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Abstract. High dynamic range (HDR) image is widely-used in graphics
and photography due to the rich information it contains. Recently the
community has started using deep neural network (DNN) to reconstruct
standard dynamic range (SDR) images into HDR. Albeit the superiority
of current DNN-based methods, their application scenario is still limited:
(1) heavy model impedes real-time processing, and (2) inapplicable to
legacy SDR content with more degradation types. Therefore, we propose
a lightweight DNN-based method trained to tackle legacy SDR. For bet-
ter design, we reform the problem modeling and emphasize degradation
model. Experiments show that our method reached appealing perfor-
mance with minimal computational cost compared with others.

Keywords: High dynamic range · Legacy Content · Degradation model.

1 Introduction

Image’s dynamic range is defined as the ratio of maximum recorded luminance
to the minimum. As name implies, high dynamic range (HDR) image is able to
simultaneously envelop rich information in both bright and dark areas, making
it indispensable in photography and image-based lighting [1], etc. The common
way to obtain an HDR image is fusing multiple standard dynamic range (SDR)
images with different exposure, i.e. multi-exposure fusing (MEF) [2]. And re-
cently the community has begun to use deep neural network (DNN) [3–8] to
tackle motion and misalignment between different SDR exposures.

While most MEF HDR imaging method is intended to be integrated in cam-
era pipeline for taking new HDR photo, there is a considerable amount of legacy
SDR content containing unreproducible historical scenes to be applied in HDR
application. Those legacy content has limited dynamic range due to the im-
perfection of old imaging pipeline, and most importantly, no multi-exposure
counterpart to be directly fused into HDR. In this case, we could only man-
age to recover HDR content from a single SDR image, which is called inverse
tone-mapping (ITM) [9] or single-image HDR reconstruction (SI-HDR) [10].

Different from MEF HDR imaging where full dynamic range is already cov-
ered in multiple SDR input, SI-HDR is an ill-posed problem since a method is
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HDRCNN[11] ExpandNet[12] SingleHDR[13] DHDR[14] HDRUNet[15] oursSDR Input (with noise and compression)

Fig. 1: Current HDR reconstrction methods struggle to handle SDR with noise
and compression. In the green and red boxes are tone-mapped reconstrcted HDR.

supposed to recover the lost information by the reduction of dynamic range, etc.
Fortunately, DNN has been proven effective in other ill-posed low-level vision
tasks, hence researchers have begun to involve it in SI-HDR [11–15]. DNN-based
SI-HDR could better infer lost information e.g. those by highlight saturation,
since DNN is able to aggregate and process semantic context.

Albeit the success of current DNN-based SI-HDR, there are still 2 aspects
to be considered: First, while legacy SDR content is susceptible to noise and
compression, to the best of our knowledge, there is no DNN-based method mo-
tivated to jointly tackle both of them. Hence, current methods struggle to deal
with legacy SDR with noise and compression, as Figure1 shows. Second, many
method exploit a bulky DNN, which will hinder their real-time processing and
deployment on devices with limited computational resources.

Therefore, our task is to design a lightweight DNN capable of handling legacy
SDR with noise and compression. Our lightweight approach partly lies in point-
wise and group convolution. Meanwhile, to teach the DNN with recovery ability,
corresponding degradation should be correctly set in training. To this end, we
clarify what kind of degradations are to be recovered by a reformed problem
modeling based on camera pipeline [16]. This problem modeling also helps us
derive a DNN with modules customized to specific types of degradation.

In the following paper, we first conclude related works from several aspects,
then describe the DNN design containing problem modeling and network mod-
ules, and finally introduce our training strategy including degradations. Exper-
iment will show that our method outperforms both DNN-based state-of-the-art
(SOTA) and non-DNN method [17] on both simulated and real legacy content.
Finally, ablation studies are conducted to validate the effectiveness of our ideas.

Our contributions are:

– To the best of our knowledge, making the first attempt handling legacy SDR
content with both noise and compression in DNN-based SI-HDR.

– Lightening the DNN to facilitate its practical application.
– Reforming SI-HDR problem modeling by a precise camera pipeline, and em-

phasizing the impact of degradation model which has long been understated.
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2 Related Work

All following methods start from a single SDR image, yet they markedly differ
regarding whether it directly outputs an HDR image.

Direct approach. The initiator of DNN-based SI-HDR [11] reconstruct lost
information in mask-split saturated region, and blends it with unsaturated area
expanded by inverse camera response function (CRF). [12] first apply non-UNet
DNN with multiple branches in different receptive field. [13] model SI-HDR with
preliminary 3-step camera pipeline, and assign 4 sub-networks to hierarchically
resolve them. [14] introduce more mechanisms: partial convolution from inpaint-
ing and gram matrix loss from style transfer. [15] append their UNet with an
extra branch to involve input prior in spatial feature modulation. Ideas of other
direct approach [18–33] are omitted here, and will be detailed later if involved.

Indirect approach. Recovering lost information makes SI-HDR more chal-
lenging than MEF HDR imaging, hence some methods mitigate this difficulty
indirectly. Common idea [34–38] is to transfer single SDR image into multi-
exposure SDR sequence to be later merged into HDR using traditional MEF
algorithm. Other ideas include: learning the relationship between fixed and real
degradation [39], non-I2I (image-to-image) histogram learning [40], using spatial
adaptive convolution whose per-pixel weight is predicted by DNN [41], and pol-
ishing the result of 3 traditional ITM operators [42]. We take direct approach
since indirect one conflicts with the goal of efficient design.

2.1 Lightweight SI-HDR

Lightweight/efficient DNN has long received attention academically and indus-
trially in other low-level vision tasks, e.g. super-resolution [43,44], denosing [45],
and even MEF HDR imaging [8]. Yet, few efforts are made in SI-HDR:

Preliminary attempts are made in [23] and [36] where feedback/recursive
DNN module with shared parameters is used to reduce total number of DNN
parameters (#param), however, only #param is reduced while computational
cost is not. To be deployed on mobile platform, [32] reduce computational cost by
changing some parameter precision from float32 to int8. [33] apply a similar
scheme as [11] but use group convolution to lighten their DNN. [42] is efficient
mainly due to its pre/post-processing: their DNN only needs to polish single
luminance channel resulting from existing methods.

Their efficiency is manifested in #param, number of multiply-accumulate
operations (MACs), and runtime, which will be detailed in experiment part.

2.2 Problem Modeling of SI-HDR

SI-HDR belongs to restoration problem, even using ‘black box’ DNN, some meth-
ods still try to figure out exact degradations to restore. They assign specific
degradation with a single step of sub-network and resolve them hierarchically.
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Some methods divide their steps subjectively: [27] into ‘denoising and expo-
sure adjustment’ and tone expansion; [29] into dequantization and hallucination;
while that of [30] are linearization, hallucination, and refinement.

Few are based on formulating a camera pipeline: [10] divide the task into
inverting CRF, bit-depth expansion, and under&over-exposure reconstruction,
while steps of [13] are dequantization, linearization, hallucination, and refine-
ment. All these step divisions or problem modeling could not cover both noise
and compression from legacy SDR, our ‘target audience’.

2.3 SI-HDR for Legacy Content

Non-DNN method [17] share the same hypothesis that legacy SDR content is
susceptible to noise and quantization artifact, and uses filter to mitigate them.
Though DNN has been widely studied in SI-HDR, denoising, and compression
artifact removal separately, no DNN-based method is motivated to jointly handle
all 3 tasks. Yet, there do exist methods tackling up to 2 of them simultaneously:

Joint SI-HDR and compression artifact removal. [11] provide an alter-
native checkpoint trained with JPEG compressed SDR whose quality factor (QF)
∼ U(30, 100) while [21] is trained with JPEG degradation with QF ∼ U(10, 70).

Joint SI-HDR and denoising. Input SDR images in the training set of
NTIRE HDR Challenge [8, 46] contain zero-mean additive Gaussian camera
noise, consequently all methods there will learn to jointly denoise. However,
only [15,27] etc. belongs to SI-HDR, while the rest are MEF HDR imaging.

2.4 HDR Degradation Model

From the above section, we know that only when specific degradation is added in
training, the DNN will learn a corresponding restoration ability. Different from
conventional image/video, there are exclusive steps in HDR-to-SDR degradation
model due to their dynamic range discrepancy:

Table 1: HDR-exclusive degradation models used by related works.
Type Used by Nonlinearity Under-∼ Over-exp. truncate

Simulated shot

[11,14,25,28]
[31, 33,39]

virtual CRF
w. rand. param. × histogram fraction

∼ U(5%, 15%)
[13, 29,34] rand. real CRFs rand. exposure adjust.[30] fixed CRF

[21] ‘virtual cam.’ × value ∼ U(0, 10%)
[15, 27] etc. gamma2.2± 0.7 fixed exposure adjust.

Trad. TMO
[12] rand. param. TMOs value ∼ U(0, 15%)
[41] × ×

[26, 32] fixed param. TMOs × ×
Mid. exp. SDR [19,22,40,42] fixed X X
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First, nonlinearity between HDR and SDR is a monotonically increasing one-
to-one mapping that itself will not introduce degradation. However, it substan-
tially diverse between real-world cameras, and is measured as CRF [10]. Second,
over/under-exposure truncation is to simulate the limited dynamic range of SDR.
As in Table 1, there are 3 common practices to conduct above degradation:

‘Simulated shot’ means getting input SDR by applying virtual camera on the
luminance recorded in label HDR. ‘Trad. TMO’ is for traditional tone mapping
operator (TMO) converting label HDR into input SDR. Finally, ‘Mid. exp. SDR’
starts from a multi-exposure SDR sequence, where middle-exposure (EV=0)
SDR is taken as input, meanwhile the whole sequence is merged as label HDR.

We argue that not all of them are favorable to SI-HDR training. For example,
the motive of TMO is the exact opposite of degradation in that TMO dedicate
to preserver as much information from HDR. In this case, DNN is not likely to
learn adequate restoration ability since input SDR is also of high quality (see
later experiment). Such analysis serves as the guidance of our training strategy.

3 Proposed Method

3.1 Problem Modeling

As mentioned above, problem modeling is to figure out what degradations are
to be restored, so we can (1) apply DNN mechanism tailored for specific degra-
dation, and (2) arrange degradations correctly when training. Similar to [13], we
model the SI-HDR task as the reverse of HDR-to-SDR camera pipeline. Since
their preliminary model could not envelop the source of noise and compression in
legacy content, and the potential color space discrepancy between SDR and HDR
(e.g. some HDR data [47, 48] is in camera RGB primaries rather than sRGB),
we derive a more comprehensive model from a precise camera pipeline [16].

As in Figure2, our model consist of 6 steps with various degradations intro-
duced sequentially. After determining 5 degradations and totally 7 operations
to resolve in SI-HDR (nonlinearity and CST is not degradation, but do need
an operation to reverse), one option is following [13] i.e. executing each step
sequentially. However, cascaded sub-networks will make our method bulky thus
conflicting with lightweight design ( [13] is the slowest one, see Table3). Hence,

Sensor & 
exposure 

adjustment

#   #   #
#   #   #
#   #   #

Color space 
transform 

(CST)

Color gamut 
mapping

Adding non-
linearity 

8-bit
quantization 

HDR Scene 
Luminance

SDR
Image

R3→R3 ...

Degradation 
Introduced:

(1) camera noise
(2) dynamic range truncation

(3) out-of-gamut 
(OOG) truncation

Internet
distribution 

usually

(4) quantization 
artifact

(5) compression 
artifact

Fig. 2: Our problem modeling: SI-HDR is treated as the inverse of camera
pipeline from linear HDR luminance to nonlinear SDR. See supplementary ma-
terial for detailed derivation.
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inspired by the taxonomy of traditional SI-HDR/EO(expansion operator), we
turn to analyze each operation and divide them into 2 categories:

Global operations. CST and nonlinearity belong to global operation where
neighboring pixels are not involved in its reversion. Also, it’s proven in [49]
that both CST and nonlinearity can be approcahed by a multi-layer perceptron
(MLP) on multiple channels of single pixel.

Local operations. The rest are ‘local’ operations where different extent of
neighboring context is required in their reversion: From other low-level vision
tasks e.g. denosing and compression artifact removal etc. we know that recover-
ing (1)(3)(4)(5) in Figure2 only require the help of adjacent (small-scale) infor-
mation. While under&over-exposure reconstruction is more challenging since it
requires long-distance dependency, similar as image inpainting.

3.2 DNN Structure

Since there are 2 distinct types of operation/degradation to resolve, we assign 2
steps of sub-network with different customized structure.

Global network. While most DNN structures are capable of global opera-
tion, we adopt minimum-overhead MLP adhering to lightweight principle. Here,
image per-pixel MLP is implemented by 4-layer point-wise (1× 1) convolution.

In bottom Figure3(a), prior with spatial-overall inforamtion is used to remedy
insufficient receptive-filed. Here, different from [30]/ [31] whose prior is segmen-
taion/attention map respectively, ours is input SDR itself depending on what
prior information we need. Specifically, we need information of overall lumi-
nance/pixel energy. For example, an bright image should require less expansion
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in SI-HDR, and such prior will help the DNN to understand this. Finally, mod-
ulation branch will processe prior to αscale, βbias ∈ Rc×1×1 for modulation:

modulation(x) = αscale � x + βbias,x ∈ Rc×h×w (1)

where � is channel-wise multiply. αscale, βbias ∈ Rc×1×1 ranther than Rc×h×w
since it’s only supposed to contain spatial-global information. The superiority of
prior’s shape and type has been respectively proven in [15] and [49].

Local network is responsible for inverting all local operations. We split it
into 2 branches according to 2 scales of operation. In top Figure 3(b), we use a 5-
layer densely-connected convolution block with small receptive-filed to deal with
small-scale local operations. For large-scale under&over-exposure reconstruction,
we apply a 2-level encoder-decoder containing residual blocks (RB) to establish
long-range dependency, at bottom Figure 3(b). We also utilize 2 types of soft-
mask to ameliorate DNN’s over-exposure recover capability:

{
maskbright valid(p) = max(0, (p− t)/(1− t))
maskbright invalid(p) = max((p− 1)/(t− 1), 1)

, t = 0.9,p ∈ [0, 1] (2)

Here, prior (p) cooperates with 2 kind of masks which aims to endow DNN
with different spatial emphasis on over-exposed areas. Hence, the prior is also set
to input SDR itself containing luminance information from where over-exposure
can be inferred. Specifically, since the surrounding of saturated area is helpful
for its recover (consider the case of center saturated direct illuminant), we put
maskbright valid before spatial modulation (SFT [50]) branch to reweight pixels
there. SFT can also be expressed as Equation1, but with αscale, βbias ∈ Rc×h×w
and � for pixel-wise multilpy. Yet, saturated area itself is of no useful informa-
tion for its recover, we therefore multiply tensor with maskbright invalid before
convolution (partial convolution [51]), to exclude it from deep feature generation.

Lightweight modules. Apart from 1×1 convolution in global network with
less #param, we also change half of the convolution layers in local network’s
UNet branch to group(= 4) convolution. The main contributor of lightweight
design lies, yet, in the idea that low-level vision task donot have an appetite for
model complexity/depth. Finally, as in Figure 3(c), global and local network are
integrated into a 2-step network. We put local network first since we empirically
found it resulting more accurate color reproduction.Also, all activations are leaky
rectified linear unit (leakyReLU) except the last layer (ReLU), hence we remove
all normalization layers to fully utilize the nonlinear tail of leakyReLU.

3.3 Training Strategy

We adopt supervised training where input SDR and traget HDR are required. As
mentioned above, both HDR-exclusive and conventional degradations in input
SDR images are crucial for the DNN’s learned recover capability.
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Table 2: Statistics of SDR images (x′) in candidate training set. Average portion
(avg.) of under/over-exposure pixels (i) reflects the extent of HDR-exclusive
degradation, its standard deviation (stdev.) stands for the degradation diversity.
Note that over-exposure value (val.) of [46] is 248 i.e. @ x′i ∈ (248, 255].

Category Data
set

Resol
ution #pair SDR under-exp. pixel SDR over-exp. pixel

val. avg.(%) stdev. val. avg.(%) stdev.

Simulated
shot

[3] 1.5k 74

0

0 N/A 255 3.533 0.0535
[13] 512 9786 6.365 0.1673 8.520 0.1888
[46] HD 1494 8.840 0.0766 248 4.711 0.0497

Mid. exp.
SDR

[47] >4k 105 1.709 0.0647 255 4.355 0.0821
[42] 6k 400 1.200 0.0373 1.081 0.0191

Dataset with HDR-exclusive degradation. Many previous works have
released their training set in the form of HDR-SDR pairs, which means HDR-
exclusive degradations are already contained. Those datasets have crafted highly-
diversified scenes, and are generated by 1 of the 3 ways in Table1. As analyzed
there, ‘Trad. TMO’ is not beneficial, hence we exclude all such training set from
candidate. In Table2, we quantify the statistics of degraded SDR images in can-
didate training set. We finally mix NTIRE [46] and Fairchild [47] Dataset based
on such statistics: that their over&under-exposure degradation is of appropriate
extent and diversity. Meanwhile, the HDR-SDR nonlinearity in [47] is fixed, this
is remedied since that of [46] is diversified, as in Table1. Their ratio in final
training patches (sized 600× 600, total 6060) is about 11:4(NTIRE:Fairchild).

Conventional degradations are to simulate the characteristics of legacy
SDR. We conduct them on off-the-shelf SDR images from above datasets: From
[16] we know that camera noise is first gathered at sensor’s linear RAW re-
sponse, while compression is lastly added before storage. Hence, we first linearize
SDR image and then simulate it to camera RAW RGB primaries, before adding
Poisson-Gaussian camera noise whose distribution is simplified to heteroscedas-
tic Gaussian with σ ∼ U(0.001, 0.003). Then, the image is transferred back to
sRGB, before adding compression. Like [52], we use double JPEG compression
to simulate multiple internet transmissions of legacy content, but we use a more
realistic model where the first QF∼ U(60, 80) and the second QF is fixed 75 but
on rescaled image patches. See supplementary material for detail.

Data pre&post-processing can make pixel value of linear HDR more
evenly-distributed thus easier for DNN to understand. While various non-linear
pre-processing e.g. µ-law etc. are widely exploited [11,14,18,19,21,22,24,28,31],
we choose a simple-yet-effective gamma pre-processing: All label HDR images
(y) are normalized by their maximum recorded luminance, then transferred to
nonlinear domain (denote with superscript ′) before sending to DNN, i.e.

y′ = (
y

max(y)
)γ , γ = 0.45 (3)
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In this case, we append post-processing ȳ = ȳ′1/0.45 on DNN’s output HDR
image (ȳ′) during inference phase, to bring it back to linear domain.

Loss function. Our ‘l1’ and ‘lg’ (gradient loss) can both be formulated as
average element(i)-wise distance: 1

n

∑n
i=1 ||f(ȳ′i)− f(y′i)| |1 where f() is non-

op for ‘l1’, and a discrete differential operator (outputting R2×3×h×w where
2 means gradient map on both horizontal and vertical direction) for ‘lg’. The
latter is added to highlight the local structure perturbation brought by noise
and compression artifact. Final loss are empirically set to: l1 + 0.1× lg. All DNN
parameters are Kaiming initialized and optimized by AdAM with learning rate
starting from 2× 10−4 and decaying to half every 2.5× 105 iters. More training
details can be found in supplementary material.

4 Experiments

Criteria. Accroding to the motive of our SI-HDR method, we focus on 3 aspects:
(1) Recovery ability of lost information in saturated area, (2) lumiance estimation
accuracy and (3) restoration capability of conventional degradations. The first
two apply to all SI-HDR methods, while the last one is our emphasis.

Moreover, as reported by [10] and [53], current pixel-distance-based metrics
tend to make an assessment paradoxical to subjective result. Hence, we introduce
more detailed portrait to assess (1) and (3), while metrics are still used for (2).

4.1 Comparison with SOTA

Our method is compared with 8 others including 7 DNN-based and 3 with
lightweight motive, as listed in Table3. We use PSNR, SSIM and ‘quality corre-
late’ from HDR visual difference predictor 3 (VDP) [54] for quantitative analysis.

On simulated legacy SDR. The test set consists of 95 simulated legacy
SDR images from same dataset and extent of degradation as in training. Note
that some methods will inevitably struggle to handle SDR with noise and com-
pression, since they are not trained so. Yet, we didn’t re-train them because it’s
not our work to compensate for their insufficiency in training strategy e.g. [12]
has weaker over-exposure recovery ability mainly due to HDR-exclusive degrada-
tion in training set. Still, for a fair comparison, for methods not trained to han-
dle such conventional degradations, we first process input SDR with pre-trained
auxiliary DNN to mitigate compression artifact(?) [55] and/or noise(†) [56].

In Table3, our method got the highest metrics with minimal runtime and sec-
ond least #param and MACs. As reported by [10], the main contributor to an
appealing score lies in method’s estimation accuracy of nonlinearity/CRF. This
idea can be confirmed by the heatmap in Figure4(b) where each method’s lumi-
nance distribution corespond with metrics. Therefore, we turn to assess degra-
dation recovery ability by detailed visual comparison in Figure4(a). As seen,
our method is able to suppress noise and compression while recover adequate
information from dark&saturated areas.
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HDRCNN[11]Input SDR ExpandNet[12] SingleHDR[13] DHDR[14] HDRUNet[15]

FHDR[23] HDR-LFNet[42] RempelEO[17] ours HDR GT

HDRCNN[11]Input SDR ExpandNet[12] SingleHDR[13] DHDR[14] HDRUNet[15]

FHDR[23] HDR-LFNet[42] RempelEO[17] ours HDR GT

ours (full)

Input SDR (full)

ours (full)

Input SDR (full)
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‘showgirl_02_3
02015’ in [48]
(‘1280 ’ in [46])

QF = 78+75
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from [47]

QF = 68+75

HDRCNN[11]Input SDR ExpandNet[12] SingleHDR[13] DHDR[14] HDRUNet[15]

FHDR[23] HDR-LFNet[42] RempelEO[17] ours HDR GTours (full)

Input SDR (full)
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‘bistro_091013’ 

in [48]
(‘0140 ’ in [46])

QF = 71+75

(a) Detailed comparison. All HDR images/patches in relative linear luminance are
visualized by MATLAB tone-mapping operator (TMO) ‘localtonemap’. We select this
TMO since it preserves local contrast thus detail information in both dark and bright
areas become more conspicuous.
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(b) Recovered HDR luminance, visualized by MATLAB heatmap ‘turbo’. Closer lumi-
nance distribution with GT means better for IBL [1] application.

Fig. 4: Results on simulated legacy SDR input.
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Table 3: Quantitative comparison of all competitors. Note that MACs and run-
time (both for R3×1080×1920 input) are counted only within DNN, and on desktop
computer with i7-4790k CPU and GTX1080 GPU, respectively. Superscript1/2/3
stands for Tensorflow/PyTorch/MATLAB implementation, ‘DeC.’ and ‘DeN.’ is
respectively for compression artifact removal and denoise.

Method Designed to Lightw.
Motive

Overhead Metrics
DeC. DeN. #param MACs runtime PSNR SSIM VDP

HDRCNN [11] X ×† × 31799k 2135G 15.54s1 32.40 .8181 5.806
ExpandNet [12] ×? ×† × 457k 508G 0.88s2 20.47 .5915 4.653
SingleHDR [13] ×? ×† × 30338k 1994G 41.98s1 35.52 .9100 6.231
DHDR [14] ×? ×† × 51542k 597G 10.49s2 20.00 .4760 4.766

HDRUNet [15] ×? X × 1651k 741G 1.51s2 31.06 .7638 5.688
FHDR [23] ×? ×† X 571k 2368G 10.60s2 20.26 .4374 4.985

HDR-LFNet [42] ×? ×† X 203k 47.7G 2.94s2 25.73 .4536 4.791
RempelEO [17] X X X N/A 6.75s3 24.14 .8045 4.710

ours X X X 225k 162G 0.53s2 38.12 .9515 7.173

On real legacy SDR. Legacy SDR in real application scenarios usually
contains an unknown degree of (blind) degradation. Here, each method is tested
on 51 real legacy SDR images from old movies, photographs, and TV programs.
Since there is no GT counterpart, we only provide visual comparison in Figure5.
As seen, our method is able to mitigate noise and compression while avoiding
producing artifacts at dark area which is more susceptible to noise.

Analysis. First, albeit some methods hold lightweight motive, they still take
long a time to run because: only #param is reduced while MACs is not [23]; most
runtime is spent in data pre/post-procesing outside the DNN [42].

Meanwhile, from Figure4 we can see that most competitors fail to jointly
denoise and remove compression artifact even with the help of auxiliary DNN
(?/†), and result with less artifact only appears in [11]/ [15] which is also respec-
tively trained with corresponding degradation. This confirms the significance
conventional degradation in training set.

Also, some methods [12,42] underperform reconstructing over-exposure area.
Reanson for [42] is that their DNN just polishes the result of traditional ex-
pansion operators (EOs), from where the lost information was never recovered.
For [12], the only competitor who is trained with ‘Trad. TMO’ dataset (see Ta-
ble1), reason lies in the insufficient degradation ability of ‘Trad. TMO’ ‘degra-
dation’. This proves the importance of HDR-exclusive degradation model.

The improtance of degradation model etc. will be further proved in ablation
studies below. More heuristics analysis, visual results, and detailed experiment
configuration are also provided in supplementary material.
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HDRCNN[11] ExpandNet[12] SingleHDR[13] DHDR[14]

HDRUNet[15] FHDR[23] HDR-LFNet[42] RempelEO[17] ours

Input legacy SDR

Fig. 5: Results on real legacy SDR input, tone-mapped for visualize.

4.2 Ablation Studies

In this section, we strat to verify the effectiveness of some key ingredients of our
method, including training configuration and DNN structure.

1○On HDR-exclusive degradation. In Section2.4&3.3, we argue that a
lower degree of over/under-exposure degradation of training SDR tend to en-

Table 4: Metrics of ablation studies. ‘Con. deg.’ stands for conventional degra-
dations i.e. camera noise and JPEG compression as in Section3.3.

Ablation Configuration Overhead Metrics
No. DNN struct. Training set Con. deg. #param MACs runtime PSNR SSIM VDP

unchanged (denote with -)
225k 162G 0.53s

38.12 .9515 7.173
1○ - change to [42] - 29.55 .7123 5.370
2○ - - w/o. 37.16 .8403 6.786
3○ w/o. P.C. - - 337k 206G 0.66s 36.29 .8112 6.603
4○ w/o. G.C. - - 555k 207G 0.69s 38.85 .9570 7.191
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dow DNN with less recovery ability. From Table2 we know that the propor-
tion of over/under-exposure pixels in current training set [46,47] is about 2-9%.
Here, keeping other variables unchanged, we replace the training set with HDR-
LFNet [42] whose SDR over/under-exposure pixels only account about 1% of
the image (see Table2). As anticipated, when trained with sparingly-degraded
SDR, Figure6(a)(2) recover far less content in over&under-exposed areas than
(a)(3). Meanwhile, metrics in Table4 1○ drop significantly since DNN learned a
different lumiance value distribution from another training set.

2○On conventional degradations. Here, we remove all camera noise and
JPEG compression, to see if DNN still learn corresponding restoration ability.
As in Figure6(b)(2), without extra degradations in training set, our method
also struggle to suppress noise and compression artifact, same as other meth-
ods without conventional training degradtions. Also, in Table4 2○, PSNR drop
slightly since the training set is unchanged, thus the learned pixel energy dis-
tribution is still accurate. While the decline of SSIM and VDP-Q is relatively
larger since the local structure is perturbed by noise and compression artifact.

(1) SDR Input (2) [42] (3) Ours (4) GT

(a) The impact of HDR-exclusive degra-
dation on over-(green arrow) and under-
exposure(red arrow) recovery ability.

(1) SDR Input (2) w.o. (3) w. 

(b) The effect of conventional degradations
on artifact restoration capability.

(1) SDR Input (2) w/o. Partial Conv.

(1) (2) (1) (2)

(3) w. Partial Conv. (4) HDR GT

(3) (4) (3) (4)

(c) on partial convolution [51]

(1) SDR Input (2) w/o. Group Conv.

(3) w. Group Conv.

(3) (4)(1) (2) (1) (2)

(4) HDR GT

(3) (4)

(d) on group convolution

Fig. 6: Visual demonstration of ablation studies.
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3○On partial convolution and bright invalid mask. They are claimed
as another contributor to DNN’s over-exposure recover ability, apart from HDR-
exclusive degradation above. Here, we show their indispensability by replacing
it with a symmetric structure of decoder, i.e. ‘P.conv. RB’ at bottom Figure3(b)
are replaced with ‘SFT RB’. In this case, to-be-recover saturated pixels in Fig-
ure6(c) tend to spread, and metrics also suffer a decline as ‘w/o. PC’ in Table3 3○
shows. The immediate effect proves their ability to exclude useless saturated pat-
tern hence better intermediate deep feature will be generated for the decoder’s
reconstruction. This is the exact reason why they are placed at encoder rather
than decoder end.

4○On group convolution. Lightweight DNN has been proven of adequate
capability for other low-level vision tasks [8,43–45]. Therefore, we want to check
if this also makes sense in SI-HDR. Group convolution (G.C.) is one of the
contributor of lightweight design, here we depict if it will deteriorate the DNN’s
perfromance. By comparing Table3 4○ we know that lightening DNN using group
convolution do cause a slight decline on metrics, however, will lead to few no-
ticeable difference in visual result, as Figure6(d) shows.

5 Conclusion

Legacy SDR content contains classic historical scenes that cannot be reproduced,
and, however, limited dynamic range and degradations brought by old imaging
system and multiple transmissions. This formulates an ill-posed problem, SI-
HDR, when we want to put those legacy content into HDR application.

The community has begun to take advantage of DNN in SI-HDR problem.
We also used DNN but handled more specific problems that hinder current DNN-
based methods from real-world deployment: we designed a more lightweight DNN
and trained it with elaborately designed degradations. Meanwhile, we reformed
SI-HDR problem modeling to better derive DNN structure and arrange degrada-
tions correctly. Experiments show that our method is readily applicable to both
synthetic and real legacy SDR content. Ablation studies also reveal some fac-
tor that will significantly impact the performance of SI-HDR method, including
degradation model which has long been understated. Our code is available3.

Despite the preliminary step we made towards legacy-content-applicable SI-
HDR, its cross-degradation generalizability still call for improvement: First, our
method perfrom well on degraded legacy content, but not on clean SDR. Specif-
ically, it tend to vanish/over-smooth high-frequency detail which is mistaken as
degraded pattern. This issue also occurs in [15] etc. and should be considered by
all legacy-SDR-oriented SI-HDR methods.

Acknowledgements This work was supported by the PCL2021A10-1 Project
of Peng Cheng Laboratory.

3 https://www.github.com/AndreGuo/LHDR

https://www.github.com/AndreGuo/LHDR
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