Skip to main content

Robustizing Object Detection Networks Using Augmented Feature Pooling

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13845))

Included in the following conference series:

Abstract

This paper presents a framework to robustize object detection networks against large geometric transformation. Deep neural networks rapidly and dramatically have improved object detection performance. Nevertheless, modern detection algorithms are still sensitive to large geometric transformation. Aiming at improving the robustness of the modern detection algorithms against the large geometric transformation, we propose a new feature extraction called augmented feature pooling. The key is to integrate the augmented feature maps obtained from the transformed images before feeding it to the detection head without changing the original network architecture. In this paper, we focus on rotation as a simple-yet-influential case of geometric transformation, while our framework is applicable to any geometric transformations. It is noteworthy that, with only adding a few lines of code from the original implementation of the modern object detection algorithms and applying simple fine-tuning, we can improve the rotation robustness of these original detection algorithms while inheriting modern network architectures’ strengths. Our framework overwhelmingly outperforms typical geometric data augmentation and its variants used to improve robustness against appearance changes due to rotation. We construct a dataset based on MS COCO to evaluate the robustness of the rotation, called COCO-Rot. Extensive experiments on three datasets, including our COCO-Rot, demonstrate that our method can improve the rotation robustness of state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our code of will be available at http://www.ok.sc.e.titech.ac.jp/res/DL/index.html.

  2. 2.

    Note that the TTA curve assumes that each inference before ensemble is ideal, and thus this occupancy is the upper bound.

  3. 3.

    The dimensions of feature map \({{\mathbf{{x}}}}^{l}\) are the same as the original backbones.

  4. 4.

    The details of our dataset are described in our supplemental.

  5. 5.

    As shown in our supplemental, AP\(_{50}\) and AP\(_{75}\) are also the highest in the proposed method as well as mAP.

  6. 6.

    Note that, in PASCAL VOC, the standard evaluation metric is AP\(_{50}\).

  7. 7.

    We also show AP\(_{50}\) and AP\(_{75}\) in our supplementary material.

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, pp. 265–283 (2016)

    Google Scholar 

  2. Cai, Z., Vasconcelos, N.: Cascade r-cnn: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2019). https://doi.org/10.1109/tpami.2019.2956516

  3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  4. Chen, K., et al.: Hybrid task cascade for instance segmentation. In: IEEE Conference Computer on Vision Pattern Recognition (CVPR) (2019)

    Google Scholar 

  5. Chen, K., et al.: MMDetection: open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  6. Chen, Q., Wang, Y., Yang, T., Zhang, X., Cheng, J., Sun, J.: You only look one-level feature. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR) (2021)

    Google Scholar 

  7. Cheng, G., Han, J., Zhou, P., Xu, D.: Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection. IEEE Trans. Image Process. 28(1), 265–278 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, G., Zhou, P., Han, J.: RIFD-CNN: rotation-invariant and fisher discriminative convolutional neural networks for object detection. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR), pp. 2884–2893 (2016)

    Google Scholar 

  9. Cohen, T., Welling, M.: Group equivariant convolutional networks. In: International Conference on Machine Learning (ICML) (2016)

    Google Scholar 

  10. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning augmentation policies from data. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR) (2019)

    Google Scholar 

  11. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: IEEE Conference on Computer Vision Pattern Recognition Workshop (CVPRW) (2020)

    Google Scholar 

  12. Dai, J., et al.: Deformable convolutional networks. In: International Conference on Computer Vision (ICCV), pp. 764–773 (2017)

    Google Scholar 

  13. Dai, Z., Cai, B., Lin, Y., Chen, J.: Up-detr: unsupervised pre-training for object detection with transformers. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR), pp. 1601–1610 (2021)

    Google Scholar 

  14. Ding, J., Xue, N., Long, Y., Xia, G.S., Lu, Q.: Learning ROI transformer for oriented object detection in aerial images. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR), pp. 2849–2858 (2019)

    Google Scholar 

  15. Ding, J., et al.: Object detection in aerial images: a large-scale benchmark and challenges (2021)

    Google Scholar 

  16. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. (IJCV) 111(1), 98–136 (2015)

    Article  Google Scholar 

  17. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. (IJCV) 88(2), 303–338 (2010)

    Article  Google Scholar 

  18. Gao, S., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.H.: Res2net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 43, 652–662 (2019)

    Article  Google Scholar 

  19. Ghiasi, G., Lin, T.Y., Le, Q.V.: Nas-fpn: learning scalable feature pyramid architecture for object detection. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR), pp. 7036–7045 (2019)

    Google Scholar 

  20. Han, J., Ding, J., Xue, N., Xia, G.S.: Redet: a rotation-equivariant detector for aerial object detection. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR) (2021)

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR) (2016)

    Google Scholar 

  22. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask r-cnn. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  23. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. Adv. Neural Inform. Process. Syst. (NeurIPS) 28, 1–9 (2015)

    Google Scholar 

  24. Jeon, Y., Kim, J.: Active convolution: learning the shape of convolution for image classification. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR), pp. 4201–4209 (2017)

    Google Scholar 

  25. Kalra, A., Stoppi, G., Brown, B., Agarwal, R., Kadambi, A.: Towards rotation invariance in object detection. In: International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  26. Laptev, D., Savinov, N., Buhmann, J.M., Pollefeys, M.: Ti-pooling: transformation-invariant pooling for feature learning in convolutional neural networks. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR) (2016)

    Google Scholar 

  27. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical evaluation of deep architectures on problems with many factors of variation. In: International Conference on Machine Learning (ICML) (2007)

    Google Scholar 

  28. Law, H., Deng, J.: Cornernet: detecting objects as paired keypoints. In: European Conference Computer Vision (ECCV), pp. 765–781. Springer, Heidelberg (2018)

    Google Scholar 

  29. Li, X.: Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection. Adv. Neural Inform. Process. Syst. (NeurIPS) 33, 21002–21012 (2020)

    Google Scholar 

  30. Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: Fast autoaugment. Adv. Neural Inform. Process. Syst. (NeurIPS) 32, 1–11 (2019)

    Google Scholar 

  31. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR), pp. 2117–2125 (2017)

    Google Scholar 

  32. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  33. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  34. Liu, L., Pan, Z., Lei, B.: Learning a rotation invariant detector with rotatable bounding box. arXiv preprint arXiv:1711.09405 (2017)

  35. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  36. Liu, Y., Wang, Y., Wang, S., Liang, T., Zhao, Q., Tang, Z., Ling, H.: Cbnet: a novel composite backbone network architecture for object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 11653–11660 (2020)

    Google Scholar 

  37. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: hierarchical vision transformer using shifted windows. In: International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  38. Marcos, D., Volpi, M., Komodakis, N., Tuia, D.: Rotation equivariant vector field networks. In: International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  39. Pang, J., et al.: Towards balanced learning for instance recognition. Int. J. Comput. Vis. (IJCV) 129(5), 1376–1393 (2021)

    Article  Google Scholar 

  40. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra r-cnn: towards balanced learning for object detection. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR) (2019)

    Google Scholar 

  41. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inform. Process. Syst. (NeurIPS) 32, 8026–8037 (2019)

    Google Scholar 

  42. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  43. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: IEEE Conference Computer Vision Pattern Recognition (CVPR), pp. 7263–7271 (2017)

    Google Scholar 

  44. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement (2018)

    Google Scholar 

  45. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inform. Process. Syst. (NeurIPS) 28, 1–9 (2015)

    Google Scholar 

  46. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  47. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representation (ICLR) (2015)

    Google Scholar 

  48. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: fully convolutional one-stage object detection. arXiv preprint arXiv:1904.01355 (2019)

  49. Vu, T., Jang, H., Pham, T.X., Yoo, C.D.: Cascade rpn: delving into high-quality region proposal network with adaptive convolution. Adv. Neural Inform. Process. Syst. (NeurIPS) 32, 1–11 (2019)

    Google Scholar 

  50. Wang, Z., et al.: Orientation invariant feature embedding and spatial temporal regularization for vehicle re-identification. In: International Conference on Computer Vision (ICCV), pp. 379–387 (2017)

    Google Scholar 

  51. Weng, X., Wu, S., Beainy, F., Kitani, K.M.: Rotational rectification network: enabling pedestrian detection for mobile vision. In: Winter Conference on Applications of Computer Vision (WACV), pp. 1084–1092. IEEE (2018)

    Google Scholar 

  52. Worrall, D.E., Garbin, S.J., Turmukhambetov, D., Brostow, G.J.: Harmonic networks: deep translation and rotation equivariance. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR) (2017)

    Google Scholar 

  53. Wu, Y., et al.: Rethinking classification and localization for object detection. arXiv (2019)

    Google Scholar 

  54. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  55. Xia, G.S., et al.: Dota: a large-scale dataset for object detection in aerial images. In: The IEEE Conference on Computer Vision Pattern Recognition (CVPR) (2018)

    Google Scholar 

  56. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR), pp. 1492–1500 (2017)

    Google Scholar 

  57. Xu, W., Wang, G., Sullivan, A., Zhang, Z.: Towards learning affine-invariant representations via data-efficient cnns. In: Winter Conference on Applications of Computer Vision (WACV) (2020)

    Google Scholar 

  58. Yang, S., Pei, Z., Zhou, F., Wang, G.: Rotated faster r-cnn for oriented object detection in aerial images. In: Proceedings of ICRSA (2020)

    Google Scholar 

  59. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. arXiv preprint arXiv:1912.02424 (2019)

  60. Zhang, Z., Jiang, R., Mei, S., Zhang, S., Zhang, Y.: Rotation-invariant feature learning for object detection in vhr optical remote sensing images by double-net. IEEE Access 8, 20818–20827 (2019)

    Article  Google Scholar 

  61. Zhang, Z., Chen, X., Liu, J., Zhou, K.: Rotated feature network for multi-orientation object detection. arXiv preprint arXiv:1903.09839 (2019)

  62. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  63. Zhou, Y., Ye, Q., Qiu, Q., Jiao, J.: Oriented response networks. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR) (2017)

    Google Scholar 

  64. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection. In: IEEE Conference Computer Vision Pattern Recognition (CVPR), pp. 840–849 (2019)

    Google Scholar 

  65. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection. In: International Conference on Learning Representation (2021). https://openreview.net/forum?id=gZ9hCDWe6ke

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Shibata .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6315 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shibata, T., Tanaka, M., Okutomi, M. (2023). Robustizing Object Detection Networks Using Augmented Feature Pooling. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13845. Springer, Cham. https://doi.org/10.1007/978-3-031-26348-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26348-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26347-7

  • Online ISBN: 978-3-031-26348-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics