, Y., Wang, N., Zhang, Z.: Sequence level semantics aggregation for video object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9217–9225 (2019)

    Google Scholar 

  39. Xu, Z., Hrustic, E., Vivet, D.: Centernet heatmap propagation for real-time video object detection. In: ECCV (2020)

    Google Scholar 

  40. Yao, C.-H., Fang, C., Shen, X., Wan, Y., Yang, M.-H.: Video object detection via object-level temporal aggregation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 160–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_10

    Chapter  Google Scholar 

  41. Yu, J., Huang, T.: Autoslim: towards one-shot architecture search for channel numbers (2019)

    Google Scholar 

  42. Yu, J., Huang, T.: Universally slimmable networks and improved training techniques (2019)

    Google Scholar 

  43. Yu, J., Yang, L., Xu, N., Yang, J., Huang, T.: Slimmable neural networks (2018)

    Google Scholar 

  44. Zhu, X., Wang, Y., Dai, J., Yuan, L., Wei, Y.: Flow-guided feature aggregation for video object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 408–417 (2017)

    Google Scholar 

  45. Zhu, X., Xiong, Y., Dai, J., Yuan, L., Wei, Y.: Deep feature flow for video recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2349–2358 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, Y. (2023). Dynamic Feature Aggregation for Efficient Video Object Detection. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13842. Springer, Cham. https://doi.org/10.1007/978-3-031-26284-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26284-5_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26283-8

  • Online ISBN: 978-3-031-26284-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics