Skip to main content

Rethinking Low-Level Features for Interest Point Detection and Description

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13842))

Abstract

Although great efforts have been made for interest point detection and description, the current learning-based methods that use high-level features from the higher layers of Convolutional Neural Networks (CNN) do not completely outperform the conventional methods. On the one hand, interest points are semantically ill-defined and high-level features that emphasize semantic information are not adequate to describe interest points; On the other hand, the existing methods using low-level information usually perform detection on multi-level feature maps, which is time consuming for real time applications. To address these problems, we propose a Low-level descriptor-Aware Network (LANet) for interest point detection and description in self-supervised learning. Specifically, the proposed LANet exploits the low-level features for interest point description while using high-level features for interest point detection. Experimental results demonstrate that LANet achieves state-of-the-art performance on the homography estimation benchmark. Notably, the proposed LANet is a front-end feature learning framework that can be deployed in downstream tasks that require interest points with high-quality descriptors. (Code is available on https://github.com/wangch-g/lanet.).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balntas, V., Lenc, K., Vedaldi, A., Mikolajczyk, K.: HPatches: a benchmark and evaluation of handcrafted and learned local descriptors. In: CVPR (2017)

    Google Scholar 

  2. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  3. Bhowmik, A., Gumhold, S., Rother, C., Brachmann, E.: Reinforced feature points: optimizing feature detection and description for a high-level task. In: CVPR (2020)

    Google Scholar 

  4. Bian, J., et al.: GMS: grid-based motion statistics for fast, ultra-robust feature correspondence. Int. J. Comput. Vis. 128(6), 1580–1593 (2020)

    Article  MathSciNet  Google Scholar 

  5. Bian, J., Lin, W., Matsushita, Y., Yeung, S., Nguyen, T., Cheng, M.: GMS: grid-based motion statistics for fast, ultra-robust feature correspondence. In: CVPR (2017)

    Google Scholar 

  6. Christiansen, P.H., Kragh, M.F., Brodskiy, Y., Karstoft, H.: Unsuperpoint: end-to-end unsupervised interest point detector and descriptor. arXiv: 1907.04011 (2019)

  7. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: CVPR Workshops (2018)

    Google Scholar 

  8. Dusmanu, M., et al.: D2-Net: a trainable CNN for joint description and detection of local features. In: CVPR (2019)

    Google Scholar 

  9. Ebel, P., Trulls, E., Yi, K.M., Fua, P., Mishchuk, A.: Beyond cartesian representations for local descriptors. In: ICCV (2019)

    Google Scholar 

  10. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  11. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  12. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: NeurIPS (2015)

    Google Scholar 

  13. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: CVPR (2004)

    Google Scholar 

  14. Leutenegger, S., Chli, M., Siegwart, R.: BRISK: binary robust invariant scalable keypoints. In: ICCV (2011)

    Google Scholar 

  15. Li, X., et al.: Semantic flow for fast and accurate scene parsing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 775–793. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_45

    Chapter  Google Scholar 

  16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  18. Luo, Z., et al.: ContextDesc: local descriptor augmentation with cross-modality context. In: CVPR (2019)

    Google Scholar 

  19. Luo, Z., et al.: ASLFeat: learning local features of accurate shape and localization. In: CVPR (2020)

    Google Scholar 

  20. Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  21. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  22. Ono, Y., Trulls, E., Fua, P., Yi, K.M.: LF-Net: learning local features from images. In: NeurIPS (2018)

    Google Scholar 

  23. Pittaluga, F., Koppal, S.J., Kang, S.B., Sinha, S.N.: Revealing scenes by inverting structure from motion reconstructions. In: CVPR (2019)

    Google Scholar 

  24. Revaud, J., de Souza, C.R., Humenberger, M., Weinzaepfel, P.: R2D2: reliable and repeatable detector and descriptor. In: NeurIPS (2019)

    Google Scholar 

  25. Rocco, I., Cimpoi, M., Arandjelović, R., Torii, A., Pajdla, T., Sivic, J.: Neighbourhood consensus networks. In: NeurIPS (2018)

    Google Scholar 

  26. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: ORB: an efficient alternative to SIFT or SURF. In: ICCV (2011)

    Google Scholar 

  27. Sarlin, P., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: CVPR (2020)

    Google Scholar 

  28. Sarlin, P., et al.: Back to the feature: Learning robust camera localization from pixels to pose. In: CVPR (2021)

    Google Scholar 

  29. Schönberger, J.L., Frahm, J.: Structure-from-motion revisited. In: CVPR (2016)

    Google Scholar 

  30. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR (2015)

    Google Scholar 

  31. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR (2016)

    Google Scholar 

  32. Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: ICCV (2015)

    Google Scholar 

  33. Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: LoFTR: detector-free local feature matching with transformers. In: CVPR (2021)

    Google Scholar 

  34. Sun, Y., et al.: Perceive where to focus: Learning visibility-aware part-level features for partial person re-identification. In: CVPR (2019)

    Google Scholar 

  35. Tang, J., et al.: Self-supervised 3d keypoint learning for ego-motion estimation. In: CoRL (2020)

    Google Scholar 

  36. Tang, J., Folkesson, J., Jensfelt, P.: Geometric correspondence network for camera motion estimation. IEEE Rob. Autom. Lett. 3(2), 1010–1017 (2018)

    Article  Google Scholar 

  37. Tang, J., Kim, H., Guizilini, V., Pillai, S., Ambrus, R.: Neural outlier rejection for self-supervised keypoint learning. In: ICLR (2020)

    Google Scholar 

  38. Tang, S., Tang, C., Huang, R., Zhu, S., Tan, P.: Learning camera localization via dense scene matching. In: CVPR (2021)

    Google Scholar 

  39. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  40. Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: Learned Invariant Feature Transform. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_28

    Chapter  Google Scholar 

  41. Yi, K.M., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., Fua, P.: Learning to find good correspondences. In: CVPR (2018)

    Google Scholar 

  42. Zhao, C., Cao, Z., Li, C., Li, X., Yang, J.: NM-Net: mining reliable neighbors for robust feature correspondences. In: CVPR (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R &D Program of China (2018AAA0102801 and 2018AAA0102803), and in part of the National Natural Science Foundation of China (61772424, 61702418, and 61602383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanwen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Zhang, G., Cheng, Z., Zhou, W. (2023). Rethinking Low-Level Features for Interest Point Detection and Description. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13842. Springer, Cham. https://doi.org/10.1007/978-3-031-26284-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26284-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26283-8

  • Online ISBN: 978-3-031-26284-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics