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Abstract. Counterfactual explanations have shown promising results
as a post-hoc framework to make image classifiers more explainable.
In this paper, we propose DiME, a method allowing the generation of
counterfactual images using the recent diffusion models. By leveraging
the guided generative diffusion process, our proposed methodology shows
how to use the gradients of the target classifier to generate counterfactual
explanations of input instances. Further, we analyze current approaches
to evaluate spurious correlations and extend the evaluation measure-
ments by proposing a new metric: Correlation Difference. Our experi-
mental validations show that the proposed algorithm surpasses previous
State-of-the-Art results on 5 out of 6 metrics on CelebA.
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1 Introduction

Convolutional neural networks (CNNs) reached performances unimaginable a
few decades ago, thanks to the adoption of very large and deep models (e.g.
with hundreds of layers and nearly billions of trainable parameters). Yet, it is
difficult to explain their decisions because they are highly non-linear and over-
parametrized. Moreover, for real-life applications, if a model exploits spurious
correlations of data to forecast a prediction, the end-user will doubt the validity
of the decision. Particularly, in high-stake scenarios like medicine or critical sys-
tems, ML must guarantee the usage of correct features to compute a prediction
and prevent counterfeit associations. For this reason, the Explainable Artificial
Intelligence (XAI) research field has been growing in recent years to progress
towards understanding the decision-making mechanisms in black-box models.

In this paper, we focus on post-hoc explanation methods. Notably, we concen-
trate on the growing branch of Counterfactual Explanations (CE) [62]. CEs aim
to create minimal but meaningful perturbations of an input sample to change the
original decision given by a black-box model. Although the objective between
CE and adversarial examples share some similarities [44], the CEs’ perturba-
tions must be understandable. In contrast, adversarial examples [37] contain
high-frequency noise indistinguishable for the human eye. On overall, CEs target
three goals: (i) create proximal images with sparse modifications, i.e. instances
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with the smallest perturbation, (ii) the explanations must be realistic and un-
derstandable by a human, and (iii) the counterfactual generation method must
create diverse instances. In general, counterfactual explanations seek to reveal
the learned correlations related to the model’s decisions.

Multiple works on CE use generative models to create tangible changes in the
image [28, 48, 51]. Further, these architectures recognize the factors to generate
images near the image-manifold [4]. Given the recent advances within image
synthesis community, we propose DiME: Diffusion Models for counterfactual
Explanations. DiME harnesses the denoising diffusion probabilistic models [19]
to produce CEs. For simplicity, we will refer to these models as diffusion models
or DDPMs. To the best of our knowledge, we are the first to exploit these new
synthesis methods in the context of CE.

Diffusion models offer several advantages compared to alternate generative
models, such as GANs. First of all, DDPMs have several latent spaces; each one
controls coarse and fine-grained details. We take advantage of low-level noise
latent spaces to generate semantically-meaningfully changes in the input image.
These spaces only have been recently studied by [38] for inpainting. Secondly,
due to their probabilistic nature, they produce a diverse set of images. Stochas-
ticity is ideal for CEs because multiple explanations may explain a classifier’s
error modes. Third, Nichol and Dhariwal [42] results suggest that DDPMs cover
a broader range of the target image distribution. Indeed, they noticed that for
similar FID, the recall is much higher on the improved precision-recall met-
rics [32]. Finally, DDPMs’ training is more stable than the State-of-the-Art syn-
thesis models, notably GANs. Due to their relatively new development, DDPMs
are under-studied, and multiple aspects are yet to be deciphered.

We contribute a small step into the XAI community by studying the low-level
noised latent spaces of DDPMs in the context of counterfactual explanations.
We summarize our contributions as follows:

– DiME uses the recent diffusion models to generate counterfactual examples.
Unlike other generative models, our CE algorithm does not require training
the diffusion model in a conditioned way or retraining it using gradients, i.e.
we rely on a single trained unconditional DDPM to achieve our objective.

– We derive a new way to leverage an existing (target) classifier to guide the
generation process instead of ones trained on noisy instances.

– We set a new State-of-the-Art result on CelebA, surpassing the previous
works on counterfactual explanations on the FID, FVA, and MNAC metrics
for the Smile attribute and the FID and MNAC for the Young feature.

– We show that the MNAC provides a false sense of evaluating counterfactuals
correctly. So we introduce a new metric, dubbed Correlation Difference, to
evaluate subtle spurious correlations on a CE setting.

2 Related Work

Our work contributes to the field of XAI, within which two families can be distin-
guished: interpretable-by-design and post-hoc approaches. The former includes,
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at the design stage, human interpretable mechanisms [2, 3, 6, 9, 22, 40, 69]. The
latter aims at understanding the behavior of existing ML models without modi-
fying their internal structure. Our method belongs within this second family. The
two have different objectives and advantages; one benefit of post-hoc methods
is that they rely on existing models that are known to have good performance,
whereas XAI by design often leads to a performance trade-off.

Post-hoc methods: In the field of post-hoc methods, there are several ex-
plored directions. Model Distillation strategies [13, 58] approach explainability
through fitting an interpretable model on the black-box models’ predictions. In
a different vein, some methods generate explanation in textual form [17,43,66].
When it comes to explaining visual information, feature importance is arguably
the most common approach, often implemented in the form of saliency maps
computed either using the gradients within the network [8, 27, 33, 53, 63, 72] or
using the perturbations on the image [45, 46, 61, 68]. Concept attribution meth-
ods seek the most recurrent traits that describe a particular class or instance.
Intuitively, concept attribution algorithms use [29] or search [13, 14, 67, 73] for
human-interpretable notions such as textures or shapes.

Counterfactual Explanations (CEs): CEs is a branch of post-hoc ex-
planations. They are relevant to legally justify decisions made automatically by
algorithms [62]. In a nutshell, a CE is the smallest meaningful change to an
input sample to obtain a desirable outcome of the algorithm. Some recent meth-
ods [15, 64] exploit the query image’s regions and a different classified picture
to interchange semantic appearances, creating counterfactual examples. Other
works [52, 62] leverage the input image’s gradients with respect to the target
label to create meaningful perturbations. Conversely, [1] find patterns via pro-
totypes that the image must contain to alter its prediction. Similarly, [36, 47]
follow a prototype-based algorithm to generate the explanations. Even Deep Im-
age Priors [59] and Invertible CNNs [23] have shown the capacity to produce
counterfactual examples. Furthermore, theoretical analyses [25] found similari-
ties between counterfactual explanations and adversarial attacks.

Due to the nature of the problem, the generation technique used is the key
element to produce data near the image manifold. For instance, [12] optimizes the
residual of the image directly using an autoencoder as a regularizer. Other works
propose to use generative networks to create the CEs, either unconditional [41,48,
54,71] or conditional [34,55,60]. In this paper, we adopt more recent generation
approaches, namely diffusion models; an attempt never considered in the past
for counterfactual generation.

Diffusion Models: Diffusion models have recently gained popularity in the
image generation research field [19, 56]. For instance, DDPMs approached in-
painting [49], conditional and unconditional image synthesis [10, 19, 42], super-
resolution [50], even fundamental tasks such as segmentation [5], providing per-
formance similar or even better than State-of-the-Art generative models. Fur-
ther, studies like [20,57] show score-based approaches and diffusion are alterna-
tive formulations to denoise the reverse sampling for data generation. Due to the
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recursive generation process, DDPMs sampling is expensive. Many works have
studied alternative approaches to accelerate the generation process [31,65].

The recent method of [11] targets conditional image generation with diffusion
models, which they do by training a specific classifier on noisy instances to bias
the generation process. Our work bears some similarities to this method, but,
in our case, explaining an existing classifier trained uniquely in clean instances
poses an additional challenge. In addition, unlike past diffusion methods, we
perform the image editing process from an intermediate step rather than the
final one. To the best of our knowledge, no former study has considered diffusion
models to explain a neural network counterfactually.

3 Methodology

3.1 Preliminaries

We begin by introducing the generation process of diffusion models. They rely
on two Markov chain sampling schemes that are inverse of one another. In the
forward direction, the sampling starts from a natural image x and iteratively
sample z1, · · · , zT by replacing part of the signal with white Gaussian noise.
More precisely, letting βt be a prescribed variance, the forward process follows
the recursive expression:

zt ∼ N (
√

1− βt zt−1, βt I), (1)

where N is the normal distribution, I the identity matrix, and z0 = x. In fact,
this process can be simulated directly from the original sample with

zt ∼ N (
√
αtx, (1− αt)I), (2)

where αt :=
∏t

k=1(1 − βk). For clarification, through the rest of the paper, we
will refer to clean images with an x, while noisy ones with a z.

In the reverse process, a neural network recurrently denoises zT to recover
the previous samples zT−1, · · · , z0. This network takes the current time step t
and a noisy sample zt as inputs, and produces an average sample µ(t, zt) and a
covariance matrix Σ(t, zt), shorthanded as µ(zt) and Σ(zt), respectively. Then
zt−1 is sampled with

zt−1 ∼ N (µ(zt), Σ(zt)). (3)

So, the DDPM algorithm iteratively employs Eq. 3 to generate an image z0 with
zero variance, i.e. a clean image. Some diffusion models use external information,
such as labels, to condition the denoising process. However, in this paper, we
employ an unconditional DDPM.

In practice, the series of variances {βt} are chosen such that zT ∼ N (0, I).
Further, the DDPM’s trainable parameters are fitted so that the reverse and
forward processes share the same distribution. For details on training schemes,
we recommend the studies of Ho et al. [19] and Nichol and Dhariwal [42] to the
reader. Once the network is trained, one can rely on the reverse Markov chain
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Fig. 1: DiME: Diffusion Models for Counterfactual Explanations. Given
an input instance x, we perturb it following Eq. 2 to get zτ (here τ = 5). At
time step t, we use the DDPM model to generate a clean image xt to obtain the
clean gradient Lclass and Lperc with respect to xt. Finally, we sample zt−1 using
the guiding optimization process on Eq. 4, using the previously extracted clean
gradients.

process to generate a clean image from a random noise image zT . Besides, the
sampling procedure can be adapted to optimize some properties following the
so-called guided diffusion scheme proposed in [11]1:

zt−1 ∼ N (µ(zt)−Σ(zt)∇ztL(zt; y), Σ(zt)), (4)

where L is a loss function using zt to specify the wanted property of the generated
image, for example, to condition the generation on a prescribed label y.

3.2 DiME: Diffusion Models for Counterfactual Explanations

We take an image editing standpoint on CE generation, as illustrated Fig. 1.
We start from a query image x. Initially, we rely on the forward process starting
from xτ = x to compute a noisy version zτ , with 1 ≤ τ ≤ T . Then we go
back in the reverse Markov chain using the guided diffusion (Eq 4) to recover
a counterfactual (hence altered) version of the query sample. Building upon
previous approaches for CEs based on other generative models [26,55,62], we rely
on a loss function composed of two components to steer the diffusion process: a
classification loss Lclass, and a perceptual loss Lperc. The former guides the image
edition into imposing the target label, and the latter drives the optimization in
terms of proximity.

1 In [11], the guided diffusion is restricted to a specific classification loss. Still, for the
sake of generality and conciseness, we provide its extension to an arbitrary loss
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In the original implementation of the guided diffusion [11], the loss function
uses a classifier applied directly to the current noisy image zt. This approach
is appropriate since the considered classifier can make robust predictions under
noisy observations, i.e. it was trained on noisy images. Regardless, such an as-
sumption on the classifier under scrutiny would imply a substantial limitation in
the context of counterfactual examples. We circumvent this obstacle by adapting
the guided diffusion mechanism. To simplify the notations, let xt be the clean
image produced by the iterative unconditional generation on Eq 3 using as the
initial condition zt. In fact, this makes xt a function of zt because we denoise zt
recursively with the diffusion model t times to obtain xt. Luckily, we can safely
apply the classifier to xt since it is not noisy. So, we express our loss as:

L(zt; y, x) = E[λcLclass(C(y|xt)) + λpLperc(xt, x)︸ ︷︷ ︸
L̃(xt;y,x)

], (5)

where C(y|xt) is the posterior probability of the category y given xt, and λc and
λp are constants. Note that an expectation is present due to the stochastic nature
of xt. In practice, computing the loss gradient would require sampling several
realizations of xt and taking an empirical average. We restrict ourselves to a
single realization per step t for computational reasons and argue that this is not
an issue. Indeed, we can partly count on an averaging effect along the time steps
to cope with the lack of individual empirical averaging. Besides, the stochastic
nature of our implementation is, in fact, an advantage because it introduces more
diversity in the produced CEs, a desirable feature as advocated by [48].

Using this strategy, the dependence of the loss on xt, rather than directly
from zt, renders the gradient computation more challenging. Indeed, formally it
would require to apply back-propagation from xt back to zt:

∇ztL(zt; y, x) =

(
Dxt

Dzt

)T

· ∇xtL̃(xt; y, x). (6)

Unfortunately, this computation requires retaining Jacobian information through-
out the entire computation graph, which is very deep when t is close to τ . As a
result, backpropagation is too memory intensive to be considered an option. To
bypass this pitfall, we shall rely on the forward sampling process, which operates
in a single stage (Eq. 2). Using the reparametrization trick [30], one obtains

zt =
√
αtxt +

√
1− αtϵ, ϵ ∼ N (0, I). (7)

Thus, by solving xt from zt, we can leverage the gradients of the loss function
with respect to the noisy input, a consequence of the chain rule. Henceforth, the
gradients of L with respect to the noisy image become

∇ztL(zt; y, x) =
1

√
αt

∇xt
L̃(xt; y, x). (8)

This approximation is possible since the DDPM estimates the reverse Markov
chain to fit the forward corruption process. Thereby, both processes are similar.
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To sum up, Fig. 1 depicts the generation of a counterfactual explanation with
our algorithm: DiME. We start by corrupting the input instance x = xτ following
Eq. 2 up to the noise level t = τ . Then, we iterate the following two stages until
t = 0: (i) First, using the gradients of the previous clean instance xt−1, we guide
the diffusion process to obtain zt−1 using Eq. 4 with the gradients computed
in Eq. 8. (ii) Next, we estimate the clean image xt for the current time step
zt−1 with the unconditional generation pipeline of DDPMs. The final instance is
the counterfactual explanation. If we do not find an explanation that fools the
classifier under observation, we increase the constant λc and repeat the process.

Implementation Details. To train the unconditional DDPM model, we
used the publicly available code of [11]. We include all training and architectural
details in the supplemental material. In practice, we incorporate additionally an
ℓ1 loss, η||zt − x||1, between the noisy image zt and the input x to improve the
ℓ1 metric on the pixel space. We empirically set η small to avoid any significant
impact on the quality of the explanations. Our diffusion model generates faces
using 500 diffusion steps from the normal distribution. We re-spaced the sam-
pling process to boost inference speed to generate images with 200 time-steps
at test time. We use the following hyper-parameters settings: λp = 30, η = 0.05,
and τ = 60. Finally, we set λc ∈ {8, 10, 15} to iteratively find the counterfactu-
als. We consider that our method failed if we do not find any explanation after
exhausting the values of λc.

4 Experiments

Experimental goals. In this section, we evaluate DiME, our CE approach,
using standard metrics. Also, we develop new tools to go beyond the current
evaluation practices. Let us then recap the principles of current evaluation met-
rics, following previous works [48, 55]. The first goal of CEs is to create realis-
tic explanations that mislead the classifier under observation. The capacity to
change the classifier decision is typically exposed as a flip ratio (FR). Follow-
ing the image synthesis research literature, the Frechet Inception Distance [18]
(FID) measures the fidelity of the image distribution. The second goal of CE
methods is to create proximal and sparse images. Among other tools, the XAI
community adopted the Face Verification Accuracy [7] (FVA) and Mean Num-
ber of Attributes Changed (MNAC) [48]. On the one hand, the MNAC metric
looks at the face attributes that changed between the input image and its coun-
terfactual explanation, disregarding if the individual’s identity changed. On the
other hand, the FVA looks at the individual’s identity without considering the
difference of attributes.

Despite their usefulness, the previous metrics miss two important properties
of CEs. Indeed, following [48], to give a sense of trust in a classifier, the CEs must
also produce diverse explanations and ensure that the classifier is not subject to
spurious correlations. On the one hand, generating diverse explanations is use-
ful to discover the brittleness of CNNs. Mothilal et al. [39] propose a pair-wise
distance to evaluate the diversity of counterfactual examples. Nevertheless, this
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Smile Young

Method FID (↓) FVA (↑) MNAC (↓) FID (↓) FVA (↑) MNAC (↓)

xGEM+ [28] 66.9 91.2 - 59.5 97.5 6.70

PE [55] 35.8 85.3 - 53.4 72.2 3.74

DiVE [48] 29.4 97.3 - 33.8 98.2 4.58

DiVE100 36.8 73.4 4.63 39.9 52.2 4.27

DiME 3.17 98.3 3.72 4.15 95.3 3.13

Table 1: State-of-the-Art results.We compare our model performance against
the State-of-the-Art on the FID, FVA and MNAC metrics. The values in bold
are the best results. All metrics were extracted from [48]. Our model has a 10
fold improvement on the FID metric. We extracted all results from Rodriguez
et al.’ work [48].

work is exclusively dedicated to tabular data. We propose a simple adaptation to
images based on the LPIPS metric [70]. On the other hand, current assessments
to detect spurious correlations (e.g., in [55]) are quite extreme. They rely on
modified datasets by entangling two attributes artificially to a full extent, e.g.,
all males are smiling, and all women are not. They also assume that in standard
benchmarks, attributes are not entangled at all. Under this assumption, a clas-
sifier trained in this setting can be safely used as an oracle for the attributes, as
proposed for computing MNAC. Actually, we show that this assumption can be
largely erroneous and, therefore, challenge the derived metrics’ validity. Based
on our analysis, we designed a metric called Correlation Difference to assess if
a counterfactual approach adequately reveals subtle “spurious correlations” (see
Section 4.3).

Dataset. In this paper, we study the CelebA dataset [35]. Following standard
practices, we preprocess all images to a 128 × 128 resolution. CelebA contains
200k images, labeled with 40 binary attributes. Previous works validate their
methods on the smile and young binary attributes, ignoring all other features.
Finally, the architecture to explain is a DenseNet121 [21]. Given the binary
nature of the task, the target label is always the opposite of the prediction. If
the model correctly estimates an instance’s label, we flip the model’s forecast.
Else, we modify the input image to classify the image correctly.

4.1 Realism, Proximity and Sparsity Evaluation

To compute the FID, the FVA, and the MNAC, we consider only those suc-
cessful counterfactual examples, following previous studies [48, 55]. The FVA is
the standard metric for face recognition. To measure this value, we used the
cosine similarity between the input image and its produced counterfactual on
the feature space of a ResNet50 [16] pretrained model on VGGFace2 [7]. The
instance and the explanation share the same identity if the similarity is higher
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than 0.5. So, the FVA is the mean number of faces sharing the same identity with
their corresponding CE. To compute the MNAC, we fine-tuned the VGGFace2
model on the CelebA dataset. We refer to the fine-tuned model as the oracle.
Thus, the MNAC is the mean number of attributes for which the oracle switch
decision under the action of the CE. For a fair comparison with the State-of-the-
Art, we trained all classifiers, including the fine-tuned ResNet50 for the MNAC
assessment, using the DiVE’s [48] available code.

DiVE do not report their flip rate (FR). This raises a concern over the fairness
of comparing our methods. Since some metrics depend highly on the number of
samples, especially FID, we recomputed their CEs. To our surprise, their flip
ratio was relatively low (44.6% for the smile category). In contrast, we achieved
a success rate of 97.6 and 98.9 for the smile and young attributes, respectively.
Therefore, we calculated the counterfactual explanations with 100 optimization
steps and reported the results as DiVE100. DiVE100’s success rates are 92.0% for
smile and 93.4% for young, which is comparable to ours.

We show DiME’s performance in Table 1. Our method beats the previous
literature in five out of six metrics. For instance, we have a ∼10 fold improve-
ment on the FID metric for the smile category, while the young attribute has
an ∼8 fold improvement. We credit these gains to the generative capabilities of
the diffusion model. Further, our generation process does not require entirely
corrupting the input instance; hence, the coarse details of the image remain.
The other methods rely on latent space-based architectures. Thus, they require
to compact essential information removing outlier data. Consequently, the gen-
erated CEs cannot reconstruct the missing information, losing significant visual
components of the image statistics.

Despite the previous advantages, we cannot fail to notice that DiME is less
effective in targetting the young attribute than the smile. The smile and young
attributes have distinct features. The former is delineated by localized regions,
while the latter scatters throughout the entire face. Thus, the gradients produced
by the classifier differ between the attributes of choice; for the smile attribute,
the gradients are centralized while they are outspread for the young attribute.
We believe that this subtle difference underpins the slight drop of performance
(especially with respect to FVA) in the young attribute case. This hypothet-
ical explanation should be confirmed by a more systematic study of various
attributes, though this phenomenon is out of scope of the paper.

4.2 Diversity Assessment

One of the most crucial traits of counterfactual explanations methodologies is
the ability to create multiple and diverse examples [39, 48]. As stated in the
methodology section, DiME’s stochastic properties enable the sampling of di-
verse counterfactuals. To measure the capabilities of different algorithms to pro-
duce multiple explanations, we computed the mean pair-wise LPIPS [70] metric
between five independent runs. A higher LPIPS means increased perceptual dis-
similarities between the explanations, hence, more diversity. To compute the



10 G. Jeanneret et al.

Fig. 2: Diversity Counterfactual examples. The classifier predicts first two
input images as non-smiley and the last two as smiley. In this example all ex-
planations fool the classifier. Our CE pipeline is capable of synthesising diverse
counterfactuals without any additional mechanism.

evaluation metric, we use all counterfactual examples, even the unsuccessful in-
stances, because we search the capacity of exploring different traits. Note that we
exclude the input instance to compute the metric since we search for the dissim-
ilarities between the counterfactuals. We compared DiME’s performance with
DiVE100 and its Fisher Spectral variant on a small partition of the validation
subset.

We visualize some examples in Fig. 2 and show the performance of the five
runs on the supplementary material. We obtained an LPIPS value of 0.213. In
contrast, DiVE [48] and its Spectral Fisher variant obtained an LPIPS of 0.044
and 0.086, respectively. Recall that DiME does not have an explicit mechanism
to create diverse counterfactuals. Its only mechanism is the stochasticity within
the sampling process (Eqs. 3 and 4). In contrast, DiVE relies on a diversity loss
when optimizing the eight explanations. Yet, our methodology achieves higher
diversity with the LPIPS metric even without an explicit mechanism.

4.3 Discovering Spurious Correlations

The end goal of counterfactual examples is to uncover the modes of error of
a target model. Current evaluation protocols [55] search to assess the spurious
correlations by inducing artificial entanglements between two supposedly uncor-
related attributes. Conventionally, the experiment involves mixing the smile and
gender attributes. The goal is then to evaluate whether or not the CE algorithm
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Fig. 3: Spurious Correlation Detection. We show the top 9 most correlated
attributes in the label space with “smile”. We obtained the Pearson Correlation
Coefficient from the ground truth on the training set. Albeit the difference in the
MNAC performance, DiME and DiVE achieve to detect the spurious correlations
similarly. We show all the remaining attributes in the supplementary material.

is able to reveal the correlation. To assess this capability, it is common to verify
if both the target and the entangled attributes change when producing the CEs.
In our opinion, such an extreme experiment does not shed light on the ability
to reveal spurious correlations in real situations. Indeed, the considered config-
uration assumes that only two labels are entangled and that this entanglement
is complete.

In fact, as depicted in Fig. 3, in real datasets such as CelebA, many la-
bels are correlated at multiple levels. As a result, this phenomenon calls the
previously proposed correlation experiment into question. It also raises concerns
about the value of the MNAC metric, or measurement tools such as the LVS [24].
As a matter of fact, while small MNAC values are often considered desirable
(see [48, 55, 62]), the presence of spurious correlations challenges this interpre-
tation. Indeed, consider the following illustrating scenario comparing two CE
algorithms: the first one exposes all spurious correlations correctly; the second
one can solely edit the main feature. Since the first method produces many
changes, it will display a high MNAC while the alternate algorithm reaches a
low MNAC value. This false sense of high performance does not reflect the true
accomplishment of the first model: detecting spurious correlations. So, we pro-
pose to amend the MNAC measurement into a new metric called the Correlation
Difference (CD), more adapted to assess the capacity of CEs to reveal spurious
correlations.

The goal of CD is to measure the difference between the true correlations
and the changes produced by the explanations. To achieve this, let cqa be the
true correlation computed on the label space between the attribute labels q and
a. To measure the correlations in the prediction space, first we define

δa(x) = Oa(Mq(x))−Oa(x), (9)

where Oa(·) is the oracle’s binary prediction of its input for the attribute a, Mq

is the counterfactual method targeting the query attribute q on an image x. This
measure looks at the signed changes implied byMq on x. So, now we can measure
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the relative changes on the attributes when computing a counterfactual example.
Therefore, we can calculate the correlation coefficient cMqa between {δq(x)}x and
{δa(x)}x to compare it with cqa, the true correlation2. Accordingly, CD is:

CD =
∑
a

|cqa − cMqa|. (10)

We apply our proposed metric on DiME and DiVE100’s counterfactual ex-
planations. We got a CD of 2.30 while DiVE100 2.36 on CelebA’s validation set,
meaning that DiVE100 lags behind DiME. However, the margin between the two
approaches is only slender. This reveals our suspicions: the MNAC results pre-
sented in Table 1 give a misleading impression of a robust superiority of DiME
over DiVE100.

4.4 Impact of the noise-free input of the classifier

In this section, we assess the impact of our main adjustment over the original
guided diffusion process. Recall that we argued that it is important to apply the
classifier on noise-free images xt and not on the current noisy version zt in order
to obtain a robust gradient direction. To validate this claim, we compare our
approach to an alternative, dubbed Direct. It uses the gradient of the classifier
applied directly to the noisy instance zt. In this case, we removed the constant
1/√αt since we compute directly the gradients with respect to zt. To complete
the picture, we also consider two additional variations of our approach. The
first one, called Naive, uses the gradient of the input image at each time step
to guide the optimization process. Therefore, it is not subject to noise issues,
but it disregards the guidance that was already applied until time step t. The
second variation is a near duplicate of DiME except for the fact that it ends the
guided diffusion process as soon as xt fools the classifier. We name this approach
Early Stopping. Eventually, we will also evaluate the DDPM generation without
any guiding and beginning from the corrupted image at time-step τ to mark a
reference of the performance of the DDPM model.

Notes on considered metrics: In addition to FID, FR and ℓ1 metrics, we
also evaluate the following metric: BKL(y||Mq(x)) = 1− C(y|Mq(x)). It is the
complement of the target label’s probability, but whose origin is a bounded
remapping of a KL divergence, hence the notation BKL. A low BKL means
that the classifier under observation classifies the counterfactual example Mq(x)
with high confidence and is effectively fooled by the CE.

Also, given that many variants are considered, we created a small and ran-
domly selected mini-val to evaluate the various metrics. Besides, given that the
different baselines can display varying levels of FR, we condition the FID compu-
tation on the successful CEs only. However, it is well known that FID is strongly
biased, especially when using a low number of samples. To mitigate this bias,

2 The series {δq(x)}x and {δa(x)}x uses solely the successful counterfactual expla-
nations. Further, we used the Pearson Correlation Coefficient to compute cqa and
cMqa.
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Method FR (↑) FID+(↓) ℓ1(↓) BKL(↓)

Direct 19.7 50.51 0.0454 0.297

Naive 70.0 98.93 ± 2.36 0.0624 0.139

Early Stopping 97.3 51.97 ± 0.77 0.0467 0.350

Unconditional 8.6 53.22§ ± 0.98 0.0492 0.265

DiME 97.9 50.20 ± 1.00 0.0430 0.076

Table 2:DiME vs “Naive” variations. This table shows the advantages of the
proposed adjustment to incorporate the classifier under observation. We clearly
see that including the clean gradients benefits DiME on all metrics, especially
the FR.

we use the same number of CEs for each baseline (the least number of success-
ful CEs) and repeat this computation 10 times to report a mean and standard
deviation. We denote this fair FID as FID+. Similarly, we compute the ℓ1 and
BKL solely for successful counterfactuals.

We show the results of the different variations in Table 2. The most striking
point is that when compared to the Naive and Direct approaches, the unim-
paired version of DiME is the most effective in terms of FR by a large margin.
This observation validates the need for our adjustment of the guided diffusion
process. Further, our approach is also superior to all other variations in terms
of the other metrics. At first glance, we expected the unconditional generation
to have better FID than DiME and the ablated methods. However, we believe
that the perceptual part of our loss is beneficial in terms of FID. Therefore,
the unconditional FID is higher. Similarly, the early stopping variant is also im-
pacted in terms of FID and BKL because the optimization is brought to an end
prematurely.

We complement this ablation study in the supplementary material. In par-
ticular, we explore the role of the initial noise level τ and the mixing factor λc.
Other quantitative and qualitative results are presented therein.

4.5 Qualitative Results

We visualize some inputs (left) and the counterfactual examples (right) produced
by DiME in Fig. 4. We show visualizations for the attributes smile and young, yet
we will include visualizations for other categories in the supplementary material.
At first glance, the results reveal that the model performs semantical editings
into the input image. In addition, uncorrelated features and coarse structure
remain almost unaltered. We observe slight variations on some items, such as the
pendants, or out-of-distribution shapes such as hands. DiME fails to reconstruct
the exact shape of these objects, but the essential aspect remains the same.
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Fig. 4: Qualitative Results. We visualize some images and its corresponding
counterfactual explanation produced by our proposed approach. Our methodol-
ogy achieves to incorporate small but perceptually tangible changes in the image.
NS stands for Non-Smiley.

4.6 Limitations

Our pipeline for counterfactual explanation has several limitations. Although
we show the benefits of using our model to generate CEs, we are far from ac-
complishing all aspects crucial for the XAI community. First of all, our method
is slow and computationally demanding. Since we are using DDPMs, we adopt
most of their limitations. For instance, we need to use the DDPM model ∼1800
times to generate a single explanation. This aspect is undesired whenever the
user requires an explanation on the fly. Finally, we require access to the training
data. This limitation is common in many previous studies. However, this aspect
is vital in fields where data is sensitive. Although access to the training data
is permitted in many cases, we restrict ourselves to using the data without any
labels.

5 Conclusion

In this paper, we explore the novel diffusion models in the context of counter-
factual explanations. By harnessing the conditional generation of the guided dif-
fusion, we achieve successful counterfactual explanations through DiME. These
explanations follow the requirements given by the XAI community: they produce
a small but tangible change in the image while remaining realistic. The perfor-
mance of DiME is confirmed based on a battery of standard metrics. DiME also
exhibits strong diversity in the produced explanation. This is partly inherited
from the intrinsic features of diffusion models, but it also results from a careful
design of our approach. Further, we show that the current approach to vali-
date the sparsity of CE has significant conflicts with the assessment of spurious
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correlation detection. Finally, our proposed metric, Correlation Difference, cor-
rectly measures the impact of measuring the subtle correlation between labels.
We hope that our work opens new ways to compute and evaluate counterfactual
explanations.
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Steering counterfactual explanations with semantics (2021)

https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf


Diffusion Models for Counterfactual Explanations 17

27. Jalwana, M.A.A.K., Akhtar, N., Bennamoun, M., Mian, A.: Cameras: Enhanced
resolution and sanity preserving class activation mapping for image saliency. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 16327–16336 (June 2021)

28. Joshi, S., Koyejo, O., Kim, B., Ghosh, J.: xgems: Generating examplars to explain
black-box models. ArXiv abs/1806.08867 (2018)

29. Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., sayres, R.:
Interpretability beyond feature attribution: Quantitative testing with concept ac-
tivation vectors (TCAV). In: Dy, J., Krause, A. (eds.) Proceedings of the 35th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 80, pp. 2668–2677. PMLR (10–15 Jul 2018)

30. Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. In: 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-
16, 2014, Conference Track Proceedings (2014)

31. Kong, Z., Ping, W.: On fast sampling of diffusion probabilistic models. In: ICML
Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likeli-
hood Models (2021)

32. Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved precision
and recall metric for assessing generative models. CoRR abs/1904.06991 (2019)

33. Lee, J.R., Kim, S., Park, I., Eo, T., Hwang, D.: Relevance-cam: Your model already
knows where to look. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 14944–14953 (June 2021)

34. Liu, S., Kailkhura, B., Loveland, D., Han, Y.: Generative counterfactual introspec-
tion for explainable deep learning. In: 2019 IEEE Global Conference on Signal and
Information Processing (GlobalSIP). pp. 1–5 (2019)

35. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
Proceedings of International Conference on Computer Vision (ICCV) (December
2015)

36. Looveren, A.V., Klaise, J.: Interpretable counterfactual explanations guided by
prototypes. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. pp. 650–665. Springer (2021)

37. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: International Conference on Learning
Representations (2018)

38. Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: SDEdit: Guided
image synthesis and editing with stochastic differential equations. In: International
Conference on Learning Representations (2022)

39. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency (2020)

40. Nauta, M., van Bree, R., Seifert, C.: Neural prototype trees for interpretable fine-
grained image recognition. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 14933–14943 (June 2021)

41. Nemirovsky, D., Thiebaut, N., Xu, Y., Gupta, A.: Countergan: Generating re-
alistic counterfactuals with residual generative adversarial nets. arXiv preprint
arXiv:2009.05199 (2020)

42. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models
(2021)

43. Park, D.H., Hendricks, L.A., Akata, Z., Rohrbach, A., Schiele, B., Darrell, T.,
Rohrbach, M.: Multimodal explanations: Justifying decisions and pointing to the



18 G. Jeanneret et al.

evidence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2018)

44. Pawelczyk, M., Agarwal, C., Joshi, S., Upadhyay, S., Lakkaraju, H.: Exploring
Counterfactual Explanations Through the Lens of Adversarial Examples: A The-
oretical and Empirical Analysis. arXiv:2106.09992 [cs] (Jun 2021)

45. Petsiuk, V., Das, A., Saenko, K.: RISE: randomized input sampling for explanation
of black-box models. In: British Machine Vision Conference 2018, BMVC 2018,
Newcastle, UK, September 3-6, 2018. p. 151. BMVA Press (2018)

46. Petsiuk, V., Jain, R., Manjunatha, V., Morariu, V.I., Mehra, A., Ordonez, V.,
Saenko, K.: Black-box explanation of object detectors via saliency maps. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual,
June 19-25, 2021. pp. 11443–11452. Computer Vision Foundation / IEEE (2021)
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Supplementary material

A Implementation Details

DDPM Architectural and Training Details. We trained the unconditional
DDPM using the publicly available code of [11]. Our model has the same architec-
ture as the ImageNet’s Unconditional DDPM of [11], except for two differences.
(i) The number of diffusion steps for [11] is 1000 while we use 500 steps only. (ii)
we reduced the number of inner channels from 256 to 128 given that CelebA’s
complexity is far lower than ImageNet’s. We trained our model for 270.000 iter-
ations with a batch size of 75 on 5 GPUs, i.e. a batch size of 15 per GPU. We
set the learning rate to 1 × 10−4 with a weight decay of 0.05 and no dropout.
Although we selected this configuration for the architecture and the training, we
did not perform an exhaustive exploration since we are not searching to evaluate
the diffusion model performance.

Loss selection. The selection of the losses influences the convergence of
the stochastic optimization process for the CE. We chose the standard VGG19
perceptual loss as the Lperc loss. For the classification loss Lclass, we opted to
maximize directly logits of the target class instead of the log probability. More
specifically, we minimize the negative logits.

B Variability Evaluation

We report the performances of the five different runs in Table 3. Even when
we set different initial conditions for each iteration, DiME is robust to many
instantiations. We visualize more images for the variability in section E. Many
results vary significantly, yet DiME solves the counterfactuals in most cases.

C Correlation Discovery

In section 4.3 of the main manuscript we discussed the importance of our pro-
posed metric CD. Nevertheless, we visualize only the top 9 attributes given that

Seed FID(↓) FR(↑) ℓ1(↓) BKL(↓)

1 20.51 97.9 0.0430 0.076

2 20.60 97.6 0.0430 0.073

3 20.72 97.9 0.0431 0.067

4 20.67 97.7 0.0431 0.073

5 20.46 98.2 0.0430 0.076

Table 3: Diversity experiments. We ran our method five times, varying the
initial seed. The results show that our method is robust to the initial conditions,
although the visual elements vary significantly.
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Fig. 5: Correlation discovery. We visualize all the correlation discovered by
DiME and DiVE for all attributes on CelebA.

λc FID+(↓) FR(↑) ℓ1(↓) BKL(↓)

8 22.93 80.1 0.0427 0.058

10 23.32 88.0 0.0432 0.041

15 25.87 97.7 0.0446 0.019

DiME 22.48 97.9 0.0430 0.076

Table 4: Gradient Scales. We show the impact of different scales choices. We
computed the BKL and FID metrics solely from the successfully counterfactual
explanations. Increasing the gradient scale λc decreases the FID and ℓ1. From
the Flip Ratio results, we see that most explanations are produced with a low
scale value, hence producing similar results in the pixel space with high fidelity.
Harder instances require the use of an increased scale to successfully produce
the counterfactual example. The FID+ is computed taking the the same number
of samples for the experiment λc = 8.

the other attributes are far less correlated. For the sake of completing the study,
we added the rest of attributes on Fig. 5. Similarly, we observe that DiME and
DiVE have similar capabilities finding correlations in the data.

D Ablations Studies

To complement the ablation analysis on the components of DiME, we explore
the variables that affect the generation of counterfactual explanations. On the
one side, we analyze the impact of calibrating the gradients’ scale. On the other
side, we study the effects of varying the initial noise level, considering that adding
more noise implies removing more details. Finally, we visualize the evolution of
the clean images produced at each time step of the guiding process.

D.1 Gradients’ Scale Ablation

The work Dhariwal and Nichol [11] ablates the scale of the classifier. Their results
indicate a positive correlation between the quality of the images, measured with
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Steps FID+(↓) FR(↑) ℓ1(↓) BKL(↓)

50 20.19 92.4 0.0406 0.100

60 20.94 97.9 0.0430 0.076

70 23.21 99.7 0.0479 0.048

Table 5: Initialization Step. We show the result of different τ choices. The
BKL and FID metrics are computed solely from the successfully counterfactual
explanations. Using τ = 60 provides the best trade-off between image quality,
Flip Ratio and similarity. We computed the FID+ taking the the same number
of samples for the experiment with less instances (τ = 50).

the FID, and the gradients’ scale. So, we perform a similar study; to find a
counterfactual explanation, we optimize the image formation with three different
scales λc ∈ {8, 10, 15} and choose the generated image with the smallest scale.
Therefore, we analyze the individual contribution of each scale.

We report the results in Table 4. In opposition to [11], we observe that when
increasing the scale, the quality as measured by FID drops; more precisely the
FID value increases. This inconsistency with the observation of [11] remains to
elucidate. Although it is out of the scope of our work, we can at least point
out a few potential sources of discrepancy. First, the type of image edition that
we perform is fundamentally different from the one considered in [11]. In their
work, the task correspond to generate an image conditionally to a categorical
label. This categorical, hence discrete, aspect of the condition may be at odd
with soft constraints (i.e. small gradient scale). It is not present in our context.
Among other differences, one can note that we start the denoising process from
an intermediate step τ ≤ T while they start from the very last step T . Eventually,
we have a specific way of computing the gradient.

In our particular context for CEs, we noticed a trade-off between the success
rate and the quality of the images. Since we seek to produce sparse modifi-
cations, we created most explanations using the lowest scale. Thus, we enjoy
the benefits of high-quality images. Further, we boost the FR by using higher
scales at the cost of lowering the quality. Adding too much gradient produces
out-of-distribution noise. The DDPM cannot recognize this noise, and therefore
it produces artifacts on the image. However, these artifacts may coincide with
patterns that impact the classifier response.

D.2 Initial Step Ablation

Following the previous experiment, we seek to find the main variables to produce
valid yet sparse CEs. The other variable of interest is the initialization step τ .
On the one hand, a higher τ opens more opportunities to modify the image. But
on the other hand, this increased generation power can be detrimental to the
resulting image quality. We report the results in Table 5. The hyperparameter
τ has a similar effect to the gradient scale λc; we observe a negative correlation
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Fig. 6: Target distribution at each time-step. We visualize the evolution
of the target labels’ probability. Each purple line represents a quantile of the
probabilities. The color curves are cases shown on the right. In expectancy, the
clean image at each time step increases. Nonetheless, typically the curves are
sporadic. Yet, we observe an increase.

between τ and the FID, and a positive one between τ and the FR. The image
generation has more optimization steps when increasing the initial noise level.
Thus, it easily reaches a counterfactual that fools the classifier at the cost of
decreasing the CE sparsity, an unwanted effect in the CE community. Similarly,
a low τ increases the sparsity, but the CEs are not as successful. Choosing τ = 60
finds an optimal equilibrium between both factors.

D.3 Distribution Overtime

Our pipeline uses the unconditional DDPM to enable the use of the classifier un-
der observation. At each step, the classifier uses the generated image to compute
the gradient with respect to the target label. Therefore, this image gives infor-
mation on the optimization process at each time step. Hence, in this experiment,
we explore the behavior of these images at each stage of the denoising process.
We plot the probability of the target class given by the inspected architecture
at each step to accomplish this.

In Fig. 6 we visualize the evolution of the target labels’ probability over
time, along with some examples. We see that the probability increases overtime
on average. Nevertheless, the example instances show sporadic and non-steady
development. Yet, we still observe an ascending behavior. Near the first steps,
we see the most unstable conduct. Nonetheless, the optimization begins to settle
when reaching a time steps near 0 (approx. at t = 20). We attribute this behavior
to an averaging effect along time; when the image generation reaches the final
steps, the variance nearly vanishes. Hence, the unconditional generation does not
vary much, reaching an equilibrium. This observation relates to the comments
of Equation 5 in the main text, where we argue for using a single realization of
xt at each time step. As mentioned in the main text, the absence of averaging
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at every step is partly mitigated in terms of the optimization objective by an
averaging effect over time. But thanks to the randomness inherited from the
early steps (t ≈ τ), the overall CE creation process still displays some diversity.

E Qualitative Results

In this section, we visualize some qualitative results from our proposed bench-
mark for counterfactual explanations. We include cases for the smile, young and
other attributes from the CelebA dataset. Also, we compare our results with
DiVE’s explanations in Figures 7 to 16. Further, we show some examples of
the evolution at each time step of the noisy and clean instances in Figures 17
and 18. Finally, we visualize more examples on the variability of DiME in Fig-
ures 19 and 20.

In general, we see a clear pattern comparing DiME and DiVE. DiME’s gen-
erated instances are closer to the query image than DiVE’s. Further, DiVE uses
a VAE as the generative model, so their CEs are blurrier than ours.

Fig. 7: Counterfactual explanations for the Smile. We visualize DiME and
DiVE explanations targeting the label Smile.
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Fig. 8: Counterfactual explanations for the Smile. We visualize DiME and
DiVE explanations targeting the label No Bags under the eyes.

Fig. 9: Counterfactual explanations for the Age attribute. We visualize
DiME and DiVE explanations targeting the label Young.
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Fig. 10: Counterfactual explanations for the Age attribute. We visualize
DiME and DiVE explanations targeting the label Old.
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With respect to the gender attribute, we visualize two differences between
each gender. For the male to female case, DiME exposes a clear correlation be-
tween the female label and the attributes heavy makeup and lipstick. We suspect
that the classifier mainly relies on these attributes to classify an image as a
woman. In contrast, DiVE adds “women-like” features to flip the prediction. For
the female to male counterfactuals, major changes in the image are done to add
female qualities for both models. The last two examples show that removing the
makeup is enough the flip the classifier prediction.

Fig. 11: Counterfactual explanations from male to female. We visualize
DiME and DiVE explanations.

Fig. 12: Counterfactual explanations from female to male. We visualize
DiME and DiVE explanations.
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Regarding the blurry attribute, at first glance, we see that DiVE’s VAE helps
blur the input instance. Nevertheless, as we see in Fig. 13, CelebA’s inherited
blurry attribute is different from the one produced by DiVE.

Fig. 13: Counterfactual explanations for the attribute Blurry. We visu-
alize DiME and DiVE explanations using as target to deblur the input instance.

Fig. 14: Counterfactual explanations for the attribute Blurry. We visu-
alize DiME and DiVE explanations using as target the blurry.
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The attribute Bags under the Eyes has a clear and punctual location in
the image: the region below the eyes. Both algorithms provide successful ex-
planations when targeting this attribute. The main difference between DiME
and DiVE performances is the capacity of DiME to retain as much fine-grained
information as possible such as the hair, hands, and the background.

Fig. 15:Counterfactual explanations for the Bag Under Eye.We visualize
DiME and DiVE explanations targeting the label Bags under the eyes.

Fig. 16:Counterfactual explanations for the Bag Under Eye.We visualize
DiME and DiVE explanations targeting the label No Bags under the eyes.
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Following the study on the evolution of the clean images xt on time, we
display more examples along with their noisy version. We see that, when t = 48
and t = 36, the clean images present the most changes, while the last images do
not vary much.

Fig. 17: Visual inspection over t. We visualize the evolution of the noisy zt
and clean instances xt over time.
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Fig. 18: Visual inspection over t. We visualize the evolution of the noisy zt
and clean instances xt over time.
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The following Figures visualize more examples of DiME’s capacity to create
diverse counterfactual explanations. The visualizations show that DiME retains
most details when generating counterfactuals.

Fig. 19: Variability examples. We visualize the effects of the stochasticity of
DiME to produce multiple explanations.
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Fig. 20: Variability examples. We visualize the effects of the stochasticity of
DiME to produce multiple explanations.
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