Skip to main content

PromptLearner-CLIP: Contrastive Multi-Modal Action Representation Learning with Context Optimization

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13844))

Included in the following conference series:

  • 350 Accesses

Abstract

An action contains rich multi-modal information, and current methods generally map the action class to a digital number as supervised information to train models. However, numerical labels cannot describe the semantic content contained in the action. This paper proposes PromptLearner-CLIP for action recognition, where the text pathway uses PromptLearner to automatically learn the text content of prompt as the input and calculates the semantic features of actions, and the vision pathway takes video data as the input to learn the visual features of actions. To strengthen the interaction between features of different modalities, this paper proposes a multi-modal information interaction module that utilizes Graph Neural Network(GNN) to process both the semantic features of text content and the visual features of a video. In addition, the single-modal video classification problem is transformed into a multi-modal video-text matching problem. Multi-modal contrastive learning is used to disclose the feature distance of the same but different modalities samples. The experimental results showed that PromptLearner-CLIP could utilize the textual semantic information to significantly improve the performance of various single-modal backbone networks on action recognition and achieved top-tier results on Kinetics400, UCF101, and HMDB51 datasets. Code is available at https://github.com/ZhenxingZheng/PromptLearner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: CVPR, pp. 6077–6086. IEEE, Salt Lake City, UT, USA (2018)

    Google Scholar 

  2. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: ViViT: a video vision transformer. In: ICCV, pp. 6836–6846. IEEE, Montreal, Canada (2021)

    Google Scholar 

  3. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML, pp. 813–824. ACM, Virtual (2021)

    Google Scholar 

  4. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: CVPR, pp. 4724–4733. IEEE, Honolulu, HI, USA (2017)

    Google Scholar 

  5. Choutas, V., Weinzaepfel, P., Revaud, J., Schmid, C.: PoTion: pose motion representation for action recognition. In: CVPR, pp. 7024–7033. IEEE, Salt Lake City (2018)

    Google Scholar 

  6. Crasto, N., Weinzaepfel, P., Alahari, K., Schmid, C.: MARS: motion-augmented RGB stream for action recognition. In: CVPR, pp. 7874–7883. IEEE, Long Beach, CA, USA (2019)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR, pp. 1–21. Virtual (2021)

    Google Scholar 

  8. Fan, H., et al.: Multiscale vision transformers. In: ICCV, pp. 6824–6835. IEEE, Montreal, Canada (2021)

    Google Scholar 

  9. Fan, L., Huang, W., Gan, C., Ermon, S., Gong, B., Huang, J.: End-to-end learning of motion representation for video understanding. In: CVPR, pp. 6016–6025. IEEE, Salt Lake City, UT, USA (2018)

    Google Scholar 

  10. Feichtenhofer, C.: X3D: expanding architectures for efficient video recognition. In: CVPR, pp. 200–210. IEEE, Seattle, WA, USA (2020)

    Google Scholar 

  11. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: CVPR, pp. 6202–6211. IEEE, Seoul, Korea (2019)

    Google Scholar 

  12. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9726–9735. IEEE, Seattle, WA, USA (2020)

    Google Scholar 

  13. Huang, G., Bors, A.G.: Learning spatio-temporal representations with temporal squeeze pooling. In: ICASSP, pp. 2103–2107. IEEE, Barcelona, Spain (2020)

    Google Scholar 

  14. Huang, G., Bors, A.G.: Busy-quiet video disentangling for video classification. In: WACV, pp. 1341–1350. IEEE, Waikoloa, HI, USA (2022)

    Google Scholar 

  15. Kar, A., Rai, N., Sikka, K., Sharma, G.: AdaScan: adaptive scan pooling in deep convolutional neural networks for human action recognition in videos. In: CVPR, pp. 5699–5708. IEEE, Honolulu, HI, USA (2017)

    Google Scholar 

  16. Kay, W., et al.: The kinetics human action video dataset (2017)

    Google Scholar 

  17. Khosla, P., et al.: Supervised contrastive learning. In: NeurIPS, pp. 18661–18673. MIT Press, Virtual (2021)

    Google Scholar 

  18. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: ICCV, pp. 2556–2563. IEEE, Barcelona, Spain (2011)

    Google Scholar 

  19. Lei, J., et al.: Less is more: clipBERT for video-and-language learning via sparse sampling. In: CVPR, pp. 7331–7341. IEEE, Virtual (2021)

    Google Scholar 

  20. Li, J., Wei, P., Zhang, Y., Zheng, N.: A slow-i-fast-p architecture for compressed video action recognition. In: ACM MM, pp. 2039–2047. ACM, Seattle, WA, USA (2020)

    Google Scholar 

  21. Li, J., Liu, X., Zhang, W., Zhang, M., Song, J., Sebe, N.: Spatiotemporal attention networks for action recognition and detection. IEEE Trans. Multimedia 22(11), 2990–3001 (2020)

    Article  Google Scholar 

  22. Li, X., Wang, Y., Zhou, Z., Qiao, Y.: SmallBigNet: integrating core and contextual views for video classification. In: CVPR, pp. 1092–1101. IEEE, Seattle, WA, USA (2020)

    Google Scholar 

  23. Li, Y., Ji, B., Shi, X., Zhang, J., Kang, B., Wang, L.: Tea: temporal excitation and aggregation for action recognition. In: CVPR, pp. 906–915. IEEE, Seattle, WA, USA (2020)

    Google Scholar 

  24. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: ICCV, pp. 7082–7092. IEEE, Seoul, Korea (2019)

    Google Scholar 

  25. Liu, Z., et al.: TEINet: towards an efficient architecture for video recognition. In: AAAI, pp. 11669–11676. AAAI, New York, USA (2020)

    Google Scholar 

  26. Liu, Z., Wang, L., Wu, W., Qian, C., Lu, T.: TAM: temporal adaptive module for video recognition. In: ICCV, pp. 13708–13718. IEEE, Montreal, Canada (2021)

    Google Scholar 

  27. Neimark, D., Bar, O., Zohar, M., Asselmann, D.: Video transformer network. In: ICCV, pp. 3163–3172. IEEE, Montreal, Canada (2021)

    Google Scholar 

  28. Pan, T., Song, Y., Yang, T., Jiang, W., Liu, W.: VideoMoCo: contrastive video representation learning with temporally adversarial examples. In: CVPR, pp. 11200–11209. IEEE, Virtual (2021)

    Google Scholar 

  29. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763. ACM, Virtual (2021)

    Google Scholar 

  30. Ranasinghe, K., Naseer, M., Khan, S., Khan, F.S., Ryoo, M.: Self-supervised video transformer. In: CVPR, pp. 2874–2884. IEEE, New Orleans, Louisiana, USA (2022)

    Google Scholar 

  31. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild (2012)

    Google Scholar 

  32. Thatipelli, A., Narayan, S., Khan, S., Anwer, R.M., Khan, F.S., Ghanem, B.: Spatio-temporal relation modeling for few-shot action recognition. In: CVPR, pp. 19958–19967. IEEE, New Orleans, Louisiana, USA (2022)

    Google Scholar 

  33. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: ICCV, pp. 4489–4497. IEEE, Santiago, Chile (2015)

    Google Scholar 

  34. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: CVPR, pp. 6450–6459. IEEE, Salt Lake City, UT, USA (2018)

    Google Scholar 

  35. Truong, T.D., et al.: DirecFormer: a directed attention in transformer approach to robust action recognition. In: CVPR, pp. 20030–20040. IEEE, New Orleans, Louisiana, USA (2022)

    Google Scholar 

  36. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008. MIT Press, Long Beach, CA, USA (2017)

    Google Scholar 

  37. Wang, L., Li, W., Li, W., Van Gool, L.: Appearance-and-relation networks for video classification. In: CVPR, pp. 1430–1439. IEEE, Salt Lake City, UT, USA (2018)

    Google Scholar 

  38. Wang, L., Tong, Z., Ji, B., Wu, G.: TDN: temporal difference networks for efficient action recognition. In: CVPR, pp. 1895–1904. IEEE, Virtual (2021)

    Google Scholar 

  39. Wang, L., et al.: Temporal segment networks for action recognition in videos. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2740–2755 (2019)

    Article  Google Scholar 

  40. Wang, M., Xing, J., Liu, Y.: ActionCLIP: a new paradigm for video action recognition (2021)

    Google Scholar 

  41. Wang, R., et al.: BEVT: BERT pretraining of video transformers. In: CVPR, pp. 14733–14743. IEEE, New Orleans, Louisiana, USA (2022)

    Google Scholar 

  42. Wang, X., Gupta, A.: Videos as space-time region graphs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 413–431. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_25

    Chapter  Google Scholar 

  43. Wu, Z., Jiang, Y.G., Wang, X., Ye, H., Xue, X.: Multi-stream multi-class fusion of deep networks for video classification. In: ACM MM, pp. 791–800. ACM, Amsterdam, Netherlands (2016)

    Google Scholar 

  44. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_19

    Chapter  Google Scholar 

  45. Xu, B., Ye, H., Zheng, Y., Wang, H., Luwang, T., Jiang, Y.: Dense dilated network for video action recognition. IEEE Trans. Image Process. 28(10), 4941–4953 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, C., Xu, Y., Shi, J., Dai, B., Zhou, B.: Temporal pyramid network for action recognition. In: CVPR, pp. 588–597. IEEE, Seattle, WA, USA (2020)

    Google Scholar 

  47. Yang, S., Li, G., Yu, Y.: Dynamic graph attention for referring expression comprehension. In: ICCV, pp. 4643–4652. IEEE, Seoul, Korea (2019)

    Google Scholar 

  48. Zhang, H., Hao, Y., Ngo, C.W.: Token shift transformer for video classification. In: ACM MM, pp. 917–925. ACM, Chengdu, China (2021)

    Google Scholar 

  49. Zhang, Y., et al.: VidTr: video transformer without convolutions. In: ICCV, pp. 13577–13587. IEEE, Montreal, Canada (2021)

    Google Scholar 

  50. Zhao, Y., Wang, G., Luo, C., Zeng, W., Zha, Z.J.: Self-supervised visual representations learning by contrastive mask prediction. In: ICCV, pp. 10160–10169. IEEE, Virtual (2021)

    Google Scholar 

  51. Zheng, Y., Liu, Z., Lu, T., Wang, L.: Dynamic sampling networks for efficient action recognition in videos. IEEE Trans. Image Process. 29, 7970–7983 (2020)

    Article  MATH  Google Scholar 

  52. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. Int. J. Comput. Vision 130, 2337–2348 (2022)

    Article  Google Scholar 

  53. Zhu, L., Yang, Y.: ActBERT: learning global-local video-text representations. In: CVPR, pp. 8746–8755. IEEE, Seattle, WA, USA (2020)

    Google Scholar 

  54. Zong, M., Wang, R., Chen, X., Chen, Z., Gong, Y.: Motion saliency based multi-stream multiplier ResNets for action recognition. Image Vis. Comput. 107, 104108 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China under Grant 2021YFE0110500 and in part by the National Natural Science Foundation of China under Grant 62006015 and Grant 62072028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoyun An .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Z., An, G., Cao, S., Yang, Z., Ruan, Q. (2023). PromptLearner-CLIP: Contrastive Multi-Modal Action Representation Learning with Context Optimization. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13844. Springer, Cham. https://doi.org/10.1007/978-3-031-26316-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26316-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26315-6

  • Online ISBN: 978-3-031-26316-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics