Skip to main content

DreamNet: A Deep Riemannian Manifold Network for SPD Matrix Learning

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Abstract

The methods of symmetric positive definite (SPD) matrix learning have attracted considerable attention in many pattern recognition tasks, as they are eligible to capture and learn appropriate statistical features while respecting the Riemannian geometry of SPD manifold where the data reside on. Accompanied with the advanced deep learning techniques, several Riemannian networks (RiemNets) for SPD matrix nonlinear processing have recently been studied. However, it is pertinent to ask, whether greater accuracy gains can be realized by simply increasing the depth of RiemNets. The answer appears to be negative, as deeper RiemNets may be difficult to train. To explore a possible solution to this issue, we propose a new architecture for SPD matrix learning. Specifically, to enrich the deep representations, we build a stacked Riemannian autoencoder (SRAE) on the tail of the backbone network, i.e., SPDNet [23]. With this design, the associated reconstruction error term can prompt the embedding functions of both SRAE and of each RAE to approach an identity mapping, which helps to prevent the degradation of statistical information. Then, we implant several residual-like blocks using shortcut connections to augment the representational capacity of SRAE, and to simplify the training of a deeper network. The experimental evidence demonstrates that our DreamNet can achieve improved accuracy with increased depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The source code will be released on: https://github.com/GitWR/DreamNet.

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press (2009)

    Google Scholar 

  2. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29, 328–347 (2007)

    Google Scholar 

  3. Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Classification of covariance matrices using a riemannian-based kernel for BCI applications. Neurocomputing 112, 172–178 (2013)

    Google Scholar 

  4. Brooks, D., Schwander, O., Barbaresco, F., Schneider, J.Y., Cord, M.: Riemannian batch normalization for spd neural networks. arXiv preprint arXiv:1909.02414 (2019)

  5. Chakraborty, R., Bouza, J., Manton, J., Vemuri, B.C.: ManifoldNet: a deep neural network for manifold-valued data with applications. IEEE Trans. Pattern Anal. Mach. Intell. 44, 799–810 (2022)

    Google Scholar 

  6. Chen, Z., Xu, T., Wu, X.J., Wang, R., Kittler, J.: Hybrid Riemannian graph-embedding metric learning for image set classification. IEEE Trans. Big Data 9, 75–92 (2021) https://doi.org/10.1109/TBDATA.2021.3113084

  7. Chu, X., Zhou, T., Zhang, B., Li, J.: Fair DARTS: eliminating unfair advantages in differentiable architecture search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 465–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_28

    Chapter  Google Scholar 

  8. Dai, M., Zhang, Z., Srivastava, A.: Analyzing dynamical brain functional connectivity as trajectories on space of covariance matrices. IEEE Trans. Med. Imaging 39, 611–620 (2019)

    Google Scholar 

  9. Dhall, A., Goecke, R., Joshi, J., Sikka, K., Gedeon, T.: Emotion recognition in the wild challenge 2014: baseline, data and protocol. In: ICMI, pp. 461–466 (2014)

    Google Scholar 

  10. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: CVPR, pp. 1110–1118 (2015)

    Google Scholar 

  11. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1998)

    Google Scholar 

  12. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: CVPR, pp. 1933–1941 (2016)

    Google Scholar 

  13. Gao, Z., Wu, Y., Harandi, M., Jia, Y.: A robust distance measure for similarity-based classification on the SPD manifold. IEEE Trans. Neural Netw. Learn. Syst. 31, 3230–3244 (2020)

    Google Scholar 

  14. Garcia-Hernando, G., Kim, T.K.: Transition forests: learning discriminative temporal transitions for action recognition and detection. In: CVPR, pp. 432–440 (2017)

    Google Scholar 

  15. Garcia-Hernando, G., Yuan, S., Baek, S., Kim, T.K.: First-person hand action benchmark with RGB-D videos and 3D hand pose annotations. In: CVPR, pp. 409–419 (2018)

    Google Scholar 

  16. Hamm, J., Lee, D.D.: Grassmann discriminant analysis: a unifying view on subspace-based learning. In: ICML, pp. 376–383 (2008)

    Google Scholar 

  17. Harandi, M., Salzmann, M.: Riemannian coding and dictionary learning: kernels to the rescue. In: CVPR, pp. 3926–3935 (2015)

    Google Scholar 

  18. Harandi, M., Salzmann, M., Hartley, R.: Joint dimensionality reduction and metric learning: a geometric take. In: ICML, pp. 1404–1413 (2017)

    Google Scholar 

  19. Harandi, M., Salzmann, M., Hartley, R.: Dimensionality reduction on SPD manifolds: the emergence of geometry-aware methods. IEEE Trans. Pattern Anal. Mach. Intell. 40, 48–62 (2018)

    Google Scholar 

  20. Harandi, M.T., Sanderson, C., Hartley, R., Lovell, B.C.: Sparse coding and dictionary learning for symmetric positive definite matrices: a Kernel approach. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 216–229. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_16

    Chapter  Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  22. Hu, J.F., Zheng, W.S., Lai, J., Zhang, J.: Jointly learning heterogeneous features for RGB-D activity recognition. In: CVPR, pp. 5344–5352 (2015)

    Google Scholar 

  23. Huang, Z., Van Gool, L.: A Riemannian network for SPD matrix learning. In: AAAI, pp. 2036–2042 (2017)

    Google Scholar 

  24. Huang, Z., Wang, R., Shan, S., Chen, X.: Hybrid Euclidean-and-Riemannian metric learning for image set classification. In: ACCV, pp. 562–577 (2014)

    Google Scholar 

  25. Huang, Z., Wang, R., Shan, S., Chen, X.: Projection metric learning on Grassmann manifold with application to video based face recognition. In: CVPR, pp. 140–149 (2015)

    Google Scholar 

  26. Huang, Z., Wang, R., Shan, S., Li, X., Chen, X.: Log-Euclidean metric learning on symmetric positive definite manifold with application to image set classification. In: ICML, pp. 720–729 (2015)

    Google Scholar 

  27. Huang, Z., Wu, J., Van Gool, L.: Building deep networks on Grassmann manifolds. In: AAAI, pp. 1137–1145 (2018)

    Google Scholar 

  28. Ionescu, C., Vantzos, O., Sminchisescu, C.: Training deep networks with structured layers by matrix backpropagation. arXiv preprint arXiv:1509.07838 (2015)

  29. Kim, T.S., Reiter, A.: Interpretable 3D human action analysis with temporal convolutional networks. In: CVPRW, pp. 1623–1631 (2017)

    Google Scholar 

  30. Li, T., Liu, J., Zhang, W., Ni, Y., Wang, W., Li, Z.: UAV-Human: a large benchmark for human behavior understanding with unmanned aerial vehicles. In: CVPR, pp. 16266–16275 (2021)

    Google Scholar 

  31. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. In: ICLR (2019)

    Google Scholar 

  32. Lohit, S., Wang, Q., Turaga, P.: Temporal transformer networks: joint learning of invariant and discriminative time warping. In: CVPR, pp. 12426–12435 (2019)

    Google Scholar 

  33. Nguyen, X.S., Brun, L., Lézoray, O., Bougleux, S.: A neural network based on SPD manifold learning for skeleton-based hand gesture recognition. In: CVPR, pp. 12036–12045 (2019)

    Google Scholar 

  34. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66, 41–66 (2006). https://doi.org/10.1007/s11263-005-3222-z

  35. Rahmani, H., Mian, A.: 3D action recognition from novel viewpoints. In: CVPR, pp. 1506–1515 (2016)

    Google Scholar 

  36. Sanin, A., Sanderson, C., Harandi, M.T., Lovell, B.C.: Spatio-temporal covariance descriptors for action and gesture recognition. In: WACV Workshop, pp. 103–110 (2013)

    Google Scholar 

  37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  38. Sun, H., Zhen, X., Zheng, Y., Yang, G., Yin, Y., Li, S.: Learning deep match Kernels for image-set classification. In: CVPR, pp. 3307–3316 (2017)

    Google Scholar 

  39. Tekin, B., Bogo, F., Pollefeys, M.: H+O: unified egocentric recognition of 3D hand-object poses and interactions. In: CVPR, pp. 4511–4520 (2019)

    Google Scholar 

  40. Tosato, D., Farenzena, M., Spera, M., Murino, V., Cristani, M.: Multi-class classification on Riemannian manifolds for video surveillance. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 378–391. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9_28

    Chapter  Google Scholar 

  41. Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on Riemannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1713–1727 (2008)

    Google Scholar 

  42. Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3D Skeletons as points in a lie group. In: CVPR, pp. 588–595 (2014)

    Google Scholar 

  43. Vemulapalli, R., Pillai, J.K., Chellappa, R.: Kernel learning for extrinsic classification of manifold features. In: CVPR, pp. 1782–1789 (2013)

    Google Scholar 

  44. Wang, R., Wu, X.J., Chen, Z., Xu, T., Kittler, J.: Learning a discriminative SPD manifold neural network for image set classification. Neural Netw. 151, 94–110 (2022)

    Google Scholar 

  45. Wang, R., Wu, X.J., Kittler, J.: Graph embedding multi-kernel metric learning for image set classification with Grassmann manifold-valued features. IEEE Trans. Multimedia 23, 228–242 (2021)

    Google Scholar 

  46. Wang, R., Wu, X.J., Kittler, J.: SymNet: a simple symmetric positive definite manifold deep learning method for image set classification. IEEE Trans. Neural Netw. Learn. Syst. 33, 2208–2222 (2022)

    Google Scholar 

  47. Wang, R., Wu, X.J., Xu, T., Hu, C., Kittler, J.: Deep metric learning on the SPD manifold for image set classification. In: IEEE Transactions on Circuits and Systems for Video Technology (2022)

    Google Scholar 

  48. Wang, R., Guo, H., Davis, L.S., Dai, Q.: Covariance discriminative learning: a natural and efficient approach to image set classification. In: CVPR, pp. 2496–2503 (2012)

    Google Scholar 

  49. Xu, T., Feng, Z.H., Wu, X.J., Kittler, J.: An accelerated correlation filter tracker. Pattern Recognit. 102, 107172 (2020)

    Google Scholar 

  50. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: AAAI (2018)

    Google Scholar 

  51. Zhang, T., et al.: Deep manifold-to-manifold transforming network for skeleton-based action recognition. IEEE Trans. Multimedia 22, 2926–2937 (2020)

    Google Scholar 

  52. Zhang, X., Wang, Y., Gou, M., Sznaier, M., Camps, O.: Efficient temporal sequence comparison and classification using gram matrix embeddings on a Riemannian manifold. In: CVPR, pp. 4498–4507 (2016)

    Google Scholar 

  53. Zhao, S., Xu, T., Wu, X.J., Zhu, X.F.: Adaptive feature fusion for visual object tracking. Pattern Recognit. 111, 107679 (2021)

    Google Scholar 

  54. Zhou, L., Wang, L., Zhang, J., Shi, Y., Gao, Y.: Revisiting metric learning for SPD matrix based visual representation. In: CVPR, pp. 3241–3249 (2017)

    Google Scholar 

  55. Zhu, X.F., Wu, X.J., Xu, T., Feng, Z.H., Kittler, J.: Complementary discriminative correlation filters based on collaborative representation for visual object tracking. IEEE Trans. Circuits Syst. Video Technol. 31, 557–568 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62020106012, U1836218, 61672265, 62106089, 62006097), the 111 Project of Ministry of Education of China (B12018), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21-2006), and the UK EPSRC EP/N007743/1, MURI/EPSRC/DSTL EP/R018456/1 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 547 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, R., Wu, XJ., Chen, Z., Xu, T., Kittler, J. (2023). DreamNet: A Deep Riemannian Manifold Network for SPD Matrix Learning. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13846. Springer, Cham. https://doi.org/10.1007/978-3-031-26351-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26351-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26350-7

  • Online ISBN: 978-3-031-26351-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics